
© 2013 The Institute of Electronics, Information and Communication
 Engineers

This document is published in:

IEICE TRANS. COMMUN E96–B (2013) 3, pp. 756-76

DOI: 10.1587/transcom.E96.B.756

Ins t i tu t ional Repos i tory

http://dx.doi.org/10.1587/transcom.E96.B.756
http://e-archivo.uc3m.es/

Path-Moose: A Scalable All-Path Bridging Protocol

Guillermo IBÁÑEZ†a), Iván MARSÁ-MAESTRE†, Miguel A. LÓPEZ-CARMONA†,

Ignacio PÉREZ-IBÁÑEZ†, Nonmembers, Jun TANAKA††, Member, and Jon CROWCROFT†††, Nonmember

SUMMARY This paper describes Path-Moose, a scalable tree-based

shortest path bridging protocol. Both ARP-Path and Path-Moose proto-

cols belong to a new category of bridges that we name All-path, because

all paths of the network are explored simultaneously with a broadcast frame

distributed over all network links to find a path or set a multicast tree.

Path-Moose employs the ARP-based low latency routing mechanism of the

ARP-Path protocol on a bridge basis instead of a per-single-host basis. This

increases scalability by reducing forwarding table entries at core bridges by

a factor of fifteen times for big data center networks and achieves a faster

reconfiguration by an approximate factor of ten. Reconfiguration time is

significantly shorter than ARP-Path (zero in many cases) because, due to

the sharing of network paths by the hosts connected to same edge bridges,

when a host needs the path it has already been recovered by another user of

the path. Evaluation through simulations shows protocol correctness and

confirms the theoretical evaluation results.

key words: Ethernet, routing bridges, shortest path bridges, data centers

1. Introduction

Ethernet switched networks are today the indisputable so-

lution for local, campus and metropolitan networks. Eth-

ernet offers an excellent price/performance ratio, with high

compatibility between elements and simpler configuration

than IP. The main problem with these networks relies on

the performance and restrictions of active topology derived

from the use of Spanning Tree [1]. There are standards un-

der elaboration to avoid these limitations, like Shortest Path

Bridging (SPB) [2] and RBridges [3], but these protocols are

based on a link-state routing operating at layer two, which

leads to more complex control and computation, needing

also additional mechanisms to avoid loops. In this situa-

tion, simple, zero configuration protocols which removed

the limitations of spanning tree protocol might have wide

applicability in small and medium size campus and enter-

prise networks.

ARP-Path Switches have emerged [4] as a pure bridg-

ing approach to overcome the severe restrictions of spanning

tree protocols, with a simple path set up mechanism (based

on the detection of the first arrival port of ARP packets at

bridge ports), with low latencies and without any configura-

tion requirement. ARP-Path protocol has been implemented

†The authors are with Universidad de Alcala, 28805 Spain.
††The author is with Fujitsu Ltd., Kawasaki-shi, 211-8588

Japan.
†††The author is with Cambridge Computer Laboratory, UK.
a) E-mail: guillermo.ibanez@uah.es

successfully and is now evolving and diversifying based on

the experience obtained from implementations and simula-

tions. The first version of the protocol and its implementa-

tions ([4]–[7] and the closely related [8]) demonstrated pro-

tocol robustness and excellent latency and throughput re-

sults. However, networks of medium and big size require

increased protocol scalability. This means that forwarding

tables at core bridges must be reduced. The most direct way

to reduce forwarding table sizes is to set up paths between

bridges instead of between hosts and thus make table sizes

proportional to the number of bridges B instead of to the

number of hosts H.

In this paper we describe and evaluate a tree-based pro-

tocol based on ARP-Path mechanisms and MOOSE hierar-

chical addressing [9] to improve the scalability of ARP-path.

The paper is organized as follows. The next section

describes the base protocol. Section 3 presents the Path-

Moose protocol, Sect. 4 concerns the evaluation, and Sect. 5

describes the related work. The last section summarizes our

conclusions.

