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ABSTRACT Optimal network planning for wireless communication systems requires the detailed knowl-

edge of the channel parameters of the target coverage area. Channel parameters can be estimated through

extensive measurements in the environment. Alternatively, ray tracing simulations can be done if the 3D

model of the environment is available. One drawback of ray tracing simulations is the high computational

complexity; therefore, ray tracing is not suitable for real-time coverage optimization. In this paper, we present

a deep convolutional neural network-based approach to estimate channel parameters (specifically, path loss

exponent and standard deviation of shadowing) directly from 2D satellite images. While deep learning

methods require high computational resources for training and large amount of training data, once trained,

the network can make predictions fast. Also, unlike the ray tracing simulations, there is no need for 3D

model generation, and therefore, it can be applied easily using the images obtained from satellites or aerial

vehicles. These make the proposed method a computationally efficient and reliable alternative to ray tracing

simulations. The experimental results show that path loss exponent and large-scale shadowing factor at

900 MHz can be correctly classified by 88% and 76% accuracy, respectively.

INDEX TERMS Channel parameter estimation, path loss exponent, shadowing factor, deep learning.

I. INTRODUCTION

For wireless communication system operators, optimal net-

work planning requires detailed knowledge of the channel

parameters of the target coverage area. As long as the pos-

sible locations of the transmitters are low, channel parameter

estimations can be obtained using results from extensivemea-

surements in the environment [1], [2]. An alternative method

is to employ ray tracing (RT) or ray launching (RL) simu-

lations, which provide satisfactory performance compared to

the real measurements [3], [4]. RT andRL simulations require

3Dmodels of the environment, which could be obtained using

computer vision techniques, such as stereo vision based depth

estimation, applied on aerial images. 3D models of target

areas are not always available, and it is not economic or prac-

tical to generate one for a target area in a short amount of time.

Even if the 3D models are available, RT and RL simulations
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could be computationally costly and may not be suitable for

real-time coverage optimization of large areas [5], [6].

Different models have been proposed to estimate

path loss for terrestrial wireless networks. For example,

the COST231 Walfisch-Ikegami (COST-WI) model is used

for urban environments, and includes parameters such as

average height of buildings, road widths, street orientation

angles and building separation [7]. Such a detailed feature

extraction is often not possible, and the performance of the

model is not always satisfactory. In [8], a simplified model,

including only the percentage of building occupation between

the transmitter and receiver as the region feature, is presented.

The building occupation percentage can be calculated from

manually segmented images or through image segmentation

directly applied to satellite images [9].

Machine learning techniques can also be used to predict

path loss. For example, in [10], support vector machine

(SVM) and artificial neural network (ANN) approaches,

along with dimensionality reduction, are employed to
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predict path loss values. The feature vector includes height,

thickness, and distance (from the transmitter) of the build-

ings between the transmitter and receiver. Other geometric

features, such mean road width and mean building height,

as well as transmitter/receiver heights and operation fre-

quency have been considered in a number of papers based

on ANNs [11]–[16]. For path loss prediction of regions other

than urban areas, it is also possible to classify the region

using aerial images as, for instance village or forest, and use

the proper path loss model [17]. Recently, a review of exist-

ing machine learning based path loss prediction approaches,

including support vector regression based [18] and decision

tree based [19] methods, is presented [20].

The main disadvantage of most traditional machine learn-

ing approaches is that 3Dmodels are required to make predic-

tions. In our approach, the predictions are made directly from

2D images. We use 3D models only to create the dataset to be

used for training the prediction network. Another disadvan-

tage of existing methods is the need for hand-crafted features,

which may not satisfactorily represent the actual charac-

teristics affecting the prediction. In our approach, we use

deep learning techniques, which extracts the relevant features

through training. We will specifically utilize deep convolu-

tional neural networks (CNNs), which incorporate convolu-

tional layers [21], and have been successfully applied tomany

machine learning applications [22], [23].

In this paper, our goal is to model the relationships between

channel parameters (specifically, path loss exponent and

large-scale shadow factor) and 2D aerial/satellite images of

an area. Supervised classification is used for predicting the

range of parameter values in a given area. For this purpose,

two different deep CNN architectures are trained and tested.

