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1. Introduction

Nowadays, robotics is an essential part in manufacturing

processes automatization. Concerning mobile robots, autonomous

navigation entails a great challenge. A mobile robot (MR) can be

very useful in different situations where humans could be in

danger or when they are not able to reach certain targets because

of terrain conditions. Then, mobile robotics field is an interesting

and challenging subject for science and engineering, and it has

many different approaches [12].

The research field of Robot Motion Planning was launched at

the middle of the 1960s; however, after the publication of Lozano-

Pérez [14] in 1979 the interest in this area grew. After 30 years, the

existing research can be widely classified in twomain approaches:

classical [2] and heuristic. Classical methods dominated this field

during the first 20 years; roughly speaking most of them were

variations and/or combinations of Potential fields, Roadmaps, Cell

Decomposition, and Mathematical programming. Heuristic meth-

ods interest were born when scientists confronted many of the

drawbacks of classical approaches since the NP-completeness

nature of Motion Planning problems. Representative methodolo-

gies in the heuristic classification are the Probabilistic Roadmaps,

Rapidly Exploring Random Trees, Neural Networks, Genetic

Algorithms [1,7,11], Simulated Annealing, Ant Colony Optimiza-

tion, Particle Swarm Optimizer [3,6], Stigmergy, Wavelets, Tabu

Search, and Fuzzy Logic [21]. A general review of the major

contributions to the MP field that covers classical and heuristic

approaches through a 35-year period is given in [15]; there were

surveys of around 1400 papers and cited 82 representative works.

Actual reports [17,22] show that the interest in ant-based

algorithm meta heuristics is growing in mobile robotics. ACO-MH

is inspired in the foraging behavior of real ants for finding the

optimal path from the nest to where the food is. Some ant species,

as well as other social insects use an indirect communication

method known as stigmergy; this is a concept introduced by the

French biologist Pierre-Paul Grassé in 1959. With stigmergy, each

ant communicates with another one by modifying their local

environment. The ants achieve this task by laying down

pheromone along their trails [4]. ACO-MH solves mainly combi-

natorial optimization problems defined over discrete search

spaces. The ant-based algorithms developed as a result of studies

of ant colonies are referred as instances of ACO-MH [6].

This work presents a new proposal to solve the problem of path

planning for mobile robots; it is based in Ant Colony Optimization
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Meta-Heuristic (ACO-MH) to find the best route according to

certain cost functions; the novel method was named SACOmd,

where d stands for distance, and m for memory. One of the main

contributions of this work is the inclusion of memory capabilities

to the ants in order to avoid stagnation; moreover, the algorithm is

able to influence the decisionmaking process based on the exciting

distance between the source and target nodes. An other contribu-

tion is the use of the fuzzy cost function to evaluate the best routes

as well as the use of the method to easily control the performance

of the Fuzzy Inference System (FIS).

From the papers surveyed, there was not found any similar

proposal. However, there are other works sharing similar ideas in

the sense of using ACO-MH as a global planner; for example, in [16]

is presented a hybrid model that combines ACO and Artificial

Potential Fields (APF) algorithm. In [23] was proposed a newmeta-

heuristic method of ACO to solve the vehicle routing problem,

using a multiple ant colony technique where each colony works

separately. In [10] the robot has to visit multiple targets, like the

traveling salesman problem but with the presence of obstacles, the

robot in this case is modeled as a point robot; that is, the robot

occupies an exact cell in the discrete representation of the

workspace, using several robots as ants; this robot team

architecture has to be in constant communication with each other

at all times to share pheromone information.

This paper is organized as follows. Section 2 introduces the

reader to the MR field in order to present the general structure of

this proposal. In Section 3 the ACO algorithm is explained in the

context of mobile robotics. In Section 4 the new proposal of ACO-

MH is presented to solve the path planning problem, the specific

characteristics of workspace are given, as well as the fuzzy cost

function used and the method to tune it; moreover the dynamic

characteristic to avoid obstacles is given. The experimental

results are given in Section 5. Finally, in Section 6 are the

conclusions.