2. ARP-Path Base Protocol

Path setup in ARP Path protocol [3] is performed by fully

flooding the standard ARP Request frame sent by the source

host, snooping it at every bridge and so selecting the lowest

latency path found by the ARP Request. The path in the op-

posite direction is set up by snooping the ARP Reply frame.

Figure 1 shows a network of ARP Path bridges connected by

Fig. 1 Path set up between hosts with ARP path protocol with universal

MAC addresses.

1

point to point Ethernet links. Host S sends an ARP Request

packet encapsulated into a broadcast frame to resolve the IP

address of destination host J. Every bridge forwards to all

ports except the one through which it was first received and

associates the global MAC address of S to this port, tem-

porarily locking the learning of S address to this port and

blocking all other ports from learning and forwarding fur-

ther received broadcast frames from source address S. We

illustrate the association of the source address S to this port

of the bridge with a white circle and the discarding of the

duplicated frames received at other ports with a “stop” sig-

nal.

When the ARP Request frame reaches host J, it re-

sponds with a unicast ARP Reply towards S that when

snooped at every bridge (4,3,2) provokes the learning of

source address of J at receiving port and the renewal of the

learnt address S. Addresses learnt at other bridges (in light

blue) that are not renewed will expire.

3. Path-Moose Protocol Description

Path-Moose protocol uses the same source address learning

and locking mechanism of ARP-Path protocol, but address

learning occurs with bridge granularity instead of host gran-

ularity, thus increasing scalability by reducing the size of

the stored state at bridges. With Moose-based addressing,

bridges learn only the bridge ID part of the source MAC

address, instead of the complete host address. In this way

multiple trees, each one rooted at every edge bridge, are cre-

ated and refreshed by the standard ARP Requests issued by

the normal host traffic. Forwarding is tree based (sink trees

for unicast traffic, source trees for multicast traffic). Paths

are not forced to be congruent in both directions to keep

protocol simple. We define an edge bridge as the bridge

connected to one or several hosts and/or to other standard

bridges and core bridge a bridge connected only to other

Path-Moose bridges. The edge bridges learn their host’s uni-

versal MAC addresses and translate it to a local hierarchical

address of the format bridgeID:hostID whilst bridge ID is

learnt at core bridges to build the trees. We first discuss the

assignment of bridge ID to bridges; we then describe path

set up and finally path recovery mechanisms.

3.1 Bridge ID Assignment

Upon network initialization, every bridge gets assigned a

unique 3-byte bridge identifier (ID), as used in MOOSE.

The assignment of bridge identifiers to every bridge in the

network can be performed in different ways and is fully in-

dependent of the Path-Moose protocol. The specific process

used to assign it is out of the scope of this document.

3.2 Host Links and Bridge Links

Path-Moose bridges, like ARP-path bridges, require point-

to-point links between bridges. They may share a link be-

tween several hosts but they cannot share links between

Fig. 2 Setting a path and a tree rooted at bridge 2 with ARP Request

from S to J and ARP Reply (J,S) learning BridgeID 2.

bridges because, if an output port of a bridge has a shared

connection with an input port associated to a source address,

replicated frames with this source address will be reinjected

at that input port and will create a loop. A link can be a host

link, connected to one or multiple hosts (or even to stan-

dard bridges), or a bridge link, connected (point to point)

to another Path-Moose bridge. Path-Moose bridges identify

the bridge links by emitting periodic Hello messages over

all links. Links which receive Hello messages are tagged as

bridge links and the others are regarded as host links. The

key idea of the address learning-locking mechanism of Path-

Moose bridges is that they learn (universal) host MAC ad-

dresses at host links (edge bridges) and only bridgeIDs at

bridge links (core bridges).