Simulation results show up to 88% and 76% prediction accu-

racy for path loss exponent and large-scale shadowing factor

parameters, respectively. The novel contributions of the paper

can be summarized as follows:

• Deep learning is used to analyze and model the intricate

dependencies between the channel parameters and 2D

aerial/satellite images of an area. We show that channel

parameters can be reliably predicted without the need for

a 3D model or any auxiliary features of the region.

• Special deep learning techniques, such as transfer learn-

ing and multi-task learning, are successfully applied

for accurate channel parameter prediction with limited

training dataset.

• We propose a general framework which could be

adapted to deep learning of other channel models and/or

parameters at different communication settings. Deep

learning provides a fast and cheap alternative to ray

tracing simulations or extensive measurements in the

field.

The paper is organized as follows. In Section II, we present

the channel model and the prediction method. Deep learn-

ing techniques require large amount of data for training;

in Section III, we explain the dataset generation process

that we used. The network architectures and the parameter

prediction performances are given in Section IV. We present

an enhancement of the base prediction method in Section V.

We discuss the results in Section VI and conclude the paper

in Section VII.

II. CHANNEL PARAMETERS AND PREDICTION MODEL

The large-scale path loss model using a close-in free space

reference distance is formulated as:

PL(d) = PL(d0) + 10n log10

(

d

d0

)

+ Xσ , (1)

where PL(d) is the path loss (in dB) at some distance d from

the transmitter, PL(d0) is the path loss at a reference distance

d0, n is the path loss exponent and Xσ is a random variable

with zero mean and standard deviation of σ , i.e., the large-

scale shadowing factor which refers to the amount of shad-

owing in the environment [24]. This model is widely used

for estimating received signal strength in different wireless

networks, including air-to-ground UAV communication [25].

FIGURE 1. Channel parameter estimation. A 2D aerial/satellite image is
input to a deep neural network to produce an estimate of the channel
parameter for the corresponding region. For each channel parameter,
a separate network is trained.

Our goal is to estimate the channel parameters (n and σ )

of a region directly from a 2D satellite image of that region.

As shown in Fig. 1, a deep neural network takes a satellite

image as its input and returns a prediction of the channel

parameter. In our case, there are two parameters (n and σ );

so, for each parameter, there will be a separate neural network

trained specifically for that parameter. The specific network

architectures that we used will be given in Section IV.

FIGURE 2. Dataset generation. A target region has both an aerial/satellite
image and a 3D model. The 3D model is passed through ray tracing
simulation to obtain path loss values, which are then used to calculate
the channel parameters. The channel parameters and the corresponding
2D aerial/satellite image are added to the dataset.

III. DATASET GENERATION

Deep neural networks require large amount of training data.

Fig. 2 shows the block diagram of the process to gen-

erate the dataset, which includes channel parameters and

aerial/satellite images. For a target region, we have both the

aerial/satellite image and the 3D model. The 3D model is

passed through ray tracing simulation to obtain path loss val-

ues, which are then used to calculate the channel parameters.
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FIGURE 3. Satellite images, corresponding 3D models, and path loss measurements with predicted channel parameters are shown for two
different regions.

The channel parameters and the corresponding image are

added to the dataset. The process is repeated for all available

regions with aerial/satellite images and 3D models to form

the entire dataset.

Specifically, we used the SketchUp software1 with the

PlaceMaker plugin2 to acquire the satellite images and the

corresponding 3D models. Each image (and the correspond-

ing 3D model) covers a 1.8 × 1.8 km area, mostly taken

around the New York City. A 3D model is imported and

merged with a flat terrain in Wireless InSite software.3 Ray

tracing simulation environment is created by placing a grid

of 12,100 (110×110) receivers and a transmitter at the center

of the 3D model. The receivers corresponding to positions

inside the buildings are removed. The transmit power is set to

60 dBm and omni-directional antenna is chosen to achieve a

good coverage area. The terrain is set as dry earth while the

buildings are set as concrete in the simulation environment.

