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Abstract

We introduce a new function-preserving trans-

formation for efficient neural architecture search.

This network transformation allows reusing pre-

viously trained networks and existing success-

ful architectures that improves sample efficiency.

We aim to address the limitation of current net-

work transformation operations that can only per-

form layer-level architecture modifications, such

as adding (pruning) filters or inserting (remov-

ing) a layer, which fails to change the topology of

connection paths. Our proposed path-level trans-

formation operations enable the meta-controller

to modify the path topology of the given network

while keeping the merits of reusing weights, and

thus allow efficiently designing effective struc-

tures with complex path topologies like Inception

models. We further propose a bidirectional tree-

structured reinforcement learning meta-controller

to explore a simple yet highly expressive tree-

structured architecture space that can be viewed as

a generalization of multi-branch architectures. We

experimented on the image classification datasets

with limited computational resources (about 200

GPU-hours), where we observed improved param-

eter efficiency and better test results (97.70% test

accuracy on CIFAR-10 with 14.3M parameters

and 74.6% top-1 accuracy on ImageNet in the

mobile setting), demonstrating the effectiveness

and transferability of our designed architectures.

1. Introduction

Designing effective neural network architectures is crucial

for the performance of deep learning. While many impres-

sive results have been achieved through significant manual

architecture engineering (Simonyan & Zisserman, 2014;

Szegedy et al., 2015; He et al., 2016; Huang et al., 2017b),
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this process typically requires years of extensive investiga-

tion by human experts, which is not only expensive but also

likely to be suboptimal. Therefore, automatic architecture

design has recently drawn much attention (Zoph & Le, 2017;

Zoph et al., 2017; Liu et al., 2017; Cai et al., 2018; Real

et al., 2018; Pham et al., 2018; Elsken et al., 2017).

Most of the current techniques focus on finding the opti-

mal architecture in a designated search space starting from

scratch while training each designed architecture on the

real data (from random initialization) to get a validation

performance to guide exploration. Though such methods

have shown the ability to discover network structures that

outperform human-designed architectures when vast com-

putational resources are used, such as Zoph et al. (2017) that

employed 500 P100 GPUs across 4 days, they are also likely

to fail to beat best human-designed architectures (Zoph &

Le, 2017; Real et al., 2017; Liu et al., 2018), especially when

the computational resources are restricted. Furthermore,

insufficient training epochs during the architecture search

process (much fewer epochs than normal to save time) may

cause models to underperform (Baker et al., 2017), which

would harm the efficiency of the architecture search process.

Alternatively, some efforts have been made to explore the

architecture space by network transformation, starting from

an existing network trained on the target task and reusing

its weights. For example, Cai et al. (2018) utilized Net2Net

(Chen et al., 2016) operations, a class of function-preserving

transformation operations, to further find high-performance

architectures based on a given network, while Ashok et al.

(2018) used network compression operations to compress

well-trained networks. These methods allow transferring

knowledge from previously trained networks and taking

advantage of existing successful architectures in the target

task, thus have shown improved efficiency and require sig-

nificantly fewer computational resources (e.g., 5 GPUs in

Cai et al. (2018)) to achieve competitive results.

However, the network transformation operations in Cai

et al. (2018) and Ashok et al. (2018) are still limited to

only performing layer-level architecture modifications such

as adding (pruning) filters or inserting (removing) a layer,

which does not change the topology of connection paths in

a neural network. Hence, they restrict the search space to

having the same path topology as the start network, i.e. they

would always lead to chain-structured networks when given
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a chain-structured start point. As the state-of-the-art con-

volutional neural network (CNN) architectures have gone

beyond simple chain-structured layout and demonstrated

the effectiveness of multi-path structures such as Inception

models (Szegedy et al., 2015), ResNets (He et al., 2016)

and DenseNets (Huang et al., 2017b), we would hope such

methods to have the ability to explore a search space with

different and complex path topologies while keeping the

benefits of reusing weights.

In this paper, we present a new kind of transformation oper-

ations for neural networks, phrased as path-level network

transformation operations, which allows modifying the path

topologies in a given network while allowing weight reusing

to preserve the functionality like Net2Net operations (Chen

et al., 2016). Based on the proposed path-level operations,

we introduce a simple yet highly expressive tree-structured

architecture space that can be viewed as a generalized ver-

sion of multi-branch structures. To efficiently explore the

introduced tree-structured architecture space, we further

propose a bidirectional tree-structured (Tai et al., 2015) rein-

forcement learning meta-controller that can naturally encode

the input tree, instead of simply using the chain-structured

recurrent neural network (Zoph et al., 2017).

