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Path planning for mobile robots has been gaining extensive research attention recently. Optimal path 
planning increases the effectiveness of a mobile robot. There are many algorithms to solve the path 
planning problems overcoming obstacles. However most of the algorithms are applicable to specific 
shapes or suitable for static environments. This paper introduces a new method of global path planning 
for a robot moving in an environment cluttered with obstacles which have arbitrary shape, size and 
location. The proposed algorithm is applicable to static, partially dynamic as well as dynamic 
environments containing obstacles. Simulation of variety of cases are presented and discussed. 
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INTRODUCTION 
 
An important research theme in mobile robotics is the 
design of path planning system. Path planning is an 
important problem in navigation of autonomous mobile 
robots, which is to find an optimal collision-free path from 
a starting point to a goal in a given environment 
according to some criteria such as distance, time or 
energy while distance or time being the most commonly 
adopted criterion (Raja and Pugazhenthi, 2009). 

There are many path planning algorithms such as 
potential field methods (Ge and Cui, 2000), visibility 
graph methods (Li et al., 2002) and grid methods 
(Boschian and Pruski, 1993). Potential field method is 
widely used for mobile robot path planning for both static 
and dynamic environments. Its main part is an artificial 
potential field, which ‘attracts’ the robot to the target and 
‘repulses’ it from the obstacles. The potential field 
approach can be used as a global motion planning 
algorithm when the environment is relatively uncluttered 
and the obstacles are convex (Azariadis and 
Aspragathosc, 2005). However, it exhibits problems of 
local minima, no passage for the robot between obstacles 
and goals non-reachable with obstacles nearby (Ge and 
Cui, 2000; Koren and Borenstein, 1991). The visibility 
graph method constructs a graph of vertices of polygons 
representing obstacles.  It  means  that  two  vertices  are 
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connected in the graph if they are mutually visible (Saska 
et al., 2006). A shortest path is then determined using 
standard Dijkstra’s algorithm (Jorgen and Gutin, 1979). 

The main problem of this method is that, they have 
more complicated search paths and lower search 
efficiency. In the grid methods, where grids are used to 
form the map of the environment, the main problem is 
how to determine the size of grids, the smaller the size of 
grids, the more precise the representation of the 
environment. However, using smaller grids will result in 
exponential increase in memory space and search range 
(Zheng et al., 2007).  

The cell decomposition algorithm explicitly computes 
the configuration space of the mobile robot, decomposes 
the resulting space into cells, and then searches for a 
route in the free space cell graph (Latombe, 1991). 
However, the algorithm suffers from the drawback of high 
time complexity. Path planning problem can also be 
solved by vector field approach (Arkin and Murphy, 
1990). In a given environment the vector field must be 
frequently recalculated, however this need not be too 
computationally intensive in an environment with few 
obstacles. The main disadvantage with vector field based 
approaches is that they are ideal for static obstacles but 
tend to produce poor performance in dynamic 
environments.  

There are many other intelligent algorithms for path 
planning such as genetic algorithm (Xiong et al., 2004; 
Liu et al., 2004), ant colony algorithm (Bell and McMullen,  
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Figure 1. Example of obstacle amplification for path negotiation. 

 
 
 
2004), neural networks (Bin et al., 2004), fuzzy logic 
(Banga et al., 2011) and so on. However, these 
algorithms cannot reach an ideal solution individually in 
complex dynamic environment (Mei et al., 2006). Other 
than traditional and non-traditional techniques, some of 
the authors presented their own methods of path 
planning algorithms. Storer and Reif (1994) claimed that, 
their practical algorithm for finding minimum length paths 
reduces considerably the complexity of the problem but it 
works with only polygonal obstacles and not for curved 
obstacles (Azariadis and Aspragathosc, 2005). Dougall 
and Archibald (2006) presented an algorithm which is 
based on a recursive method for path planning and gives 
an optimum path, in sparse environments while also 
providing smooth paths in densely populated environ-
ments. However, this algorithm is applicable only for 
circular obstacles, but not applicable for polygonal 
obstacle. Raja and Pugazhenthi (2008) developed an 
algorithm capable of negotiating convex polygonal and 
curved obstacles with an objective of minimizing traveling 
distance and computational time in static environment. 
However, the algorithm is not applicable for concave 
polygonal obstacles and environment containing moving 
obstacles.  

