
Path Planning for Autonomous Vehicles Driving

Over Rough Terrain

A. Lacaze, Y. Moscovitz, N. DeClaris, K. Murphy
Computational Intelligence Research Laboratory

University of Maryland,College Park, MD 20742

and

Intelligent Systems Division

National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract

This paper presents a multiresolutional architec-

ture of planners for obstacle avoidance in outdoor

mobility. The planner makes use of o�-line dynam-

ical simulations results to e�ciently �nd paths that

avoid obstacles. The trajectories are generated by set

of steering velocity commands. An implementation

of the planner was developed and tested in a vehicle

at the National Institute of Standards and Technol-

ogy (NIST) with promising results. This approach

of building the search space for the planner results

realistic cost and trajectories for the vehicle.

I. Introduction

The problem of path planning has been explored

over the years by many researchers [1, 2, 3, 4, 5, 6].

In the past hardware could not handle the computa-

tional requirements involved in on-line path planning

causing the systems to be unrealistic for outdoor mo-

bility. Thus, many researchers opted for rule based

subsumption architectures that gave good results in

well de�ned environments where the developers of the

system could generalize rules for the motion. Unfor-

tunately, motion in the outdoors is a very unstruc-

tured environment where good rules that will apply

in di�erent circumstances are very hard to come by

and extremely expensive to test. However, we are

now at a point where faster hardware can allow for

planning: the investigation of alternative decisions to

achieve a goal before committing. In the future, we

predict that these planning systems will also learn

from experiences as to reduce these trees of alterna-

tives and further improve their capabilities for �nding

correct paths.

We propose a planner architecture which is de-

signed to be embedded in the behavior generation

(BG) module of the RCS/NASREM architecture de-

signed at NIST [7]. The architecture assumes that

there exists goal state that the systems needs to

achieve. A multiresolutional world model allows the

planners at di�erent levels of resolution to create and

execute sequences of commands (plans). World mod-

els (WM) at di�erent levels contain knowledge of dif-

ferent coarseness with respect both to space and time.

Therefore, since planners investigate possible futures

utilizing the language supplied by the WM of the

level, their result is also a hierarchy of strings of com-

mands that propagates from the top of the hierarchy

(most coarse) to the bottom until the commands are

sent to the actuators.

We will concentrate in this paper on one level of this

hierarchy. The level of interest is what RCS calls the

\subsystem level" because at this level trajectories for

the di�erent subsystems of the vehicle are planned.

This level receives goals in the form of sequences of

points separated approximately by 50 meters and a

envelop around within which the subsystem planner

must restrict its movement. These lower resolution

plans are found by the upper level using a similar

planning algorithm.

II. Goal of the Subsystem Planner

The goal of the subsystem level planner is to:

1. follow the envelop assigned by the upper level

2. minimize a cost criterion given by the upper level

(i.e. time, distance, energy, etc.).

3. avoid obstacles that will the vehicle put the ve-

hicle at risk.

4. create sequences of points and envelops that the

lower lever (higher resolution) can follow.

5. Create this plans fast enough so that plans do

not became stale due to changes in the sensed

obstacles or changes on the predicted state of

the car.

6. send emergency instructions to lower levels in

case no path are found.



7. request re planning of the higher level if changes

in the state of the environment cause this level

planner to do something that was not predicted

by the upper level. Some example of these cir-

cumstances are: the only paths available are out-

side of the envelop given by the upper level, or

the cost of achieving the goal was under or over-

estimated by the upper level.

One of the biggest challenges are the timing con-

straints. The reason for this are the following:

� In order to make an accurate decision for the

correct course of action at the present time, the

planner must predict ( and simulate ) the conse-

quences of that this action will have in the future.

Prediction and simulations are computationally

costly procedures

� because of the limited range that sensors have in

this level and the change of position of the car,

the information available to the planner changes

fast. So, the planner must react in a timely fash-

ion to these changes to assure the safety of the

vehicle.

We have some tools that we use in the design of

the planner at this level to warranty a quick planning

cycle.

� we compute and tabularize the results of o�-

line simulations so that the most time consuming

parts of the prediction of costs will be completed

before the vehicle starts its operation.

� RCS has guidelines for the timing cycles at all

levels of resolution. If these timing constraints

are followed, experience shows that all levels will

have su�cient time to re-plan.

III. General Description

We assume that a map is available. This is a Carte-

sian grid that represents features of the terrain that

are or could be signi�cant in the calculation of the

cost of traversing each cell. These may include obsta-

cles and other features of the terrain like directional

traversability. These features may have time tags as-

sociated so that moving obstacles can be represented.

They may also have certainty measures.

We have found that the most e�cient reference

point for the map is the predicted position of the car

when the planning cycle is �nished. In other words,

the car will be at the center of that map looking for-

ward at the end of the planning cycle. The reasons

are the following:

1. This allows the o�-line simulations to directly

apply to this map without coordinate transfor-

mations.

2. It is possible to build a hash table that e�ciently

map properties of pixels into properties of trajec-

tories. We will see this with more detail when we

describe the planner.

3. It is simple and e�cient to transform and fuse

sensor readings into this \local" map.