2. Navigation architecture proposal

Navigation in mobile robotic ambit is a methodology that

allows to guide an MR to accomplish a mission through an

environment with obstacles in a good and safe way. The two basic

tasks involved in navigation are the environment perception, and

path following. The concept ofmission, refers to the realization of a

set of navigation and operation goals; in this sense, the MR should

possess an architecture able to coordinate the on board elements:

sensorial system, movement and operation control, in order to

achieve correctly the different objectives specified in the mission

with efficiency that can be carried out either in indoor or outdoor

environments. Generally global planning methods complemented

with local methods are used for indoor missions since the

environments are known or partially known; for outdoor applica-

tions, local planning methods are more suitable, becoming global

planning methods a complement because of the scant information

of the environment.

The navigation problem of an MR can be divided in four

subproblems [20]:

� World perception. It senses the world symbolizing it into

features.

� Path planning. Uses the features to create an ordered sequence

of objective points that the robot must attain.

� Path generation. The goal is to obtain a path through the

sequence of objective points.

� Path tracking. It is in charge of controlling that the MR follows a

path.

It is common that ‘‘path planning’’ and ‘‘path generation’’ are

referred just as ‘‘path planning’’, because some navigation schemes

compute the safer instantmotion of the vehicle as ‘‘path planning’’,

instead of generating a path.

Fig. 1. Main screen of the software interface.
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The Navigation solution presented in this work is able to handle

the four subproblems aforementioned. Fig. 1 shows the main

screen of the ACO Test Center (ACOTC); as it is called this

development, it allows to perform path planning with SACO and

SACOdm. A graphical interface, as well as the translation of the

obtained solution (optimal path) from the virtual to the real world,

was implemented to test the proposed methods. The ACOTC has

two operational modes: Mode I for virtual environments, allows

the user to designmaps for indoor conditions over plain terrain, the

relational diagram for this mode is given in Fig. 2; Mode II is for on-

line navigation of the real MR, in this case the Boe-Bot from

Parallax [13,19], its relational diagram is given in Fig. 3.

Mode I is the default operational mode; in this mode, the user

can design maps for two dimensions (2D) indoor applications

(plain terrain), or a map of real terrain (2D) can be uploaded for

virtual testing of the route planning algorithm.

Mode II is selected by pressing theNavigate Button, the first task

of this mode is to establish communication via Bluetooth between

ACOTC and the MR. This mode is the on-line global path planner

with dynamic obstacles avoidance. The ACOTC will sent the

different objective points (coordinates ðx; yÞ) of the optimal path to

the MR, in order to achieve coordinated control for tracking the

desired path. The MR sensorial on-board equipment will inform to

ACOTC whether a new obstacle has appear; if so, the global path

Fig. 2. Flow diagram of the framework.
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planner will generate a new path starting from the actual MR

position.

3. Simple ant colony optimization algorithm

The simple ant colony optimization algorithm (SACO) is an

ACO-MH implementation that adapts the behavior of real ants to

solution of minimum cost path problems on graphs. A number of

artificial ants build solutions for the optimization problem by

issuing and exchanging information about the quality of these

solutions making allusion to the communication system of the real

ants [4,5].

Considering an ‘‘ant’’ as a punctual mobile robot MR in 2D, an

specification of the robot position in relation to a fixed coordinate

system is called a configuration q and it is given by (1), where

p ¼ ðx; yÞ is the MR position, and u is the orientation,

q ¼ ðp; uÞ ¼ ðx; y; uÞ (1)

The set of all the feasible values of q is the Configuration Space CS. If

theMR is no punctual, it will take up a subspace from CS, hence the

MR can be modeled by a circle with radius j, and center p ¼ ðx; yÞ

in the Cartesian space. The subset of CS that a real robot takes up is

defined as RðqÞ,

RðqÞ ¼ fqi 2CS=kq; qik � jg (2)

A punctual obstacle in the environment is an object represented by

bi, and a set of obstacles is B,

B ¼ fb1; b2; bng (3)

Fig. 3. Flow diagram of the framework.
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the subset of CS that an obstacle occupies is biðqÞ, in such away that

the Configuration Space free of any obstacle is defined as CSfree in

(4). Hence, RðqÞ \BðqÞ ¼ ? for CSfree, and RðqÞ \BðqÞ 6¼? for a CS

with forbidden subspace regions because the presence of

obstacles.