Our experiments of learning CNN cells on CIFAR-10 show

that our method using restricted computational resources

(about 200 GPU-hours) can design highly effective cell

structures. When combined with state-of-the-art human-

designed architectures such as DenseNets (Huang et al.,

2017b) and PyramidNets (Han et al., 2017), the best discov-

ered cell shows significantly improved parameter efficiency

and better results compared to the original ones. Specifically,

without any additional regularization techniques, it achieves

3.14% test error with 5.7M parameters, while DensNets

give a best test error rate of 3.46% with 25.6M parame-

ters and PyramidNets give 3.31% with 26.0M parameters.

And with additional regularization techniques (DropPath

(Zoph et al., 2017) and Cutout (DeVries & Taylor, 2017)), it

reaches 2.30% test error with 14.3M parameters, surpassing

2.40% given by NASNet-A (Zoph et al., 2017) with 27.6M

parameters and a similar training scheme. More importantly,

NASNet-A is achieved using 48,000 GPU-hours while we

only use 200 GPU-hours. We further apply the best learned

cells on CIFAR-10 to the ImageNet dataset by combining

it with CondenseNet (Huang et al., 2017a) for the Mobile
setting and also observe improved results when compared

to models in the mobile setting.

2. Related Work and Background

2.1. Architecture Search

Architecture search that aims to automatically find effec-

tive model architectures in a given architecture space has

been studied using various approaches which can be cat-

egorized as neuro-evolution (Real et al., 2017; Liu et al.,

2018), Bayesian optimization (Domhan et al., 2015; Men-

doza et al., 2016), Monte Carlo Tree Search (Negrinho &

Gordon, 2017) and reinforcement learning (RL) (Zoph &

Le, 2017; Baker et al., 2017; Zhong et al., 2017; Zoph et al.,

2017).

Since getting an evaluation of each designed architecture

requires training on the real data, which makes directly ap-

plying architecture search methods on large datasets (e.g.,

ImageNet (Deng et al., 2009)) computationally expensive,

Zoph et al. (2017) proposed to search for CNN cells that

can be stacked later, rather than search for the entire ar-

chitectures. Specifically, learning of the cell structures is

conducted on small datasets (e.g., CIFAR-10) while learned

cell structures are then transferred to large datasets (e.g., Im-

ageNet). This scheme has also been incorporated in Zhong

et al. (2017) and Liu et al. (2018).

On the other hand, instead of constructing and evaluating

architectures from scratch, there are some recent works

that proposed to take network transformation operations

to explore the architecture space given a trained network

in the target task and reuse the weights. Cai et al. (2018)

presented a recurrent neural network to iteratively generate

transformation operations to be performed based on the cur-

rent network architecture, and trained the recurrent network

with REINFORCE algorithm (Williams, 1992). A similar

framework has also been incorporated in Ashok et al. (2018)

where the transformation operations change from Net2Net

operations in Cai et al. (2018) to compression operations.

Compared to above work, in this paper, we extend current

network transformation operations from layer-level to path-

level. Similar to Zoph et al. (2017) and Zhong et al. (2017),

we focus on learning CNN cells, while our approach can be

easily combined with any existing well-designed architec-

tures to take advantage of their success and allow reusing

weights to preserve the functionality.

2.2. Multi-Branch Neural Networks

Multi-branch structure (or motif) is an essential component

in many modern state-of-the-art CNN architectures. The

family of Inception models (Szegedy et al., 2015; 2017;

2016) are successful multi-branch architectures with care-

fully customized branches. ResNets (He et al., 2016) and

DenseNets (Huang et al., 2017b) can be viewed as two-

branch architectures where one branch is the identity map-

ping. A common strategy within these multi-branch archi-

tectures is that the input feature map x is first distributed

to each branch based on a specific allocation scheme (ei-

ther split in Inception models or replication in ResNets

and DenseNets), then transformed by primitive operations

(e.g., convolution, pooling, etc.) on each branch, and fi-
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Figure 1. Convolution layer and its equivalent multi-branch motifs.

nally aggregated to produce an output based on a specific

merge scheme (either add in ResNets or concatenation in

Inception models and DenseNets).