The transmitter antenna is positioned at a height of 300meters

from the terrain to replicate the scenario of air-to-ground

channel. The receivers are placed at 1.5 meters from ground

level. (The simulation parameters are summarized in Table 1.)

Ray tracing simulations are performed to generate the path

loss values at each receiver. The path loss values are then

used to calculate the wireless channel parameters (n and

σ ). Finally, the calculated channel parameters and the cor-

responding aerial image are added to the dataset.

At the end, a dataset consisting of a total of 999 imageswith

channel parameters are generated using the process described

above. In Fig. 3, satellite images, corresponding 3D models,

1https://www.sketchup.com/
2https://www.suplacemaker.com/
3https://www.remcom.com/wireless-insite-em-propagation-software

TABLE 1. Measurement setup parameters.

and path loss measurements at the receivers (as a function

of distance) along with the calculated channel parameters are

shown for two different regions. Some other sample regions

are shown later in the paper.

IV. CHANNEL PARAMETER PREDICTION

We quantize the channel parameters (n, σ ) into a certain

number of sub-intervals; prediction of the correct (n, σ ) sub-

interval of each image is treated as a classification problem

and solved by the use of deep learning architectures.

A. NETWORK ARCHITECTURES AND CLASS LABELING

There exist several successful deep CNN architectures used

for classification in literature. In this paper, we test and

compare two such architectures, namely VGG-16 [22] and

ResNet-50 [23], for (n, σ ) parameter classification. These

networks (shown in Fig. 4) are well-known representatives

of two alternative approaches. VGG-16 is a network with

medium depth (16 layers) and more than 138M trainable
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FIGURE 4. The architectures used in the experiments: (a) VGG-16 [22], (b) ResNet-50 [23]. In the illustrations, ‘‘conv’’ stands for convolution layer; ‘‘fc’’
stands for fully connected layer.

parameters, where most of the parameters are in the last three

fully-connected layers. On the other hand, ResNet-50 is a

deep (50-layer) fully convolutional network of about 25M

parameters, where all layers are convolutional except for the

final classification layer. We believe that it is important to

analyze the impact of these architectural differences on (n, σ )

classification performance.

In this paper, transfer learning is used to adapt and fine-tune

pre-trained VGG-16 and ResNet-50 for the given problem.

It is not easy to train a deep network from scratch, especially

with a limited dataset as in our case. Transfer learning is the

generally accepted strategy for the tasks where training set

size is small. Both networks are pre-trained in the 1000-class

ILSVRC ImageNet dataset [26]. The architectures shown

in Fig. 4 are kept the same, except for the final classification

layer. The number of outputs of the final layer is determined

by the number of classes (i.e. sub-intervals) of (n, σ ) parame-

ters. The weights of this layer are trained and all other layers

are fine-tuned using our training dataset.

We separate n and σ values into four and three sub-

intervals, respectively, as indicated below. Such a quantiza-

tion is sufficient for determining the correct communication

model of a given region. The free-space path loss expo-

nent n is equal to 2. For line-of-sight environments, espe-

cially in rural areas, average path loss is expected to be less

than 2.5. In suburban and urban cellular environments, path

loss coefficients between 2.5 to 3.5 are common, whereas

in shadowed urban environments the path loss coefficient

exceeds 3.5. Similarly, rural areas experience low shadowing

factors σ < 10, and suburban and urban areas experience

larger values. As a result, (n, σ ) parameters are quantized

as shown below and each interval is assigned a class label

as follows:

ln(n) =



















1, n < 2.5

2, 2.5 ≤ n < 3.0

3, 3.0 ≤ n < 3.5

4, 3.5 ≤ n

(2)

lσ (σ ) =











1, σ < 10.0

2, 10.0 ≤ σ < 15.0

3, 15.0 ≤ σ

(3)

The distributions of the classes in our dataset is shown as

a joint histogram of ln and lσ in Table 2. Fig. 5 provides

sample images from nine different (ln, lσ ) class combinations

that are available in the dataset. As these figures suggest,

both parameters n and σ increase as the density and height

of buildings in the region increase. σ could be high when n is

low (e.g. class (ln, lσ ) = (1, 3)), if part of the region is densely

covered with buildings but the rest is almost empty.