CSfree ¼ q2CS=RðqÞ \
[

q

i¼1

biðqÞ

 !

¼ ?

( )

(4)

The path planning problem is the search of a succession of punctual

configurations q in CSfree called Q, such as qa is the actual

configuration, and q f is the final configuration, this is expressed by

(5),

Q ¼ fqa; . . . ; q f jqi 2CSfreeg (5)

The paths obtained with (5) are not all feasible, since this

expression considers punctual MR; so, RðqÞ might not fit in many

configurations of a real MR. This proposal considers ‘‘ants’’ of size

RðqÞ, this consideration will reduce the search space considerably,

since the size of cells can be chosen adequately according the MR

size. The new expression that considers a configuration of a real

robots RðqÞ instead q can be rewritten as (6),

QðRðqÞÞ ¼ fRðqaÞ; . . . ;Rðq f ÞjRðqiÞ 2CSfreeg (6)

If xkðtÞ denotes a QðRðqÞÞ solution in time t, f ðxkðtÞÞ expresses the

quality of the solution. In general terms, the steps of SACO are as

follows:

(1) Each link ði; jÞ is associated with a pheromone concentration

denoted as ti j.

Fig. 4. The workspace has been discretized in a matrix of 50� 50 nodes

interconnected. The blue box is an obstacle, an ant can have until eight options,

only the options with a value of ‘‘0’’ are eligible (green arrows), and the nodeswith a

value of ‘‘1’’ are not eligible (yellow arrows). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of the article.)

Fig. 5.Membership functions of the Effort input once they had been tuned with the

STA, the tuning factor is k ¼ 0:75.

Fig. 6. Membership functions of the Distance input once they had been tuned with

the STA, the tuning factor is k ¼ 0:75.

Fig. 7. Membership functions of the Weight output. The STA does not require to

modify the membership functions parameters of the output.
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(2) A number k ¼ 1; . . . ;nk are placed in the origin node (the nest).

(3) On each iteration or epoch all ants build a path to the destiny

node (the food source). For the next node selection it is used the

probabilistic formula:

pki jðtÞ ¼

tai jðtÞ
X

j2Nk
i

tai jðtÞ
if j2Nk

i

0 if j =2Nk
i

8

>

>

>

>

<

>

>

>

>

:

(7)

In Eq. (7), Nk
i is the set of feasible nodes connected to node i

with respect to ant k; tai j is the total pheromone concentration

of link ði; jÞ, where a is a positive constant used as gain for the

pheromone concentration influence.

(4) Remove cycles and compute each route weight f ðxkðtÞÞ. A cycle

could be generatedwhen there are no feasible candidates nodes,

that is, for any node i and ant k,Nk
i ¼ ?; then predecessor of that

node i is included as a former node of the path.

(5) Compute pheromone evaporation using the Eq. (8).

ti jðtÞ ð1� rÞti jðtÞ (8)

In Eq. (8),r is the evaporation rate value of the pheromone trail.

The evaporation is added to the algorithm in order to force the

exploration of the ants, and avoid premature convergence to

sub-optimal solutions. For r ¼ 1, the search is completely

random.While an ant takesmore time for crossing a path, there

is more time for the pheromone trail to evaporate. On a short

path, which is crossed quickly, the density of the pheromone is

higher. Evaporation avoids convergence to local optimums.