The literature (Sugihara and Smith, 1997; Shahidi et 
al., 2004; Gerke, 1999; Gao and Tian, 2007; Zhao and 
Yan, 2005) shows most of the non-traditional algorithms 
are applied only for regular convex polygonal obstacles, 
not for irregular convex, concave polygonal or curved 
obstacles. The above cited literatures are applicable only 
for static environment. Moreover, curve obstacles 
increases the resolution of the grid, ultimately increasing 
the computation time as most of the evolutionary 
algorithms makes use of grid as the environment 
representation. Sipahioglu et al. (2008) proposed real-
time tour construction for a mobile robot in a dynamic 
environment. In this study, a heuristic-based traveling 
salesman problem is applied along with savings algorithm 
and Dijsktra’s algorithm is used to determine the feasible 
tour. However, the algorithm does not deal with collision 
avoidance of moving obstacles. Numerous technologies 
are being explored to develop a solution for collision 

avoidance system (Albaker and Rahim, 2011; Nakhaeinia 
et al., 2011). 

Hence, it is worth to investigate new ideas and new 
directions towards solving the basic motion-planning 
problem, taking into account moving obstacles. The 
objective of this work is to develop an efficient path 
planning algorithm for mobile robot avoiding known 
obstacles in the environment and yet arriving at the 
shortest path. In this paper, we introduce the notion of 
‘Direction concept’ and ‘Waiting time concept’ to resolve 
the problem of motion planning for a robot moving in a 
planar terrain. These obstacles are generally considered 
as prohibited areas, which have arbitrary size and shape 
(convex or non-convex, polygonal or curve) and are 
randomly distributed within the robot environment. Given 
such an environment, ‘direction concept’ algorithm is 
used to negotiate static obstacles and ‘Waiting time 
concept’ algorithm is used for moving (dynamic) 
obstacles. Simulation results are presented for static, 
partially-dynamic and dynamic environments. 
 
 
Proposed algorithm 
 
Assumptions 
 
The complexity of the general motion planning problem is 
enormous, so a variety of simplifications have been suggested to 
reduce the complexity (Azariadis and Aspragathosc, 2005). In this 
paper, the following assumptions are made: 
 

1. Robot moves on a flat terrain and environment is global (position 
and velocity of obstacle are known). 
2. The given obstacle is enclosed by a rectangular or square 
boundary and then amplified by a value, taking into consideration of 
physical dimensions of the robot, and the maneuverable safe 
distance from the obstacles, without collision as shown in Figure 1. 
As the obstacle is enclosed by rectangular or square boundary, 
obstacles of any shape like convex, concave and curved obstacles 
can be negotiated by the proposed algorithm. 
 
 Many obstacles of any irregular shape can be modeled by 
enclosing rectangle or circle as it reduces the computational 
burden. Furthermore, this type of approximation is standard in robot 
collision avoidance literature (Chakravarthy and Ghose, 1998; 
Chazelle,   1987).   Also,  it  is  trivial  to  allow  the  envelope  of  an



Raja and Pugazhenthi          4723 
 
 
 

B ( X 3 , Y 3 )

A ( X 2 , Y 2 )

T ( X 1 , Y 1 )

C ( X 4 , Y 4 )

D ( X 5 , Y 5 )

S ( X o , Y o )  
 
Figure 2. Path negotiation for interfering convex polygonal obstacle. 

 
 
 

Table 1. Identification of ‘pass through’ and ‘no pass through’ edges. 

 

Line Assigned sign convention 
Determination of ‘pass through’ and 

 ‘no pass through’ edges 
Inference 

SA Left (-) Edge AB = SA*SB = + AB is ‘pass through’ edge 

SB Left (-) Edge BC = SB*SC = −  BC is ‘no pass through’ edge 

SC Right (+) Edge CD = SC*SD = + CD is ‘pass through’ edge 

SD Right (+) Edge DA = SD*SA = −  DA is ‘no pass through’ edge 

 
 
 
obstacle to be represented by union/intersection of several circles. 
The envelopes could also be polygonal. Mathematically, circular 
envelopes can be represented by second order inequalities while 
polygonal envelopes can be described by first-order linear 
inequalities (Luh and Liu, 2007). 