The planner can be divided into two di�erent parts:

1. All the tasks that need to be calculated and tabu-

lated before the vehicle has started its operation.

We will call these algorithms \o�-line."

2. The algorithms used during the normal opera-

tion of the vehicle. These algorithms use results

found by the o� line algorithms. We will call

these algorithms \on-line."

Since the planner in our example must have 0.5 sec-

ond or faster response in order to drive at the speci-

�ed speed, special e�ort was made to make as much

of the computation o�-line, and make the on-line cal-

culations as fast as possible.

IV. The Off-line Algorithms

IV.A. Building an ego-graph

The planner builds a graph that shows possible

states that the car may visit and the connectivity

between these states to be traversed by the vehicle.

The trajectories found by the on-line algorithms will

be a subset of these graph. We will call this graph

which is an overlay on the local map, the ego-graph.

An example of the ego-graph used in our example can

be seen on Figure 1. In this example the graph shows

only points that are within sensor range and hori-

zontal view scanning angle. The Ego-graph is built

from 5 layers of 17 points concentrated to the cen-

ter. This graph can be easily extended outside of the

sensor range. In that case, the local map must have

permanent obstacles that get shifted as the vehicle

moves and certainty associated with the features. In

this graph the predicted location of the car at the end

of the planning cycle is at the vertex of the inverted

cone, facing up.

IV.B. Calculating Cost

In order to accurately calculate the on-line cost of

traversing the di�erent edges in the graph, two aids

can be built o� line: a hash table that transforms

local map cell features into features of the trajectories

of the wheels of the car at each segment of the graph

( stripes ), and a cost of traversing that trajectory at

di�erent speeds.

In order to develop these two aids an o�-line plan-

ner of a higher resolution was built. We are inter-

ested in having accurate stripes and cost at through-

out the ego-graph, but especially closer to the vehicle

because:

1. these are the decisions that we have to make

now. The decisions further away in time will go



−25 −20 −15 −10 −5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

55

Meter

M
e

te
r

Figure 1: An example of an ego-graph

through more planning cycles before being sent

to the lower level.

2. sensors provide more accurate information about

the environment closer to the vehicle.

We would like to be able to store the dynamically

simulated trajectory for each segment in the ego-

graph, unfortunately, this will require very large stor-

age capabilities which are not available, nor will they

be available in the foreseeable future. The reason for

these is that since the ego-graph is a directed acyclic

graph, it has multiple ways to achieve a position in

the local map. In other words, there are multiple

initial conditions for each segment.

We decided to do a more accurate dynamic simu-

lation of the �rst two layers and leave the rest of the

graph which is further away from the current state in

space and time as linear approximations of the tra-

jectories. The dominant a�ects on the vehicle tra-

jectories are speed, initial steering (wheel angle), and

maximum turn rate of the vehicle and maximum ve-

locity to turn the wheels. We found that the initial

steering and the limited steering velocity enable the

vehicle to reach only part of the front area.

So for the �rst two layers of the ego-graph (the

two rows of points closer to the vehicle) the following

steps taken:

1. assuming a starting vehicle velocity and a initial

wheel angle, a tree that includes all the possible

sequences of �nite length (we used 7) of actu-

ator steering commands are applied and simu-

lated using a dynamical model.Example can be

seen on Figure 3. Wheel steering resolution was

sixth of the maximum velocity. We calculate the

trajectories for 10 positive starting wheel angles.

Example of trajectories and their steering com-

mands can be seen on Figure 2.

−15 −10 −5 0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

22
18 Degrees initial wheel angle at 2.5 m/s trajectories 

Meters

M
e

te
rs

0 2 4 6 8 10 12 14 16

−20

0

20

 Steering velocity commands 

Time [Sec]

S
te

e
ri
n

g
 R

a
te

 [
D

e
g

 /
S

e
c
]

Figure 2: An example of trajectories and their steer-

ing velocities commands (the best is solid line)

2. for each point in the �rst layer and for each point

in the second layer all trajectories that traverse

(within a threshold) those points are separated.

Example can be seen on Figure 4

3. the best trajectory is selected according with en-

ergy cost function. Additional cost is calculate

base on the trajectory angle, from the front, near

the second point in order to maintain velocity

forward. Example of trajectories and their steer-

ing commands can be seen on Figure 2. The two

point in the example of Figure 4 demand hard

maneuver in low velocity (5 MPH) because of

high initial angle of the wheels to the right. We

observed that the best trajectory is the one that

minimizes the steering velocity/energy when it

pass a point. The highest steering velocity is in

the beginning of the trajectory and after the �rst

point.

4. the process is repeated for all starting velocities

and starting angles.

5. a tree is built where for each point in each of the

two layers. The selected trajectory is one in dis-

tance of less then 0.4 Meter from the �rst point

and less then 0.8 Meter from the second point.