Without evaporation, the paths generated by the first ants

would be excessively attractive for the subsequent ones. In this

way, exploration of the search space is not too restricted.

(6) Update pheromone concentration by using Eq. (9).

ti jðt þ 1Þ ¼ ti jðtÞ þ
X

nk

k¼1

Dtki jðtÞ (9)

(7) The algorithm can be ended in three different ways:

a. When a maximum number of epochs have been reached.

b. When it has been found an acceptable solution, with

f ðxkðtÞÞ< e.
c. When all ants follow the same path.

4. SACOdm proposal

Several aspects has been considered to improve the SACO

algorithm for MR applications. The original transition formula (7)

was modify to accelerate the decision process. The strength of this

improvement is better appreciated in free space path optimization.

This addition works as follows: j is the Euclidian distance between

the source and target nodes, and b is a value that amplifies the

influence of j, the valid range of b is ½0;1Þ. The new transition

formula is (10)

pki jðtÞ ¼

tai jðtÞ
X

j2Nk
i

j
b
tai jðtÞ

if j2Nk
i

0 if j =2Nk
i

8

>

>

>

>

<

>

>

>

>

:

(10)

In addition, a memory capability was added to avoid the algorithm

stagnation, this capacity is represented by g and basically it is a

reference value. A counter keeps track of the already visited nodes

by marking them with ‘‘1’’ in the workspace temporally, as if they

were obstacles; this is with the intention of avoiding testing again

the memorized nodes, once the algorithm reached the g value, the

nodes are available for retesting by removing the temporal marks.

For the case of path planning, the algorithm includes a proposal

of using a fuzzy cost function based in heuristic knowledge that can

be easily adjusted to improve performance using the Simple

Tuning Algorithm (STA) [9].

4.1. The workspace

The map where the mobile robot navigates is a search space

discretized into a matrix representing a graph of 50� 50nodes,

where ‘‘0’’ means a feasible node (plain terrain) and ‘‘1’’ are

obstacles, see Fig. 4. It is remarkable to say that each artificial ant of

the algorithm is a scale representation of the real MR, whichmeans

the proposed method considers robot’s dimensions; for example,

there are going to be situations during the optimization process,

where some paths are rejected if the robot does not fit in the space

between two obstacles. Under this premise, several computations

are saved since some nodes are rejected before the algorithm

spends time using them to build paths. The 50� 50map represents

a 4 m2area, in a 1:4 scale (cm).

For this method, it is assumed all nodes are interconnected. In a

mapwith no obstacles, there are 2500 feasible nodes; therefore the

matrix of links E would be extremely large. For this reason E is not

used, and the pheromone amount value is assigned at each node,

which reduces considerably the complexity of the algorithm and

then the processing time. This is equivalent to assign the same

pheromone concentration to the eight links around every node. If

an analogy with reality is made, this can be seen as ants leaving

food traces in each node they are visiting, instead of a pheromone

trail on the links.

Fig. 8. Path A and Path B have the same distance; however path A implies less effort for robot navigation.
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Once the ants are placed in the origin node, each ant starts

navigating, and the decision process for choosing the next node

consist in a 3� 3 window of the whole graph. The ant can choose

one of the eight nodes around it using the transition probability

formula (10).

4.2. The fuzzy cost function

The cost of the path f ðxkðtÞÞ to determine the optimal one is

evaluated by a Fuzzy Inference System (FIS), which contemplates

not only the length of the path but the difficulty for the navigation.

The FIS considers two inputs: Effort (Fig. 5), and Distance (Fig. 6).

The first one represents the energy spent by the robot to make

turns across the path; for example, the effort become increased if

the robot has tomake a left turn after a long straight line, because it

has to decelerate more; Distance is the accumulated Euclidean

distance at the moment between the visited nodes. The output,

shown in Fig. 7, is a weight assigned to the cost of the path; the

more weight is given, the less desirable becomes the path. The

output of the FIS is added to the total Euclidean distance of the

path, giving the final weight of each one generated by ants. If there

are different routes with the same length, the FIS should make a

difference of cost giving preference to the straighter paths like

those shown in Fig. 8. The FIS variables can be seen in Table 1; and

the FIS rule matrix in Table 2.