According to the research of Veit et al. (2016), ResNets

can be considered to behave as ensembles of a collection

of many paths of differing length. Similar interpretations

can also be applied to Inception models and DenseNets.

As the Inception models have demonstrated the merits of

carefully customized branches where different primitive

operations are used in each branch, it is thus of great interest

to investigate whether we can benefit from more complex

and well-designed path topologies within a CNN cell that

make the collection of paths from the ensemble view more

abundant and diverse.

In this work, we explore a tree-structured architecture space

where at each node the input feature map is allocated to each

branch, going through some primitive operations and the

corresponding child node, and is later merged to produce an

output for the node. It can be viewed as a generalization of

current multi-branch architectures (tree with a depth of 1)

and is able to embed plentiful paths within a CNN cell.

2.3. Function-Preserving Network Transformation

Function-preserving network transformation refers to the

class of network transformation operations that initialize

a student network to preserve the functionality of a given

teacher network. Net2Net technique (Chen et al., 2016)

introduces two specific function-preserving transformation

operations, namely Net2WiderNet operation which replaces

a layer with an equivalent layer that is wider (e.g., more

filters for convolution layer) and Net2DeeperNet operation

which replaces an identity mapping with a layer that can

be initialized to be identity, including normal convolution

layers with various filters (e.g., 3 × 3, 7 × 1, 1 × 7, etc.),

depthwise-separable convolution layers (Chollet, 2016) and

so on. Additionally, network compression operations (Han

et al., 2015) that prune less important connections (e.g., low

weight connections) to shrink the size of a given model

without reducing the performance can also be viewed as one

kind of function-preserving transformation operations.
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Figure 2. Identity layer and its equivalent multi-branch motifs.

Our approach builds on existing function-preserving trans-

formation operations and further extends to path-level archi-

tecture modifications.

3. Method

3.1. Path-Level Network Transformation

We introduce operations that allow replacing a single layer

with a multi-branch motif whose merge scheme is either

add or concatenation. To illustrate the operations, we

use two specific types of layers, i.e. identity layer and

normal convolution layer, as examples, while they can also

be applied to other similar types of layers, such as depthwise-

separable convolution layers, analogously.

For a convolution layer, denoted as C(·), to construct an

equivalent multi-branch motif with N branches, we need to

set the branches so as to mimic the output of the original

layer for any input feature map x. When these branches

are merged by add, the allocation scheme is set to be

replication and we set each branch to be a replication of

the original layer C(·), which makes each branch produce

the same output (i.e. C(x)), and finally results in an out-

put N × C(x) after being merged by add. To eliminate

the factor, we further divide the output of each branch by

N . As such the output of the multi-branch motif keeps

the same as the output of the original convolution layer, as

illustrated in Figure 1 (middle). When these branches are

merged by concatenation, the allocation scheme is also set

to be replication. Then we split the filters of the original

convolution layer into N parts along the output channel

dimension and assign each part to the corresponding branch,

which is later merged to produce an output C(x), as shown

in Figure 1 (right).

For an identity layer, when the branches are merged by add,

the transformation is the same except that the convolution

layer in each branch changes to the identity mapping in this

case (Figure 2 (middle)). When the branches are merged by

concatenation, the allocation scheme is set to be split and

each branch is set to be the identity mapping, as is illustrated

in Figure 2 (right).
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Figure 3. An illustration of transforming a single layer to a tree-structured motif via path-level transformation operations, where we apply

Net2DeeperNet operation to replace an identity mapping with a 3× 3 depthwise-separable convolution in (c).

Note that simply applying the above transformations does

not lead to non-trivial path topology modifications. How-

ever, when combined with Net2Net operations, we are able

to dramatically change the path topology, as shown in Fig-

ure 3. For example, we can insert different numbers and

types of layers into each branch by applying Net2DeeperNet

operation, which makes each branch become substantially

different, like Inception Models. Furthermore, since such

transformations can be repetitively applied on any appli-

cable layers in the neural network, such as a layer in the

branch, we can thus arbitrarily increase the complexity of

the path topology.

3.2. Tree-Structured Architecture Space

In this section, we describe the tree-structured architecture

space that can be explored with path-level network transfor-

mation operations as illustrated in Figure 3.