3.3 Sink Trees Set up between Bridges with ARP Packets

Figure 2 illustrates the process of building a path to a des-

tination host and at the same time, without additional pro-

cessing effort, building the complete sink tree rooted at the

originating bridge, a tree that can route any packet towards

any host connected to that bridge. Host S sends an ARP

Request packet encapsulated in a frame to resolve the IP

destination address. ARP Request frame arrives to its edge

bridge 2. The incoming frame to the bridge gets its source

address SA extracted and learnt by the bridge into a Host

Table, and a local HostID address is assigned. The universal

source MAC address of the frame is replaced at edge bridges

by the local address obtained according to the Moose format

BridgeID:hostID (shown as 2:s in figure) and placed also

inside the ARP Request packet (in this way the destination

host will learn the local address instead of the universal one

at its ARP cache). The local address has the U/L bit set

to Local indicating a private MAC address. Bridge 2 broad-

casts this ARP Request frame with (2:s) source address over

all ports except the input port. Bridges 1 and 3 receive the

frame and associate (or refresh the association of) the first

arrival port to the bridge ID 2, and broadcast it over all ports

except the input port. Later frames arrive at bridges 1 and 3

from 3 and 1 respectively and are discarded directly because

their source address is associated to another port. The ARP

2

Fig. 3 Built trees. Bridge IDs and host addresses learnt after traffic

flown. Tree rooted at bridge 2 is shown in orange.

Request finally arrives to the edge bridges and end hosts.

The destination host J learns the local address of S (2:s)

at its ARP cache and responds with an ARP Reply frame

with its universal MAC address J as source address inside

the ARP payload packet. Edge bridge 4 replaces, like in

the MOOSE protocol, the universal MAC address J by the

hierarchical format 4: j in the ARP Reply packet, forwards

it via the port associated to bridgeID 2, and associates the

input port to bridgeID 4 if it does not have already another

address assigned. The frame arrives to intermediate bridge

3 where it is forwarded via the port associated to bridge 2.

When the frame arrives at bridge 2, the hierarchical

destination address is replaced by the universal table stored

at the bridge host table (HoT) and delivered to the host. This

host learns at his ARP cache the local address of J (4: j) in-

stead of the universal address. From now on, the path is

established in both directions.

Figure 3 shows the bridge IDs learnt by all bridges after

some traffic has been sent over the network. Note that host

addresses are learnt at host ports of edge bridges.

3.4 Path Recovery

Path recovery after link failure is lighter and much faster on

average than in the ARP Path protocol. The reason is the

sharing of paths by all hosts connected to the same edge

bridge (ARP path protocol may share only paths arriving to

the same host).

If a link or bridge fails, the ports connected to that

failure point will detect it and delete all the table entries

(bridgeIDs) associated to that port in the forwarding table.

When a unicast frame arrives to any of the two bridges that

detected the link failure and finds out there is no path to

reach the destination, the path recovery mechanism is started

for that destination bridgeID. It will often happen that nor-

mal broadcast packets sent through the destination bridge in

the opposite direction will create a tree towards the destina-

tion bridge, thus accelerating path recovery and making it

redundant, as described in simulation results.

The path recovery mechanism is shown in Fig. 4. There

is a flow from host S to D through the lower path (bridges

2-3-5) and the flow from D to S goes via bridges 5-3-1-2.

After link 3-5 fails, bridge IDs 2 and 5 are flushed

from the forwarding tables of bridges 5 and 3 respectively.

(a)

(b)

(c)

Fig. 4 Path recovery (a) Failure of link 3-5. (b) loopback of frames at

3 and Path Request/ARP at 3 (c) Path requests from 2 and 5 to restore the

trees.

Frames from S, with source address (2:s) arriving at 3 have

destination address unknown at bridge 3. The first frame

is looped back towards the source edge bridge using their

source bridgeID to route it towards bridge 2, and a short

repair timer is triggered so that further frames with same

destination bridge (5) are discarded to prevent further repet-

itive path recovery attempts. The looped back frame arrives

to bridge 2 and is detected by bridge 2 as such because it

arrives at the port associated with the destination bridge.

Bridge 2 detects that is the source edge bridge and sends

a broadcast Path Request packet with encapsulated destina-

tion address (5:d) (or an ARP Request from 2:s to resolve

MAC of IP address D),which is forwarded through all net-

work and rebuilds at the same time the tree rooted at bridge

2.