4.3. Tuning of the fuzzy cost function

The FIS can be tuned for a better performance using the Simple

Tuning Algorithm (STA) proposed in [8,9], it is applied to facilitate

the tuning process of the FIS, since sometimes becomes over-

whelming to find the optimal parameters necessaries for a well

performance of the fuzzy system. By applying the STA, time and

effort are reduced by using a single parameter, the tuning factor k.

It is based on the properties of the fuzzy surface, allowing the

modification of the FIS behavior by means of manipulating the

ranges of the membership functions of the input variables,

remaining without any modification the output membership

functions [8,18]. In this work, the FIS was used as a decision

support system to differ the straighter paths from the winding

ones. The output surface without applying STA is shown in Fig. 9,

and after applying the STA in Fig. 10.

The STA method basically consists of four steps:

(1) Tuning factor selection. A number k2 ½0;1� is used to define

the tuning adjustment level. k ¼ 0 is the biggest settling time

and k ¼ 1 the smallest.

(2) Normalization of the ranges of the fuzzy controller’s

variables. The range of each input fuzzy variable is modified

in order to have the lower and upper limits equal to�1 andþ1,

respectively.

(3) Tuning factor processing. Once the range is normalized, the

new vector of operation points will be given by:

Vopfinal ¼ ðVopinitialÞ
rðkÞ (11)

where Vopinitial is a vector with normalized values of the

membership in the x-axis and rðkÞ is the polynomial:

rðkÞ ¼
30k3 þ 37k2 þ 52kþ 1

40
(12)

(4) Renormalization of the ranges of the fuzzy variables.

Convert the normalized range to the previous range of the

system. This can be computed multiplying the vector by a

constant factor.

4.4. Dynamic obstacles avoidance

The algorithm has the capability of sensing changes in the

environment, if a new obstacle is placed over the robot’s route at

Table 1

The FIS has two input variables, Effort and Distance.

Input variables Output variable

Effort Distance Weight

NE: Normal Effort VSD: Very Small Distance MW: Minimum Weight

NEE: Normal Extra Effort SD: Small Distance SW: Small Weight

BE: Big Effort D: Distance W: Weight

BEE: Big Extra Effort BD: Big Distance BW: Big Weight

VBE: Very Big Effort VBD: Very Big Distance VBW: Very Big Weight

The output variable is Weight.

Table 2

Fuzzy rule matrix.

Distance

VSD SD D BD VBD

Effort NE MW MW SW SW MW

NEE MW SW W SW MW

BE SW W W W SW

BEE BW BW W BW VBW

VBE VBW VBW BW VBW VBW

There are 25 rules for the two input variables.

Fig. 9. Surface of the FIS output before applying the STA.

Fig. 10. Surface of the FIS output after applying the STA. It was used an adjusting

factor k ¼ 0:75.
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time t, it starts a rerouting process in order to avoid the blocking

object and get to the destiny node. It has to be considered that after

some epochs, the pheromone concentration ti j is already increased
over the visited nodes; then, when a new obstruction appears, it

causes evaporation of the pheromone trail around it. This premise

prevents stagnation around the obstacle, and ti j of the surrounding
area is given by the minimum pheromone value over the search

map at t.

5. Experimental results

Several comparative experiments were conducted to evaluate

the new proposed features of SACOdm over SACO. In all the

experiments, the starting point is in (2,2), and the target point is in

(48,48).

Experiment 1. Testing SACO in free space (no obstacles).