In real world, a mobile robot may encounter obstacles of any 
nature such as static, moving (dynamic) or partially dynamic (an 
environment comprising of both static and dynamic obstacles).  
 
 
Path negotiation under static environment 
 

To maneuver the robot in the static environment, algorithm 
commences by creating a straight line from initial position to the 
target position (the shortest path). To reach the destination, 
algorithm searches for existence of any obstacle along the shortest 
path. Based on the obstacle vertex position, ‘Irrelevant’ obstacle is 
identified and discarded and ‘relevant’ (interfering) obstacle is 
negotiated. 
 
Identification of ‘irrelevant’ obstacles: If there is an obstacle, it 
creates a number of lines equal to the number of amplified 
boundary vertices of the polygonal (for example, line 

, ,SA SB SC and SD  in Figure 2). Each vertex position (either 

left or right direction) of obstacle is defined with respect to line 

joining ( , )
o o

x y and 1 1( , ).x y  Specifically, an obstacle whose 

vertex positions are either  completely  left  or  right  to  the  shortest 

path is identified as an ‘Irrelevant’ obstacle. This analogy can be 
applied to any obstacle, which is ‘irrelevant’ to the shortest path. 
Suppose, if any obstacle obstructs the shortest path, identification 
of maneuverable and non-maneuverable edges is the major task.  
 
Path negotiation for interfering obstacle: In obstacle-interfering 
environment, the proposed algorithm segregates the ‘pass through’ 
and ‘no pass through’ edges based on the ‘direction concept’. The 
amplified obstacle edge, which can be maneuvered by the robot, is 
designated as the ‘Pass through’ edge and the non-maneuverable 
edge as the ‘No pass through’ edge. The ‘direction concept’ refers 

to identification of vertices either left ( )−  or right ( )+  to the 

shortest path. These vertices are considered as maneuverable 
points. An edge is said to be maneuverable if the product of its 
vertices yields a positive sign, a negative sign identifies a non-
maneuverable edge. Joining all the maneuverable edges on the left 
or on the right gives an obstacle-free path. The shortest path is 
selected based on the Euclidean distance. 

For example, for the polyhedral obstacle as shown in Figure 2 

the lines SA  and SB  are to the left of the shortest path ST  and 

hence are ( )− assigned asign. The product of SA and SB yields 

a ( )+  sign, which means that the edge AB is maneuverable and 

hence is the ‘Pass through’ edge. Similarly, for the rest of the edges 
‘pass through’ and ‘no pass through’ edges are identified as given 
in Table 1. 

From the Figure 2 and Table 1, two alternate paths through AB
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Figure 3. Path negotiation for interfering concave obstacle. 
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Figure 4. Optimal path for multiple obstacles. 

 
 
 

and CD  are possible. Euclidean distance ( )
d

ξ  is calculated to 

the possible paths. 

 

d
ξ  along path1 = 

SB BA AT
ξ ξ ξ+ +  

 

d
ξ  along path 2 = 

SC CD DT
ξ ξ ξ+ +  

 
The shortest path is chosen based on the smallest Euclidean 
distance. The proposed ‘direction concept’ algorithm can be applied 
to any polygonal obstacles for path negotiation as shown in Figure 
3. When number of obstacles is more than one, the last 
maneuvered points of the first obstacle are considered for alternate 
paths. For example, for the environment shown in Figure 4 the new 
start points, after the negotiation of first obstacle are A(x2,y2), 
B(x3,y3), C(x4,y4) and D(x5,y5). By using ‘direction concept’ 
algorithm, ‘pass through’ and ‘no pass through’ vertices  and  edges 

are identified. The shortest path SA AE EH HT− − −  is 

selected. Similarly, the algorithm can be extended to any number of 
polygonal obstacles for path negotiation.  
 