A tree-structured architecture consists of edges and nodes,
where at each node (except leaf nodes) we have a specific
combination of the allocation scheme and the merge scheme,
and the node is connected to each of its child nodes via
an edge that is defined as a primitive operation such as
convolution, pooling, etc. Given the input feature map x,
the output of node N(·), with m child nodes denoted as
{N c

i (·)} and m corresponding edges denoted as {Ei(·)}, is
defined recursively based on the outputs of its child nodes:

zi = allocation(x, i),

yi = N
c
i (Ei(zi)), 1 ≤ i ≤ m, (1)

N(x) = merge(y
1
, · · · ,ym),

where allocation(x, i) denotes the allocated feature map

for ith child node based on the allocation scheme, and

merge(·) denotes the merge scheme that takes the outputs

of child nodes as input and outputs an aggregated result

which is also the output of the node. For a leaf node that

has no child node, it simply returns the input feature map

as its output. As defined in Eq. (1), for a tree-structured

architecture, the feature map is first fed to its root node, then

spread to all subsequent nodes through allocation schemes

at the nodes and edges in a top-down manner until reaching

leaf nodes, and finally aggregated in mirror from the leaf

nodes to the root node in a bottom-up manner to produce a

final output feature map.

Notice that the tree-structured architecture space is not the

full architecture space that can be achieved with the pro-

posed path-level transformation operations. We choose to

explore the tree-structure architecture space for the ease

of implementation and further applying architecture search

methods such as RL based approaches (Cai et al., 2018) that

would need to encode the architecture. Another reason for

choosing the tree-structured architecture space is that it has

a strong connection to existing multi-branch architectures,

which can be viewed as tree-structured architectures with a

depth of 1, i.e. all of the root node’s child nodes are leaf.

To apply architecture search methods on the tree-structured
architecture space, we need to further specify it by defining
the set of possible allocation schemes, merge schemes and
primitive operations. As discussed in Sections 2.2 and 3.1,
the allocation scheme is either replication or split and
the merge scheme is either add or concatenation. For the
primitive operations, similar to previous work (Zoph et al.,
2017; Liu et al., 2018), we consider the following 7 types
of layers:

• 1× 1 convolution

• Identity

• 3× 3 depthwise-separable convolution

• 5× 5 depthwise-separable convolution

• 7× 7 depthwise-separable convolution

• 3× 3 average pooling

• 3× 3 max pooling

Here, we include pooling layers that cannot be initialized as

identity mapping. To preserve the functionality when pool-

ing layers are chosen, we further reconstruct the weights

in the student network (i.e. the network after transforma-

tions) to mimic the output logits of the given teacher net-

work, using the idea of knowledge distillation (Hinton et al.,

2015). As pooling layers do not dramatically destroy the

functionality for multi-path neural networks, we find that

the reconstruction process can be done with negligible cost.
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Figure 4. Calculation procedure of bottom-up and top-down hidden

states.

3.3. Architecture Search with Path-Level Operations

In this section, we present an RL agent as the meta-controller

to explore the tree-structured architecture space. The overall

framework is similar to the one proposed in Cai et al. (2018)

where the meta-controller iteratively samples network trans-

formation actions to generate new architectures that are later

trained to get the validation performances as reward signals

to update the meta-controller via policy gradient algorithms.

To map the input architecture to transformation actions,

the meta-controller has an encoder network that learns a

low-dimensional representation of the given architecture,

and distinct softmax classifiers that generate corresponding

network transformation actions.

In this work, as the input architecture now has a tree-

structured topology that cannot be easily specified with

a sequence of tokens, instead of using the chain-structure

Long Short-Term Memory (LSTM) network (Hochreiter &

Schmidhuber, 1997) to encode the architecture (Zoph et al.,

2017), we propose to use a tree-structured LSTM. Tai et al.

(2015) introduced two kinds of tree-structured LSTM units,

i.e. Child-Sum Tree-LSTM unit for tree structures whose

child nodes are unordered and N-ary Tree-LSTM unit for

tree structures whose child nodes are ordered. For further

details, we refer to the original paper (Tai et al., 2015).

In our case, for the node whose merge scheme is add, its
child nodes are unordered and thereby the Child-Sum Tree-
LSTM unit is applied, while for the node whose merge
scheme is concatenation, the N-ary Tree-LSTM unit is
used since its child nodes are ordered. Additionally, as we
have edges between nodes, we incorporate another normal
LSTM unit for performing hidden state transitions on edges.