The same path recovery process happens at bridge 5

for frames with destinations to (2:*). When the link 3-5

becomes available again, the next ARP Request from a host

may select the link 3-5 as the path towards 5, if the branch

has a lower latency. The same occurs for the bridge 2 tree.

4. Evaluation

We evaluated the performance of the Path-Moose protocol,

3

Table 1 Network data for comparison Path-Moose versus ARP path (I).

Table 2 Table sizes (entries) calculations Path-Moose versus ARP path.

and compared it with its predecessor, the host-based ARP

Path protocol, and also with standard backward learning

bridges. We compared forwarding table sizes because they

are a key factor for network scalability. We also compared

path recovery times, essential for maximum network avail-

ability. We first evaluated the protocol with analytical esti-

mations and then through simulations. As a reference, the

original ARP Path protocol itself was compared with Short-

est Path Bridges and Spanning Tree bridges in [4], [5].

4.1 Theoretical Analysis. Number of Table Entries

Table 1 and Table 2 show, respectively, the network param-

eters and the calculation results for three networks: a 250

host network (Fig. 5) with four core bridges and 10 edge

bridges (25 hosts connected to every edge bridge), a 3 × 3

regular mesh network with 150 hosts (not shown) with 25

hosts connected to every bridge at the left and right columns,

and a non-blocking VL2 intermediate Clos network (Fig. 6)

as proposed in [12] for big data centers. Table 1 shows net-

work parameters. Table 2 compares the estimated table sizes

Fig. 5 Network of 250 hosts (DC250) The ten subnetworks of 25 host

connected to access switch X are shown (collapsed) as hosts sx.

Fig. 6 Clos intermediate network for data center [12].

of Path Moose and ARP path bridges. Formulas used for the

first two networks used are shown on top of columns. For-

mulas used for the VL2 network are shown in the bottom

line correspond to the VL2 topology.

4.1.1 Path-Moose Bridges

For the first two topologies, the maximum forwarding ta-

ble size at edge bridges is Eb-1+He, where Eb is the num-

ber of edge bridges and He is the number of (active) hosts

connected per edge bridge. This expression for table size

at Path-Moose edge bridges results from the fact that there

will be an active entry per edge bridge (minus the bridge it-

self) and one per each active directly connected host, with

an average maximum of He=H/Eb active hosts per bridge.

Most edge bridges will likely be active because the

probability for an edge bridge of having at least one active

host is very high, considering a typical range of 20–80 con-

nected hosts per bridge. Additionally, edge bridges keep

a table of directly connected hosts (host table) containing

its universal and local addresses and associated bridge port.

This is a consequence of the fact that, although bridge IDs

are learnt at core ports, host addresses are learned and trans-

4

lated at edge bridges, thus reducing the theoretical reduction

of stored state at edge bridges. At core bridges the size of

forwarding tables equals Eb (the number of edge bridges)

because one entry per edge bridge is enough to obtain com-

plete routes to any network host.

4.1.2 Standard Bridges and ARP Path Bridges

Both standard 802.1D transparent learning bridges and ARP

path bridges behave similarly regarding sizes of forward-

ing tables. Although there are some differences in address

learning, the effect in table size is small and only applies to

reconfiguration situations. The main difference is that stan-

dard bridges replicate the frames with unknown unicast ad-

dresses, whilst ARP path bridges trigger a path repair send-

ing some broadcast packets that provoke destination (and

source) address learning and finally repair the path. This

process takes little time and occurs only upon link or bridge

failure.

The table sizes of standard and ARP path edge bridges

depend on the number of active flows per edge bridge. This

may vary widely depending on the traffic matrix charac-

teristics, including its locality properties, sometimes en-

hanced by network administrators to optimize network per-

formance. We take from the measurements in [12] a ratio of

5 simultaneous active flows per host as a moderate average.

A high locality in the traffic will tend to place flows in the

nearest switches, reducing table sizes.