 
Path negotiation under dynamic environments 
 
Apart from avoiding stationary obstacles, a mobile robot is 
sometimes required to avoid moving obstacles also. Figure 5 shows 
an example obstacle with known robot and obstacle velocities and 
designated start and target locations. To negotiate this moving 
obstacle following procedure is adopted. 
 
Identification of ‘irrelevant’ moving obstacles:  Step 1- Connect 

robot start and target points (( , )
o o

x y and 1 1( , ))x y  and obstacle 

start and target positions
11 11(( , )

o o
x y and 111 111( , ))x y by 

straight lines respectively. 
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Figure 5. Path negotiation for interfering moving obstacle. 

 
 
 
Step 2- Calculate imaginary intersection points of above two lines 
Step 3- To reach this intersection point, calculate the time required 
by the robot 
Step 4- At this calculated time, find the position and hence vertices 
of the obstacle 

 
Depending upon the position of the obstacle with respect to the 
shortest path an ‘irrelevant’ moving obstacle is discarded and 
‘relevant’ moving obstacle is negotiated. 

To identify and discard the ‘irrelevant’ obstacles the following 
condition has to be satisfied, at the time, when the robot reaches 
imaginary intersection point. 

 
If the vertex position of the obstacle does not interfere with the 
shortest path line 
Then the path is not interfered by the obstacle and the robot can 
maneuver straight 

 
The analogy can now be applied to any moving obstacle which is 
‘irrelevant’ to the shortest path. In case, if any obstacle obstructs 
the shortest path, the negotiation of this moving obstacle is the 
major task. The problem can be solved by ‘waiting time concept’ 
algorithm (Figure 5). 

 
Path negotiation for interfering moving obstacle: ‘Waiting time 

concept’ algorithm finds the required waiting position and time of 
the robot till the moving obstacle crosses the robot. The algorithm 
procedure is explained in the following steps: 

 

Step 5: From 4 4( , )C x y  draw a line parallel to the obstacle 

path
11 11(( , )

o o
x y and 111 111( , )).x y  

4 4( , )C x y  is said to be the ‘relevant vertex’. The ‘relevant 

vertex’ is found by calculating the Euclidean distances of all the 
vertices   of  the  relevant  obstacle  with  respect  to  the  obstacle’s 

target. The vertex having the longest Euclidean distance is 
considered as the ‘relevant vertex’ 

Step 6: Find the intersection point 
1 1( , )

ip ip
x y of line drawn to the 

shortest path 
Step 7: Calculate the corresponding time required and the same will 
be the waiting time of the robot 

Step 8: Find the first intersection point
11 11( , )

i i
x y  of robot shortest 

path with current obstacle position and the same will be for the 
waiting position of the robot 

Step 9: Calculate Euclidean distance ( )
d

ξ  and time taken by the 

robot ( )
r

T  to reach the target. 

 

;
d SP PT

ξ ξ ξ= +  

 

;
r SP PT

T T T= +  

 
Step 10: End. 
 
The above discussed ‘waiting time concept’ algorithm can then be 
applied to any moving obstacles for path negotiation. Similarly, the 
proposed algorithm can be applied to partially dynamic environment 
as next explained. 
 
Path negotiation under partially dynamic environment: Partially 
dynamic environment consists of both moving and stationary 
obstacles. In such case, the last maneuvered points of the first 
obstacle are considered as new start points for alternate paths. For 
example, Figure 6 shows an environment comprising of a moving 
obstacle with given start and targeted points and a stationary 
obstacle. At the time when the robot reaches the imaginary 
intersection point, the position of the moving obstacle in the 
environment is shown in Figure  6.  The  new  start  point,  after  the
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Figure 6. Path negotiation for partially-dynamic obstacles. 
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Figure 7. Path negotiation for multiple moving obstacles. 

 
 
 

negotiation of first obstacle is 11 11( , ).
i i

P x y  ‘Irrelevant’ obstacle is 

discarded and ‘Relevant’ obstacle is negotiated by using ‘direction 
concept’ algorithm, by identifying ‘pass through’ and ‘no pass 
through’ vertices and edges. The shortest path 

S P P T P G G T− − −  is selected. Similarly, the algorithm can 

be extended to any number of for path negotiation. 