TABLE 2. Joint histogram for (ln, lσ ).

B. CLASSIFICATION PERFORMANCE

We perform 4-fold cross validation on the collected dataset.

The dataset is divided into four random subsets; one subset

is retained for testing and the remaining samples are used
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FIGURE 5. Sample images from (ln, lσ ) classes.

as training data. This procedure is repeated for each subset

and the overall prediction performance is reported on the

whole dataset. Distinct VGG-16 and ResNet-50 architectures

are trained and tested for classifying n and σ parameters.

Since both architectures require fixed size inputs (see Fig. 4),

the RGB satellite images are resized to 224 × 224 × 3. The

batch size is set to 16 for VGG-16 and 32 for ResNet-50. The

learning rate is set to 0.001 for both architectures. We discuss

the effect of these hyperparameters in Section VI.

SoftMax (SM) loss is used for the training of classification

networks. The class scores at the network output are mapped

to a probability distribution using softmax function and the

negative log-likelihood of the true class is used as the training

loss (LSM ):

LSM = − log(pi∗ ), where pi =
eai

∑N
k=1 e

ak
, (4)

N is the number of classes, i∗ is the true class label, ai is

the ith class score, and pi is the normalized probability of the

ith class.

We evaluate the performance of proposed channel param-

eter prediction method by measuring the accuracy of

TABLE 3. Confusion matrices for ln.

predictions of the trained networks. Tables 3 and 4 provide the

confusion matrices for VGG-16 and ResNet-50 architectures.

The confusion matrices presented in Tables 3 and 4 show

both overall and per-class accuracy for n and σ parameters

respectively. Total accuracy gives the percentage of correctly
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TABLE 4. Confusion matrices for lσ .

classified test images. Per-class accuracy is the percentage

of correct labeling for each separate class of test images.

For n, we get a total accuracy of 86%; and, for σ , we get a

total accuracy of 73-74%. We discuss about the performance

difference for n and σ in Section VI.

V. IMPROVING THE PERFORMANCE USING

MULTI-TASK LEARNING

In the previous section, trying to learn only two parameters

(n, σ ) over the whole dataset causes problems of overfitting

in the learning process. With a small-sized training set and

with limited information per training sample, a deep net-

work architecture could easily memorize the training data,

causing loss of its generalization capability. Using transfer

learning and just fine-tuning the pre-trained networks help

alleviate the problem of overfitting. Yet, as further discussed

in Section VI, we observe that, even though the training loss

decreases continuously throughout the training, the total loss

on the test set begins to increase after a certain number of

iterations. The test accuracy, on the other hand, is more robust

against overfitting; but it could reduce slightly after too many

iterations.

Our dataset contains richer source of information than just

the two channel parameters. The path loss is recorded for

each receiver location on a regular rectangular grid. During

training of the network, these path loss values could assist in

learning the channel model parameters.

In this paper we do not consider point-wise estimation

of path loss at every receiver location; instead, we propose

to estimate the histogram of path loss throughout the entire

region. We claim that histogram provides an informative

summary of the levels of path loss (PL) in the region and it is

an accurate indicator of how big n and σ should be. For this

purpose, we compute 8-bin histogram hPL of (PL − PL0) in

the interval [10, 90], where PL0 = PL(d0) = 63.44 dB.

The architectures of Section IV-A are modified by using

an additional parallel fully-connected layer to learn hPL
as well as (n, σ ). The additional layer has length-8 out-

put to estimate the 8-bin histogram. The modified architec-

ture is shown in Fig. 6. This approach is called multi-task

FIGURE 6. Multi-task learning architecture (fc: fully-connected layer).

learning [27] in literature and is successfully applied in jointly

learning related tasks using a common architecture. In multi-

task learning, the goal is to improve the learning performance

by jointly learning the related tasks.