We denote these three LSTM units as ChildSumLSTM↑,
NaryLSTM↑ and LSTM↑, respectively. As such, the
hidden state of the node that has m child nodes is given as

h
′
, c

′=

{

ChildSumLSTM↑(s, [hc
1, c

c
1], · · ·, [h

c
m, ccm]) if add

NaryLSTM↑(s, [hc
1, c

c
1], · · ·, [h

c
m, ccm]) if concat

,

h, c = LSTM
↑(e, [h′

, c
′]), (2)

where [hc
i , c

c
i ] denotes the hidden state of ith child node, s

Leaf

e e) 1 e2 e3

(a)

e )
Identity

e

(b)

Iden

tity
e)

(c)

Figure 5. Illustration of transformation decisions on nodes and

edges. (a) The meta-controller transforms a node with only one

leaf child node to have multiple child nodes. Both merge scheme

and branch number are predicted. (b) The meta-controller inserts a

new leaf node to be the child node of a previous leaf node and they

are connected with an identity mapping. (c) The meta-controller

replaces an identity mapping with a layer (can be identity) chosen

from the set of possible primitive operations.

represents the allocation and merge scheme of the node, e is

the edge that connects the node to its parent node, and [h, c]
is the hidden state of the node. Such calculation is done in a

bottom-up manner as is shown in Figure 4a.

Note that the hidden state calculated via Eq. (2) only con-
tains information below the node. Analogous to bidirec-
tional LSTM, we further consider a top-down procedure,

using two new LSTM units (NaryLSTM↓ and LSTM↓),
to calculate another hidden state for each node. We refer to
these two hidden states of a node as bottom-up hidden state
and top-down hidden state respectively. For a node, with

m child nodes, whose top-down hidden state is [h̃p, c̃p], the

top-down hidden state of its ith child node is given as

h̃
′
i, c̃

′
i = NaryLSTM

↓(s, [h̃p
, c̃

p], [h1, c1], · · · ,

ith child node
︷ ︸︸ ︷

[0,0] , · · · ),

h̃i, c̃i = LSTM
↓(ei, [h̃

′
i, c̃

′
i]), (3)

where [hj , cj ] is the bottom-up hidden state of jth child

node, s is the allocation and merge scheme of the node, ei
is the edge that connect the node to its ith child node, and

[h̃i, c̃i] is the top-down hidden state of ith child node. As

shown in Figure 4b and Eq. (3), a combination of the bottom-

up hidden state and top-down hidden state now forms a

comprehensive hidden state for each node, containing all

information of the architecture.

Given the hidden state at each node, we have various soft-

max classifiers for making different transformation deci-

sions on applicable nodes as follows:

1. For a node that has only one leaf child node,

the meta-controller chooses a merge scheme

from {add, concatenation, none}. When add or

concatenation is chosen, the meta-controller further

chooses the number of branches and then the network

is transformed accordingly, which makes the node have

multiple child nodes now (Figure 5a). When none is

chosen, nothing is done and the meta-controller will

not make such decision on that node again.
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10 (TreeCell-A). “GroupConv” denotes the group convolution;

“Conv” denotes the normal convolution; “Sep” denotes the
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“Avg” denotes the average pooling.

2. For a node that is a leaf node, the meta-controller de-

termines whether to expand the node, i.e. insert a new

leaf node to be the child node of this node and connect

them with identity mapping, which increases the depth

of the architecture (Figure 5b).

3. For an identity edge, the meta-controller chooses a new

edge (can be identity) from the set of possible primitive

operations (Section 3.2) to replace the identity edge

(Figure 5c). Also this decision will only be made once

for each edge.

4. Experiments and Results

Our experimental setting1 resembles Zoph et al. (2017),

Zhong et al. (2017) and Liu et al. (2018). Specifically,

we apply the proposed method described above to learn

CNN cells on CIFAR-10 (Krizhevsky & Hinton, 2009) for

the image classification task and transfer the learned cell

structures to ImageNet dataset (Deng et al., 2009).

4.1. Experimental Details

CIFAR-10 contains 50,000 training images and 10,000 test

images, where we randomly sample 5,000 images from

the training set to form a validation set for the architec-

ture search process, similar to previous work (Zoph et al.,

2017; Cai et al., 2018). We use a standard data augmenta-

tion scheme (mirroring/shifting) that is widely used for this

dataset (Huang et al., 2017b; Han et al., 2017; Cai et al.,

2018) and normalize the images using channel means and

standard deviations for preprocessing.