The ACOTC was programmed as follows: Ants amount ¼ 3,

Epochs ¼ 10, Initial pheromone ðti jÞ ¼ 0:5, Evaporation ðrÞ ¼ 0:2,

a ¼ 2. Since SACO does not consider b and g values, a ‘‘0’’ was

given for each variable. We took statistic values of 20 runs. The

mean time was 53.99 s with a standard deviation of 19.55. The

minimal time to obtain the route was 25.42 s, the maximal time

was 91.30 s. The minimal route cost was 97.97 for this route, the

maximal cost was 100.41, the mean costs was 98.53 with a

standard deviation of 0.73. Eight times of 20 the best route was

found. If we let that the algorithm run one or twomore epochs, the

best route will be found always.

Experiment 2. Testing SACOdm in free space.

The benefits of modifying Eq. (10) will be tested. The ACOTCwas

programmed as follows: Ants amount ¼ 3, Epochs ¼ 10, ti j ¼ 0:5,

r ¼ 0:2, a ¼ 2, b ¼ 1 and g ¼ 0. For 20 runs, the mean time was

4.95 s with a standard deviation of 0.13; the minimal and maximal

time were 4.48 and 5.1 s, respectively. The minimal route cost was

97.97 all the times, so the best routewas foundalways. For one ‘‘ant’’

and three epochs, the SACOdm only needed 0.60 s to find the route.

Experiments 1 and 2, considered a scenario with no obstacles,

SACOdm was better than SACO finding the optimal route in this

kind of scenarios, basically the addition of j
b
in Eq. (10) was the

reason. Fig. 11 show four tests for the same problemwith different

parameters.

Fig. 11. (a) Route generated by the first ant in the first epoch, withb ¼ 0 and g ¼ 1, (b) same situation butwithb ¼ 0 and g ¼ 100, (c) The routes of three ants in the first epoch

with b ¼ 0:1 and g ¼ 1, (d) same situation but with b ¼ 0:5 and g ¼ 1.

Table 3

In the three tests ti j ¼ 0:5.

Exp. 3 Ants (k) Epochs rho a b g tðsÞ LðkÞ

3(a) 3 20 0.2 2 0 0 88.0 127.3

3(b) 3 15 0.2 2 1 7 12.14 127.3

3(c) 3 5 0.5 2 1 1 12.08 127.3

Test 1 is for SACO, Tests 2 and 3 are for SACOdm.
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Experiment 3. Comparative table. SACO vs. SACOdm.

In Table 3 the results of several experiments using different

parameters are given. The test was made using the map of Fig. 1.

Experiment 4. Dynamic obstacle avoidance.

In this example, it is shown how the obstacle is avoided after it

appeared once the path was found and the MR was tracking the

path. The algorithm searched again for the optimal path from the

actual position. See Fig. 12.

6. Conclusions

The SACOdm proposed method seems to be a promising path

planning system for autonomousmobile robot navigation since the

given solutions are not only paths, but the optimal ones. It is

remarkable to mention the reduced time of execution of SACOdm

against SACO, approximately a 91% (speed up around 10). We

tested several maps, there are some maps where both methods

needed exhaustive computations that can be reduced changing

parameter values. A system that automatically infers these values

could be for future work; since SACOdm has some properties that

works better in free spaces, and in many maps. However, SACO is

more explorative because it is not biased by b capability to choose

determined nodes, but it is b feature that makes faster SACOdm in

free spaces. A solution to this problem is to begin the planning task

using j
b
of SACOdm, then after a time, it is convenient to reduce its

influence in SACOdm probabilistic transition equation; by doing

this the algorithmwill be able to solvemaps very fast in free space,

specially if there exist big diagonals in the route. The memory

capability, g , of SACOdm allows to remember some nodes to avoid

them in a predetermined time; with this capability no problem

was found storing few nodes, less than 100, but it needs further

experimentationwith differentmaps. One good feature of SACOdm

is that it can be reduced to SACO just programmingwith ‘‘0’s’’ theb
and g features. The use of a fuzzy cost function that depends on the

effort and distance to evaluate the cost of a route worked fine, and

we think it is a good idea because we are handling two objectives:

the best route, and the effort, as it was a single objective problem.
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