Path negotiation for multiple moving obstacles: When number 

of moving obstacles is more than one, the last maneuvered points 
of the first obstacle are considered as new start points. For 
example, Figure 7 shows an environment comprising of two moving 
obstacles with required start and target points. At the time when the 
robot reaches the imaginary intersection point, the position of the 
obstacles are as shown in Figure 7. The new  start  point,  after  the
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Figure 8. Flowchart of the proposed algorithm for path planning. 

 
 
 

negotiation of first obstacle is 11 11( , ).
i i

P x y  ‘Irrelevant’ obstacle is 

discarded and ‘relevant’ obstacle is negotiated by using ‘waiting 

time concept’ algorithm. The shortest path SP PT−  is selected. 

Similarly, the algorithm can be extended to any number of 
polygonal obstacles for path negotiation. 

The overall algorithm for avoiding both stationary and moving 
obstacles is depicted through the flowchart given in Figure 8. 

The survival of the robot is assured by selecting the waiting 
position for the robot. However if obstacles inevitably trap a robot, 
Ge and Cui (2002), recommended following decision making steps: 

 
i) The first step is to keep the robot to wait for the obstacles to 
change their path. Thus, the waiting method is frequently adopted 
(which is as explained in this work). 
ii)  The   second  step   is   if   subsequent   to   a   definite  period’s
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Figure 9. Path planning for static environment.  

 
 
 
waiting, the pattern of the obstacles is still unaffected and the robot 
is still trapped then the robot has to take other methods. 
Conventional recovery methods such as wall following method 
(Borenstein and Koren, 1989) can be used. The method considers 
each instantaneous dynamic situation as static. The method is 
adopted till the vicinity to the target. 

 
 
SIMULATION RESULTS 
 
The effectiveness of the proposed algorithm is verified by 
simulations through a personal computer with Intel core 
solo 1.86 GHz processor. The test program are written in 

MATLAB7.0.  Experiments are conducted by considering 

a terrain of 19×12 as the workspace. A map is created 

where blocks S  and T  are assigned as the start and 

target points respectively. The mobile robot is required to 

move from S  to T  while avoiding any obstacles. 

Experiments are performed in environments of static, 
partially dynamic and environments. Simulated 
environments contain convex, concave polygonal and 
curved obstacles of different size and shape. 

The first set of experiments was performed for static 
obstacles. The  environment  contains  convex,  concave 

polygonal and curved obstacles. Figure 9 shows an 
environment comprising of thirteen obstacles of different 
size and shape. Velocity of the robot is assumed to be 
0.6 m/s. After identifying ‘relevant’ and ‘irrelevant’ 
obstacles through ‘direction concept’ algorithm, the 
alternate valid paths are shown in Figure 9. Table 2 
provides path distance and computation time of the 
algorithm. Shortest path is chosen among the alternate 
valid paths. For clarity in the figure, the selected shortest 
path is shown in green. 

The second set of experiments was performed for 
partially dynamic environment. The environment contains 
concave, convex and curved obstacles of different size 
and shape. Figure 10 shows an environment comprising 
of eight obstacles, out of which five are static and three 
are moving obstacles. Static obstacles are represented 
by black and moving by red respectively. The desired 
start and target points, moving obstacles path and speed 
are shown in the environment. After identifying ‘relevant’ 
and ‘irrelevant’ static and moving obstacles through 
‘direction concept’ and ‘waiting time’ concept algorithm, 
the alternate valid paths are shown in Figure 10. The 
required ‘Waiting position’ is shown as W. Table 2 
provides   path   distance,   time   taken    to    reach    the
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Table 2. Simulation results for static, partially-dynamic and dynamic environments. 
 

Environment 
type 

Robot  positions 
(units) 

Shortest path (m) 
Improvement 

(%) 

Shortest time (s) 
Improvement 

(%) 

Computation time (ms) 
Improvement 

(%) 
Start Target 

Proposed 
algorithm 

Vertex 
heuristics 

Proposed 
algorithm 

Vertex 
heuristics 

Proposed 
algorithm 

Vertex 
heuristics 

Static 17,1 2,11 19.37 30.2 35.8 32.28 41 21.2 3.5 29 87.9 

Partially dynamic 6,2 17,10.5 14.12 22.8 38 21.76 33 34 4.1 40 89.7 

Dynamic 2,2 17,8 16.15 22.4 27.9 29.82 39.5 24.5 6.2 51 87.8 
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Figure 10. Path planning for partially dynamic environment. 
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Figure 11. Path planning for dynamic environment. 