For the meta-controller, described in Section 3.3, the hidden

1Experiment code: https://github.com/han-cai/PathLevel-EAS

Figure 7. Progress of the architecture search process and compari-

son between RL and random search (RS) on CIFAR-10.

state size of all LSTM units is 100 and we train it with the

ADAM optimizer (Kingma & Ba, 2014) using the REIN-

FORCE algorithm (Williams, 1992). To reduce variance, we

adopt a baseline function which is an exponential moving

average of previous rewards with a decay of 0.95, as done

in Cai et al. (2018). We also use an entropy penalty with a

weight of 0.01 to ensure exploration.

At each step in the architecture search process, the meta-

controller samples a tree-structured cell by taking trans-

formation actions starting with a single layer in the base

network. For example, when using a DenseNet as the base

network, after the transformations, all 3 × 3 convolution

layers in the dense blocks are replaced with the sampled

tree-structured cell while all the others remain unchanged.

The obtained network, along with weights transferred from

the base network, is then trained for 20 epochs on CIFAR-10

with an initial learning rate of 0.035 that is further annealed

with a cosine learning rate decay (Loshchilov & Hutter,

2016), a batch size of 64, a weight decay of 0.0001, using

the SGD optimizer with a Nesterov momentum of 0.9. The

validation accuracy accv of the obtained network is used

to compute a reward signal. We follow Cai et al. (2018)

and use the transformed value, i.e. tan(accv × π/2), as

the reward since improving the accuracy from 90% to 91%

should gain much more than from 60% to 61%. Addition-

ally, we update the meta-controller with mini-batches of 10

architectures.

After the architecture search process is done, the learned

cell structures can be embedded into various kinds of base

networks (e.g., ResNets, DenseNets, etc.) with different

depth and width. In this stage, we train networks for 300

epochs with an initial learning rate of 0.1, while all other

settings keep the same.

4.2. Architecture Search on CIFAR-10

In our experiments, we use a small DenseNet-BC (N =
2, L = 16, k = 48, G = 4)2, which achieves an accuracy of

2N , L and k respectively indicate the number of 3×3 convolu-
tion layers within each dense block, the depth of the network, and



Path-Level Network Transformation for Efficient Architecture Search

Table 1. Test error rate (%) results of our best discovered architectures as well as state-of-the-art human-designed and automatically

designed architectures on CIFAR-10. If “Reg” is checked, additional regularization techniques (e.g., Shake-Shake (Gastaldi, 2017),

DropPath (Zoph et al., 2017) and Cutout (DeVries & Taylor, 2017)), along with a longer training schedule (600 epochs or 1800 epochs)

are utilized when training the networks.

Model Reg Params Test error

Human

designed

ResNeXt-29 (16× 64d) (Xie et al., 2017)

DenseNet-BC (N = 31, k = 40) (Huang et al., 2017b)

PyramidNet-Bottleneck (N = 18, α = 270) (Han et al., 2017)

PyramidNet-Bottleneck (N = 30, α = 200) (Han et al., 2017)

ResNeXt + Shake-Shake (1800 epochs) (Gastaldi, 2017)

ResNeXt + Shake-Shake + Cutout (1800 epochs) (DeVries & Taylor, 2017)

X

X

68.1M

25.6M

27.0M

26.0M

26.2M

26.2M

3.58

3.46

3.48

3.31

2.86

2.56

Auto

designed

EAS (plain CNN) (Cai et al., 2018)

Hierarchical (c0 = 128) (Liu et al., 2018)

Block-QNN-A (N = 4) (Zhong et al., 2017)

NAS v3 (Zoph & Le, 2017)

NASNet-A (6, 32) + DropPath (600 epochs) (Zoph et al., 2017)

NASNet-A (6, 32) + DropPath + Cutout (600 epochs) (Zoph et al., 2017)

NASNet-A (7, 96) + DropPath + Cutout (600 epochs) (Zoph et al., 2017)

X

X

X

23.4M

-

-

37.4M

3.3M

3.3M

27.6M

4.23

3.63

3.60

3.65

3.41

2.65

2.40

Ours

TreeCell-B with DenseNet (N = 6, k = 48, G = 2)

TreeCell-A with DenseNet (N = 6, k = 48, G = 2)

TreeCell-A with DenseNet (N = 16, k = 48, G = 2)

TreeCell-B with PyramidNet (N = 18, α = 84, G = 2)

TreeCell-A with PyramidNet (N = 18, α = 84, G = 2)