Core bridges are the bottleneck for standard bridges

and ARP Path bridges regarding forwarding table sizes be-

cause they concentrate most network traffic over a small set

of core bridges. In the DC250 core (250 host) network,

24 bridge topology, the four core bridges learn all host ad-

dresses. The maximum total number of entries at network

core bridges can be expressed by Te = H ∗b3/(B-Eb), where

b3 is the number of core bridges traversed in the average

network path at core and B-Eb is the total number of core

bridges. In the above-mentioned network (DC250) at Fig. 4,

it is easy to calculate b3 = 1, 5 bridges.

4.1.3 Clos Network

The Clos intermediate non-blocking network for data cen-

ter proposed in [12] is representative of recent data center

topologies. We use it here for an estimation of table sizes

in big networks. Note that our DC250 host data center

topology is a small subset of this topology (ToR switches

being the access switches) if vertical links of DC250 are

eliminated (they carry negligible traffic). Each aggregation

switch has Da/2 links. There are Di aggregation switches,

Da/2 intermediate switches and Da*Di/4 Top of Rack (ToR)

edge switches as shown in Fig. 6. It has a bisection band-

width of 5*Da*Di Gbps, with 20 servers per ToR switch

with 1 Gb links. For the Clos network calculations we as-

sume Da=100 and Di=50, with a total of 25.000 servers.

The formulas used for Path-Moose are as follows: for edge

bridges, table sizes are similar in Path-Moose and standard

bridges because the load is widely distributed among the in-

termediate switches due to the high network size and highly

connected network topology. Due to the high network sizes

and low host per edge bridge ratio, ToR switches will not

have inputs at their tables for all edge bridges.

The size ratios at edge bridges are modest and even

there may be no reduction in size as shown for the arbitrary

big networks. Table size is not critical for edge bridges, but

it is for core bridges, due to their strict performance require-

ments.

When He is low and Eb is high, the edge bridge ta-

bles are similar in standard and Path-Moose bridges and de-

pend on the number of active flows per host [12]. The use

of the Path-Moose protocol in the Clos network achieves,

compared with ARP path protocol and standard bridges a

reduction in number of table entries of up to 20 times at

core bridges. We assume an average factor of Da/3 (be-

tween maximum of Da/2 and a minimum Da/4) for min-

imum spreading of ToR traffic over diverse intermediate

switches.

4.2 OMNeT++ Simulations

The protocol has been implemented in OMNeT++ INET

simulation environment [11]. Both path and tree cre-

ation and path recovery were successfully tested in differ-

ent topologies. Trees, paths, and traffic flows were created

without frame loops. To create realistic traffic loads, a flow

generator was implemented in OMNET++. The flow model

is based on [16] and [17]: there is a single flow genera-

tor that sequentially produces new flows with exponentially

distributed inter-arrival times. The inter-arrival time is con-

figured to control the average traffic intensity. The traffic

model is inspired in [2], with flow sizes with Pareto dis-

tribution (α=1,3) and three transfer rates: 30% of flows at

0.5 Mbps, 60% of flows at 1 Mbps and 10% at 10 Mbps. The

flow source and destinations are selected at random among

all hosts, with equal probability. The flow is divided in se-

quential packets of 500 bytes. Packet size does not affect the

protocol because during the time the flow is active the path

is refreshed and does not change. Flow rate neither affects

address learning.

For this test, we used the topology shown in Fig. 5, con-

sisting of 4 core switches and 10 access bridges. Link speed

is 100 Mbps in all links and link delay is 1 microsecond per

link. This network has 25 hosts connected to each of the 10

edge bridges as shown in the figure, which are connected to

four fully interconnected core bridges. The simulated topol-

ogy change consists of a failing link between switches s1

and s2 (one of the essential links).

Tests on this network with ARP-path and Path-Moose

protocol have been carried out by sending information be-

tween hosts using the ping application and UDP traffic with

the above described traffic generator. The main measure-

ments are path setup and recovery times and forwarding ta-

ble sizes of bridges.

5

Table 3 Path setup and path recovery times of ARP Path vs. Path-Moose.