While SoftMax loss function is used for learning (n, σ ),

Sigmoid Cross-Entropy (SCE) loss function is used for learn-

ing hPL . The network outputs (bi) are mapped to probabilities

using sigmoid function and then the cross-entropy loss (LSCE )

is computed:

LSCE = −

8
∑

i=1

hi log(pi), where pi =
1

1 + e−bi
, (5)

and hi are the true histogram values. The total loss is equal to

the weighted sum of SM and SCE loss values:

TotalLoss = LSM + λLSCE , (6)

where λ is a parameter controlling the weights of the terms in

the total loss function. (In the experiments, λ is set to 5; the

choice of hyperparameters is discussed in the next section.)

TABLE 5. Confusion matrices for ln.

The same set of simulations described in the previous

section are repeated for deep architectures with multi-

tasking (named as VGG-16(MT) and ResNet-50(MT)).

Tables 5 and 6 provide the confusion matrices for multi-

tasking. The confusion matrices presented in Tables 5 and 6
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TABLE 6. Confusion matrices for lσ .

TABLE 7. Percentage accuracy for tested architectures.

FIGURE 7. Histogram of n values for misclassifications.

show both overall and per-class accuracy for n and σ param-

eters respectively.

VI. DISCUSSION OF RESULTS

Table 7 summarizes the simulation results and provides

total classification accuracy and mean per-class accuracy

(i.e. average of per-class accuracies) for each tested archi-

tecture, with and without multi-tasking. Both network archi-

tectures exhibit similar performance in predicting ln and lσ .

We see 2-4% improvement in accuracy values when using

multi-task learning. While 88% total accuracy for ln is highly

successful, a maximum of 76% accuracy is achieved for lσ .

Fig. 10 provides sample images with correctly classi-

fied n and σ parameters (for architecture ResNet-50(MT)).

As noted before, regions with higher density of high-rise

buildings correspond to classes with larger n and σ param-

eters. Fig. 11 provides images with misclassified n and

FIGURE 8. Convergence of loss and accuracy for n.

FIGURE 9. Convergence of loss and accuracy for σ .

σ parameters. Misclassified regions are mostly borderline

cases where the building density in the region is in between

the average densities of correct and false classes. For the

images in Fig. 11(a),(b),(c),(d), the true values of n are 2.47,

2.53, 2.88 and 3.01, respectively, which are very close to the

class boundaries of 2.5 and 3.0 between classes 1, 2 and 3.

Fig. 7 shows the histogram of n values for the falsely labeled
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FIGURE 10. Correctly classified sample images for ln and lσ .

test images. In this figure, about 47% of all misclassifications

are in the [2.45,2.55] range and 11% are in [2.95,3.05] range.

As seen from the confusion matrices, low prediction accu-

racy of lσ = 3 class has a negative effect on the overall

classification performance for lσ . This class contains images

with high variability in building density and height. The

deep networks are capable of learning building density from

2D images, but not the building heights. The difficulty of

inferring building height from 2D images is the main reason

why prediction accuracy is lower for this class of regions.

The lack of building height information explains the

performance difference in predicting n and σ parameters.

While the value of n represents mean characteristics of a

region, σ represents the deviation from the mean; and it

is highly affected by shadowing due to high-rise buildings.

For instance, the regions of 11(g) and (h) have similar n

values of 2.84 and 2.89, despite quite different σ values of

12.68 and 16.59, respectively. An inspection of 3D model

of region in Fig. 11(h) reveals mid-rise buildings towards

the center where the transmitter is located. These buildings

cannot be easily inferred from the 2D ortho-rectified view of

the region.

A. CONVERGENCE ANALYSIS OF LEARNING

As mentioned in Section V, training with a small dataset is

prone to overfitting, which causes a loss of generalization

capability of the network. Figs. 8 and 9 provide the change

in test loss and accuracy vs. training iterations for n and σ

respectively. Plots are provided for ResNet-50 and ResNet-

50(MT). Training loss and accuracy for ResNet-50(MT) are

also given as reference. We see that test accuracy reaches

to its maximum in less than 1000 iterations and changes

little afterwards. On the other hand, test loss starts to increase

after making a dip at the early stages of training. The increas-

ing loss is an indication of overfitting and it is more pro-

nounced for ResNet-50 than for ResNet-50(MT). Test loss

for ResNet-50(MT) increases as well, albeit at a lower pace.