TreeCell-A with PyramidNet (N = 18, α = 84, G = 2) + DropPath (600 epochs)

TreeCell-A with PyramidNet (N = 18, α = 84, G = 2) + DropPath + Cutout (600 epochs)

TreeCell-A with PyramidNet (N = 18, α = 150, G = 2) + DropPath + Cutout (600 epochs)

X

X

X

3.2M

3.2M

13.1M

5.6M

5.7M

5.7M

5.7M

14.3M

3.71

3.64

3.35

3.40

3.14

2.99

2.49

2.30

93.12% on the held-out validation set, as the base network

to learn cell structures. We set the maximum depth of the

cell structures to be 3, i.e. the length of the path from the

root node to each leaf node is no larger than 3 (Figure 6). For

nodes whose merge scheme is add, the number of branches

is chosen from {2, 3} while for nodes whose merge scheme

is concatenation, the number of branches is set to be 2.

Additionally, we use very restricted computational resources

for this experiment (about 200 GPU-hours ≪ 48,000 GPU-

hours in Zoph et al. (2017)) with in total 500 networks

trained.

The progress of the architecture search process is reported in

Figure 7, where the results of random search (a very strong

baseline for black-box optimization (Bergstra & Bengio,

2012)) under the same condition is also provided. We can

find that the average validation accuracy of the designed

architectures by the RL meta-controller gradually increases

as the number of sampled architectures increases, as ex-

pected, while the curve of random search keeps fluctuating,

which indicates that the RL meta-controller effectively fo-

cuses on the right search direction while random search fails.

Therefore, with only 500 networks trained, the best model

identified by RL, after 20 epochs training, achieves 0.16%
better validation accuracy than the best model identified by

the growth rate, i.e. the number of filters of each 3× 3 convolution
layer. And we use the group convolution with G = 4 groups here.
For DenseNet-BC, L = 6×N +4, so we omit L in the following
discussions for simplicity.

random search.

We take top 10 candidate cells discovered in this experiment,

and embed them into a relatively larger base network, i.e.

DenseNet-BC (N = 6, k = 48, G) where G is chosen from

{1, 2, 4} to make different cells have a similar number of

parameters as the normal 3 × 3 convolution layer (more

details in the supplementary material). After 300 epochs

training on CIFAR-10, the top 2 cells achieve 3.64% test

error (TreeCell-A) and 3.71% test error (TreeCell-B), re-

spectively. The detailed structure of TreeCell-A is given in

Figure 6, while TreeCell-B’s detailed structure is provided

in the supplementary material. Under the same condition,

the best cell given by random search reaches a test error rate

of 3.98%, which is 0.34% worse than TreeCell-A.

4.3. Results on CIFAR-10

We further embed the top discovered cells, i.e. TreeCell-

A and TreeCell-B, into larger base networks. Beside

DenseNets, to justify whether the discovered cells start-

ing with DenseNet can be transferred to other types of ar-

chitectures such as ResNets, we also embed the cells into

PyramidNets (Han et al., 2017), a variant of ResNets.

The summarized results are reported in Table 1. When

combined with DenseNets, the best discovered tree cell (i.e.

TreeCell-A) achieves a test error rate of 3.64% with only

3.2M parameters, which is comparable to the best result,

i.e. 3.46% in the original DenseNet paper, given by a much
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larger DenseNet-BC with 25.6M parameters. Furthermore,

the test error rate drops to 3.35% as the number of parame-

ters increases to 13.1M. We attribute the improved parameter

efficiency and better test error rate results to the improved

representation power from the increased path topology com-

plexity introduced by the learned tree cells. When combined

with PyramidNets, TreeCell-A reaches 3.14% test error with

only 5.7M parameters while the best PyramidNet achieves

3.31% test error with 26.0M parameters, which also indi-

cates significantly improved parameter efficiency by incor-

porating the learned tree cells for PyramidNets. Since the

cells are learned using a DenseNet as the start point rather

than a PyramidNet, it thereby justifies the transferability of

the learned cells to other types of architectures.