4.2.1 Path Setup and Path Recovery Times

Path setup and recovery times were measured for ARP Path

and Path-Moose protocols. Path setup times are identical

because the mechanism to set up the path is the same. Path

recovery times of Path-Moose equal also ARP-path path re-

covery times except in the cases where two hosts (H1 and

H2) connected to the same edge bridge (B1) having a com-

munication with other two hosts (H3 and H4) both con-

nected to other edge bridge (B2). In this case, path recovery

delay with Path-Moose is zero for all flows from the second

flow onwards (H1 ↔ H3 or H2 ↔ H4) because paths are

set up between border bridges instead of independently per

host, so restoring one path between edge bridges is enough

to restore all paths between all hosts sharing the same path.

This reduces greatly the average path recovery time by a

factor of ten in our measurements and depends on the traf-

fic distribution over the failed link. Results are shown in

Table 3.

It is worth noting that, although ARP Path can also use

an already existing path to the same destination host for path

recovery, Path-Moose is much more efficient because it can

use any existing path to the same destination bridge. Path

recovery is on average one order of magnitude faster that

ARP-Path. This is an effect of the path aggregation obtained

with Path-Moose hierarchical addresses. It does depend on

the number of hosts connected per edge bridge and their traf-

fic intensity, but not on the network topology.

4.2.2 Forwarding Table Sizes

Table sizes were measured in bytes including the size of the

address translation tables at edge bridges. Results for the

250 hosts datacenter network and for the 3×3 mesh network

are shown at Table 4.

In the core bridges and in most edge bridges, Path-

Moose requires less space for storing routing information.

Reduction ratio is very important at core bridges, those cru-

cial for network scalability. The reason is that Path-Moose

stores only the bridgeID and port (two bytes) in the for-

warding tables, instead of the full MAC address plus the

port (7 bytes) and that bridgeID is shared by multiple paths.

For core bridges ratios of table sizes of 16 and 24 (more

than double than the theoretical ratio for table lengths) is

obtained, because not only we have less entries, but also the

entry width is halved. Big networks might need three bytes

per entry to store bridgeID and port, reducing the sizes ra-

tio. The key parameter however, is maximum table length at

Table 4 Forwarding table sizes (bytes).

Table 5 Forwarding table sizes (number of entries).

core bridges.

Results at Table 5 compare table sizes in number of en-

tries obtained with the simulator with moderate traffic (flow

inter arrival time of 0.08 sec). At edge bridges we show

both the number of forwarding table entries (without brack-

ets) and the total number of entries including the compacted

addresses table (between brackets). The first term is con-

stant (Eb-1) because there is always an active flow between

every pair of edge bridges. It is worth noting that values

for Path-Moose are independent of traffic intensity (once be-

yond low traffic threshold intensity) while values for ARP-

Path bridges and standard bridges increase with traffic ma-

trix dispersion, traffic intensity and network topology. As

an example, traffic matrix at 3 × 3 mesh is from left hosts

towards right hosts, increasing table sizes compared with

random traffic matrix used at 250 hosts network. These are

the reasons behind the variability of table sizes obtained for

ARP Path bridges for the two topologies versus the nearly

constant and reduced size of Path-Moose tables. Taking this

into account, big data center networks like Clos networks

described above, will have core bridges with tables with

maximum of one entry per edge bridge with Path-Moose

protocol and of one entry per host worst-case with ARP-

path protocol, in other words, up to H/Eb times worst-case

longer tables.

The conclusions of the simulation results are that path

recovery with Path Moose is much simplified and many

hosts get their path repaired in advance by others. Bridges

learn very fast other bridges’ addresses from any broadcast

message, like ARP and DHCP issued by any host attached.

Table sizes confirm theoretical results with significant re-

duction and constant size at core bridges (i.e. one entry per

edge bridge) and moderate reduction at edge bridges.

6

5. Related Work

The two main protocol proposals currently under advanced

stages of standardization at IEEE and IETF are Shortest Path

Bridges (SPB) [12] and RBridges (TRILL) [13]. Both use

specific adaptations of the IS-IS link state routing protocol

to compute routes or shortest path trees between bridges.