 
 
 
destination and computation time of the algorithm. For 
clarity in the Figure 10, the selected shortest path is 
shown in green. 

The third set of experiments was performed for 
dynamic environment. The environment contains 
concave, convex and curved obstacles of different size 
and shape. Figure 11 shows an environment comprising 
of eight moving obstacles. Moving obstacles are 
represented by red. The desired start and target points, 
moving obstacles path and speed are shown in the 
environment. After identifying ‘relevant’ and ‘irrelevant’ 
moving obstacles through ‘waiting time’ concept 
algorithm, the path traversed by the robot is shown in 
Figure 11. Table 2 provides path distance, time taken to 
reach the destination and computation time of the 
algorithm. For clarity in the Figure 11, the selected 
shortest path is shown in green. 

 
 
Comparative performance of the algorithm 
 
For comparison and validation purpose, the above three 
environments discussed previously have been subjected 
to famous visibility graph based vertex heuristics 
algorithm (Wang et al., 2007) which make use of complex 
mathematical model for path evaluation and binary coded 
genetic algorithm for path optimization. Table 2 compares 
the results of the proposed algorithm with the vertex 
heuristics algorithm for static, partially-dynamic and 
dynamic environments.  An  average  of  33.9,  26.5  and 

88.4 improvement in percentage was obtained over 
vertex heuristics algorithm for shortest path, shortest time 
and computation time respectively. Also, the proposed 
algorithm has reduced path segment characteristics 
(compared to vertex heuristics) which allow easier 
maneuverability to the mobile robot. By comparison, it is 
evident that, performance of the proposed algorithm is 
superior to vertex heuristics algorithm. The shortcomings 
of the vertex heuristics algorithm can be attributed to the 
following three reasons: 
 
i) Opening search space is restricted to only few vertices 
of the amplified obstacles as it make use of fixed length 
chromosomes. 
ii) Infeasible paths (which interferes with the obstacles) 
are also considered during evaluation, which results in 
increased execution time. 
iii) Utilization of binary encoding and special genetic 
operators also increase the complexity of the functioning 
of the algorithm which results in increased path length. 
 
 
Conclusions 
 
This paper presents an algorithm capable of negotiating 
obstacles in static, partially dynamic and dynamic 
environments. Static obstacles are negotiated by using 
‘direction concept’ and moving obstacles by ‘waiting time 
concept’ algorithm. Through ‘direction concept’ algorithm, 
‘pass through’ and ‘no pass through’  edge  concepts  are 



 
 
 
 
established to identify maneuverable and non-
maneuverable obstacle edges. Through ‘waiting time 
concept’ algorithm, required waiting position and time, for 
the robot are found. Unlike the other graphical 
approaches, only relevant static and moving obstacles 
are negotiated and irrelevant obstacles are discarded. 
This leads to the reduced start to destination path 
distance and computation time of the processor. Unlike 
the other algorithms cited in the literature the proposed 
algorithm is applicable for convex as well as concave 
polygonal obstacles. The algorithm is also valid for 
curved obstacles. In fact, the algorithm can be applied to 
environments having any irregular shape obstacles, as 
the given obstacle is enclosed by the rectangular or 
square boundary. In addition, the algorithm is applicable 
to partially dynamic and dynamic environments besides 
static environment. Also, the performance of the 
proposed algorithm is found to be both efficient and 
effective, in terms of shortest path, time and lowest 
execution time compared to vertex heuristics algorithm. 

The present work dealt with path planning for a mobile 
robot in global environments with known information 
about obstacles. Essentially a mobile robot needs to 
switch over to local mode when it discovers new changes 
in obstacle scenario. Hence, the future scope of this 
research is to develop a mathematical model considering 
the parameters of unknown obstacles which are within 
the sensor range of mobile robot. Further, this work can 
be extended for environments with multiple robots. 
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