We notice that there are some strong regularization tech-

niques that have shown to effectively improve the per-

formances on CIFAR-10, such as Shake-Shake (Gastaldi,

2017), DropPath (Zoph et al., 2017) and Cutout (DeVries

& Taylor, 2017). In our experiments, when using Drop-

Path that stochastically drops out each path (i.e. edge in

the tree cell) and training the network for 600 epochs, as

done in Zoph et al. (2017) and Liu et al. (2017), TreeCell-A

reaches 2.99% test error with 5.7M parameters. Moreover,

with Cutout, TreeCell-A further achieves 2.49% test error

with 5.7M parameters and 2.30% test error with 14.3M pa-

rameters, outperforming all compared human-designed and

automatically designed architectures on CIFAR-10 while

having much fewer parameters (Table 1).

We would like to emphasize that these results are achieved

with only 500 networks trained using about 200 GPU-hours

while the compared architecture search methods utilize

much more computational resources to achieve their best

results, such as Zoph et al. (2017) that used 48,000 GPU-

hours.

4.4. Results on ImageNet

Following Zoph et al. (2017) and Zhong et al. (2017), we

further test the best cell structures learned on CIFAR-10, i.e.

TreeCell-A and TreeCell-B, on ImageNet dataset. Due to re-

source and time constraints, we focus on the Mobile setting

in our experiments, where the input image size is 224× 224
and we train relatively small models that require less than

600M multiply-add operations to perform inference on a

single image. To do so, we combine the learned cell struc-

tures with CondenseNet (Huang et al., 2017a), a recently

proposed efficient network architecture that is designed for

the Mobile setting.

The result is reported in Table 2. By embedding TreeCell-A

into CondenseNet (G1 = 4, G3 = 8) where each block

comprises a learned 1 × 1 group convolution layer with

G1 = 4 groups and a standard 3 × 3 group convolution

layer with G3 = 8 groups, we achieve 25.5% top-1 error

Table 2. Top-1 (%) and Top-5 (%) classification error rate results

on ImageNet in the Mobile Setting (≤ 600M multiply-add opera-

tions). “×+” denotes the number of multiply-add operations.

Model ×+ Top-1 Top-5

1.0 MobileNet-224 (Howard et al., 2017) 569M 29.4 10.5

ShuffleNet 2x (Zhang et al., 2017) 524M 29.1 10.2

CondenseNet (G1 = G3 = 8) (Huang et al., 2017a) 274M 29.0 10.0

CondenseNet (G1 = G3 = 4) (Huang et al., 2017a) 529M 26.2 8.3

NASNet-A (N = 4) (Zoph et al., 2017) 564M 26.0 8.4

NASNet-B (N = 4) (Zoph et al., 2017) 448M 27.2 8.7

NASNet-C (N = 3) (Zoph et al., 2017) 558M 27.5 9.0

TreeCell-A with CondenseNet (G1 = 4, G3 = 8) 588M 25.5 8.0

TreeCell-B with CondenseNet (G1 = 4, G3 = 8) 594M 25.4 8.1

and 8.0% top-5 error with 588M multiply-add operations,

which significantly outperforms MobileNet and ShuffleNet,

and is also better than CondenseNet (G1 = G3 = 4) with a

similar number of multiply-add operations. Meanwhile, we

find that TreeCell-B with CondenseNet (G1 = 4, G3 = 8)

reaches a slightly better top-1 error result, i.e. 25.4%, than

TreeCell-A.

When compared to NASNet-A, we also achieve slightly

better results with similar multiply-add operations despite

the fact that they used 48,000 GPU-hours to achieve these

results while we only use 200 GPU-hours. By taking advan-

tage of existing successful human-designed architectures,

we can easily achieve similar (or even better) results with

much fewer computational resources, compared to exploring

the architecture space from scratch.

5. Conclusion

In this work, we presented path-level network transfor-

mation operations as an extension to current function-

preserving network transformation operations to enable

the architecture search methods to perform not only layer-

level architecture modifications but also path-level topology

modifications in a neural network. Based on the proposed

path-level transformation operations, we further explored

a tree-structured architecture space, a generalized version

of current multi-branch architectures, that can embed plen-

tiful paths within each CNN cell, with a bidirectional tree-

structured RL meta-controller. The best designed cell struc-

ture by our method using only 200 GPU-hours has shown

both improved parameter efficiency and better test accuracy

on CIFAR-10, when combined with state-of-the-art human

designed architectures including DenseNets and Pyramid-

Nets. And it has also demonstrated its transferability on

ImageNet dataset in the Mobile setting. For future work,

we would like to combine the proposed method with net-

work compression operations to explore the architecture

space with the model size and the number of multiply-add

operations taken into consideration and conduct experiments

on other tasks such as object detection.
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