SPB offers two choices of data plane: SPBV (Q-in-Q) and

SPBM (MAC-in-MAC). Whilst with SPBV all bridges still

learn MAC addresses from frames in transit as in 802.1D,

SPBM learns backbone bridge connectivity via IS-IS mes-

sages. Due to the requirements for path congruency and

equal cost multipath routing, SPB has a extremely high com-

putational complexity of Θ(N3) as shown in [15].

On the other hand, Rbridges provide optimal pair-wise

forwarding and support for multipath routing of both unicast

and multicast traffic. RBridges have the advantage of being

fully compatible, (not only in core-island mode as SPB and

ARP path) with standard IEEE 802.1 bridges and end nodes,

but this is at the high cost of increased forwarding complex-

ity: the destination address of the next-hop RBridge must be

inserted in the outer header of the frame at each RBridge.

6. Conclusion

The main advantages of Path-Moose are enhanced scala-

bility and fast and simple reconfiguration (path recovery).

Path-Moose core bridges require smaller forwarding tables

(aprox. 8–15 times) than standard and ARP path bridges

and its maximum table length equals the number of edge

bridges. The improvement is much more significant for core

switches, which are critical for protocol scalability. Further

study on tree maintenance policies and reduction of broad-

cast traffic by applying ARP proxies or distributed directory

systems will help to optimize the protocol for different net-

work environments.

Acknowledgments

This work was supported in part by grants from Comunidad

de Madrid and Universidad de Alcalá through the following

projects: MEDIANET-CM (S-2009/TIC-468), EMARECE

(PII1I09-0204-4319) and CMAC (UAH2011/EXP-016).

References

[1] IEEE 802.1D-2004 IEEE standard for local and metropolitan area

networks 2004-Media access control (MAC) Bridges. Available on-

line: http://ieee.org/getieee802/802.1.html

[2] Shortest Path Bridging, IEEE 802.1aq. Available at: http://www.

ieee802.org/1/pages/802.1aq.html

[3] Transparent interconnection of lots of links (TRILL) WG, Available

online at: http://datatracker.ietf.org/wg/trill/charter/

[4] G. Ibanez, J.A. Carral, J.M. Arco, D. Rivera, and A. Montalvo,

“ARP path: ARP-based shortest path bridges,” IEEE Commun.

Lett., vol.15, no.7, pp.770–772, July 2011.

[5] G. Ibanez, J.A. Carral, A. Garcia-Martı́nez, J.M. Arco, D. Rivera,

and A. Azcorra, “Fast path ethernet switching: On-demand efficient

transparent bridges for data center and campus networks,” 17th IEEE

Workshop on LANMAN, May 2010.

[6] G. Ibanez, B. de Schuymer, J. Naous, D. Rivera, E. Rojas, and

J.A. Carralm, “Implementation of ARP-path low latency bridges in

Linux and OpenFlow/NetFPGA,” IEEE 12th Int. Conf. High Perfor-

mance Switching and Routing Conference HPSR, pp.30–35, Carta-

gena, July 2011.

[7] E. Rojas, J. Naous, G. Ibanez, D. Rivera, J.A. Carral, and

J.M. Arco, “Implementing ARP-path low latency bridges in

NetFPGA,” Poster-demo at SIGCOMM, Toronto, Aug. 2011.

http://dx.doi.org/10.1145/2043164.2018512

[8] K. Miyazaki, K. Nishimura, J. Tanaka, and S. Kotabe, “First-come

first-served routing for the data center network: Low latency loop-

free routing,” World Telecommunications Congress (WTC), 2012,

pp.1–6, March 2012.

[9] M. Scott and J. Crowcroft, “Addressing the scalability of Ethernet

with MOOSE,” http://www.cl.cam.ac.uk/˜mas90/

[10] OMNeT++ Simulator, Available on line: omnetpp.org

[11] INET Framework, Available on line: http://www.inet.omnetpp.org

[12] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P.