Since SoftMax loss is equal to the negative log-likelihood of

true class, we can say that ResNet-50(MT) assigns on average

higher likelihood to the true class label than ResNet-50.

However, this improved likelihood results in only a couple of

percent improvement in accuracy. With a larger training set,

overfitting could be reduced and likelihood estimation could

be improved.We can argue that, as the training set gets larger,

it is more likely for ResNet-50(MT) to correct its mistakes

and improve its accuracy than for ResNet-50.

B. ANALYSIS OF HYPERPARAMETERS

In this section, we discuss several hyperparameters of the

learning procedure that might influence the classification

performance. First of all, as noted above, two different archi-

tectures of VGG-16 and ResNet-50 have little difference in

terms of classification accuracy. ResNet-50 could be prefer-

able over VGG-16, since it has significantly lower number

of weights, occupies less memory, is faster in training and

inference despite being deeper. Interestingly, VGG-16 out-

puts lower test loss than ResNet-50 inmost of the tested cases,

implying that it suffers less overfitting despite having higher

number of trained weights.

As for the hyperparameters of training, simulations show

that prediction accuracy is robust under different settings.

Different learning rates, batch sizes and loss weights for

multi-tasking are tried. Increasing the batch size gives slight

improvement in accuracy. We set batch size as 16 for
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FIGURE 11. Misclassified sample images for ln and lσ .

VGG-16 and 32 for ResNet-50, by considering both pre-

diction performance and GPU memory limitations. The

weight (λ) of Sigmoid Cross-Entropy loss is tested in the

range [3, 10] and little change in performance is observed.

The effect of learning rate is also marginal.

It should also be noted that high resolution RGB satellite

images are resized to 224 × 224 × 3 in order to be compati-

ble with input dimensions of both VGG-16 and ResNet-50.

We have also tested a modified VGG-16 architecture with

input dimensions of 448 × 448 × 3 and have not observed

any improvement in performance. Therefore, it is safe to say

that downsizing does not cause a significant loss of features

that could affect the prediction accuracy.

C. LIMITATIONS OF THE PROPOSED APPROACH

As mentioned before, the use of 2D RGB satellite images

as input to the network makes it hard to learn building

heights, which limits the prediction performance especially

for σ parameter. In this paper, our goal is to develop a

simple approach to channel parameter prediction from 2D

satellite or aerial images, which could be used even when

a 3D model is not available. As future work, the proposed

architectures could be extended to include building height

maps and/or digital elevation models as additional input to

improve model prediction performance.

Large training set annotated with true channel parameters

is necessary for supervised training of a deep network. In this

paper, the dataset problem is handled by usingWireless InSite

simulations based on available 3D models. Fine-tuning pre-

trained networks helps in learning a deep classifier with

limited amount of training data. As future work, the dataset

could be extended using different urban/suburban regions

and cities. Also, actual channel simulations could be per-

formed in the field to obtain real-life data.

Even though training a deep network requires high com-

putational power and long training time, inference is actually

fast when using optimized implementations of deep archi-

tectures. In our simulations, inference with VGG-16 and

ResNet-50 take 20 ms and 16 ms per image, respectively,

using Caffe framework on Tesla V100 GPU.

VII. CONCLUSION

In this paper, we presented a deep learning based approach

to predict wireless channel parameters (specifically, path loss

exponent and large-scale shadow factor) of an area directly

from a satellite image of the area. The advantage of deep

learning is that there is no need to explicitly define the

features, which are learned as a part of the training process.

We tested two different deep convolutional neural network

architectures and presented an enhancement using multi-task

learning, which incorporates the available path loss histogram

into the training. We demonstrated the method on a spe-

cific scenario (frequency, transmitter/receiver heights); the

method can be extended to other scenarios. For each scenario,

the corresponding dataset should be generated and the net-

work should be trained with that specific dataset. A further

extension of this work could be clustering and analyzing the

images according to their channel parameter values; this may

lead to intuitive results about the region types and correspond-

ing communication channel characteristics.
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