Patel, and S. Sengupta, “VL2: A scalable and flexible data center

network,” Proc. ACM SIGCOMM 2009 Conference on Data com-

munication (SIGCOMM’09). ACM, New York, NY, USA, pp.51–

62, 2009.

[13] Rbridges, Bidirectional Forwarding Detection (BFD) support for

TRILL, http://wiki.tools.ietf.org/html/draft-ietf-trill-rbridge-bfd-02

[14] Norman Finn, Shortest Path Bridging, http://ieee802.org/802

tutorials/05-July/nfinn-shortest-path-bridging.pdf. 2005

[15] J. Farkas and Z. Arato, “Performance analysis of shortest path bridg-

ing control protocols,” GLOBECOM 2009.

[16] R.S. Prasad and C. Dovrolis, “Beyond the model of persistent TCP

flows: Open-loop vs. closed-loop arrivals of non-persistent flows,”

41st Annual Simulation Symposium (anss-41 2008), pp.121–130,

2008.

[17] A. Kvalbein, C. Dovrolis, and C. Muthu, “Multipath load-adaptive

routing: Putting the emphasis on robustness and simplicity,” Proc.

ICNP, pp.203–212, 2009.

Guillermo Ibáñez received his Telecom-

munication Engineering degree from Universi-

dad Politécnica de Madrid in 1975 and the Ph.D.

in Communication Technologies from Universi-

dad Carlos III de Madrid in 2005. He worked at

IT&T R&D Labs and at Alcatel. He is an As-

sociate Professor in the Telematics Engineering

Area of the Universidad de Alcala in Madrid.

He is author of multiple publications and patents

on advanced Ethernet switching.

Iván Marsá-Maestre received his Telecom-

munication Engineering degree in 2003 and the

Ph.D. from the Universidad de Alcalá in 2009.

He has been working as a lecturer for the Com-

puter Engineering Department of the Universi-

dad de Alcalá since 2004. From his research

have emerged collaborative research lines with

the Center for Green Computing, at the Nagoya

Institute of Technology (Japan) and the Center

for Collective Intelligence, at the Massachusetts

Institute of Technology (USA), where he was

working as visiting researcher during the year 2010–2011.

7

Miguel A. López-Carmona received his

B.E. in Electronics Engineering from the Uni-

versidad de Alcala (Madrid, Spain), M.E. in

Telecommunication Engineering from the Poly-

technic University of Madrid, and Ph.D. degree

from the Universidad de Alcala in 2006. From

1995 to 2006 he worked in Logytel and Alca-

tel as project manager and research scientist and

as assistant professor From 2006 he is associate

professor at the Department of Computer Engi-

neering at the Universidad de Alcala.

Ignacio Pérez-Ibáñez received its B.S.

in Informatic Engineering in 2009 and its M.S.

in 2012. He has performed research work in

spanning tree protocols and advanced Ethernet

networks and security. He currently works at

TYPSA.

Jun Tanaka received his B.E. and M.E.

of electrical engineering from Tohoku Univer-

sity in 1987 and 1989 respectively. Since then,

he engaged in R&D of ATM transmission sys-

tems, Ethernet transmission systems and dat-

acenter networking. His research interest in-

cludes quality of service, network virtualization,

and Ethernet fabric technology. He is author

of several publications and patents on advanced

Ethernet protocols. He is a member of IEEE.

Jon Crowcroft has been the Marconi Pro-

fessor of Communications Systems in the Com-

puter Laboratory since October 2001. He has

worked in the area of Internet support for mul-

timedia communications for over 30 years. He

leans towards a “build and learn” paradigm for

research. He graduated in Physics from Trin-

ity College, University of Cambridge in 1979,

gained an MSc in Computing in 1981 and Ph.D.

in 1993, both from UCL. He is a Fellow of the

ACM, a Fellow of the British Computer Society,

a Fellow of the IET and the Royal Academy of Engineering and a Fellow

of the IEEE. He likes teaching, and has published a few books based on

learning materials.

8