In the example on Figure 2 the trajectories are

going through point 5 in the �rst layer and point

14 in the second layer. The reason for the larger

distance in the second point is that we wanted

to included more trajectories in the test and un-

til vehicle reach the second point there will be

at least 4 replanning cycles to adjust the trajec-

tory. The best trajectory with the highest speed

is selected and the speed is recorded. Example

can be seen on Figure 5. For points that are not

reachable at 20 MPH a lower velocity (15, 10,



−20 −15 −10 −5 0 5
0

5

10

15

20

25

30

 Meters 

 M
e

te
rs

 

 7.5 m/s 

−20 −15 −10 −5 0 5
0

5

10

15

20

25

30

 Meters 

 M
e

te
rs

 
 10 m/s 

−20 −15 −10 −5 0 5
0

5

10

15

20

25

30

 Meters 

 M
e

te
rs

 

 5 m/s 

−20 −10 0 10
0

5

10

15

20

25

30

 Meters 

 M
e

te
rs

 

 2.5 m/s 

Figure 3: An example of trajectories at four speeds

for the same steering velocities commands

−10 −5 0 5 10
0

5

10

15

20

25
10 m/s

Meter

M
e

te
r

−10 −5 0 5 10
0

5

10

15

20

25
7.5 m/s

Meter

M
e

te
r

−10 −5 0 5 10
0

5

10

15

20

25
5 m/s

Meter

M
e

te
r

−10 −5 0 5 10
0

5

10

15

20

25
2.5 m/s

Meter

M
e

te
r

Figure 4: An example of all the trajectories that goes

through two points on the ego-graph

5 MPH) trajectories are selected. The basic as-

sumption is that the vehicle can keep trajectory

that was simulated in higher speed.

The equations of motion are as follows:

P 0

N
= P 0

X
= cos � cos� u1 (1)

P 0

W
= P 0

Y
= sin � cos� u1 (2)

�0 = u2 (3)

theta0 =
Kunder

L
sin� u1 (4)

v = cos� u1 (5)

PX , PY and P 0

X
, P 0

Y
are vehicle coordinates and

velocities. � is the vehicle heading and � is the wheel

angle limited to �Max. u1 and u2 are velocity of the

front wheel and steering velocity. u2 is limited to

−10 −5 0 5 10
0

5

10

15

20

25

Meter

M
e

te
r

10 m/s

−10 −5 0 5 10
0

5

10

15

20

25

Meter

M
e

te
r

5 m/s

−10 −5 0 5 10
0

5

10

15

20

25

Meter

M
e

te
r

7.5 m/s

−10 −5 0 5 10
0

5

10

15

20

25

Meter

M
e

te
r

2.5 m/s

Figure 5: An example of whole set of trajectories at

four speeds for a given initial steering

u2Max so it takes about three second to steer the

wheels from one side to another. v is the vehicle

speed. The systems equations are based on [8]and

Understeer is found in [9]

Kunder =
L

L+Kv2
(6)

Where L is the distance between the front and rear

wheels. v is the vehicle speed in MPH and k=0.0019

for the NIST HMMWV. The output of the o�ence

algorithm:

1. An egograph that show dynamically feasible con-

nections among states in the local map

2. A velocity range for the trajectories.

3. a cost of traversing the segments

4. a hash table that maps cells in the local map into

trajectory indices

V. On-line Algorithms

The on-line routines perform the following task:

1. Allocate space for the ego-graph

2. Load the ego-graph. See Figure 6.

3. Allocate space for the cell to trajectory hash ta-

ble

4. Load cell to trajectory table (created o� line)

5. Assign the cost of traversing each of the segments

in the graph based on the value calculated o�

line.

6. For each planning cycle

(a) Fetch the goal area from the upper level

planner

(b) Identify the points within the ego-graph

that �t the constraints set by the upper

level goal



(c) Fetch the local map showing the current

obstacles centered and oriented on the pre-

dicted position of the vehicle at the end of

the planning cycle

(d) Using the cell to trajectory table and the

local map, See Figure 7 and Figure 8.

i. Temporarily mark the trajectory pieces

that are not traversable given the ob-

stacles in the map.

ii. Map other features that can a�ect the

cost of the trajectories (i.e. uncer-

tainty).

iii. Assign time tags to these trajectories if

the features are moving as a function of

time.

iv. Update the cost of the trajectory pieces

using the other features available in the

map.

v. Eliminate trajectories that do not �t

the current starting state. Two ex-

amples: trajectories that starting with

di�erent wheel angle, and trajectories

that whose speed range is outside of the

current velocity

(e) search the graph for the optimal solution

that achieves the goal assigned by the upper

level. The search procedure is described in

the next subsection. See Figure 9.

(f) send result to the executor. The planner

output includes the best trajectory for the

current speed range and the recommended

speed. Speed is adjusted based of the costs

of speed depended trajectories.For example

the planner might found only low speed tra-

jectories to avoid obstacles in the pathway.

Figure 6 to Figure 9 show an example of planning

steps with a real obstacle map. The ego-graph shown

is build, initially, only from connection between the

points. Later on the �rst two rows were replaced by

the simulated trajectories.

V.A. Search Procedure

1. put the start node, s, on a list called OPEN of

unexpected nodes

2. exit if OPEN is empty

3. Remove from OPEN a node, n, at which f =

g + h is minimum and place it on a list called

CLOSED to be used for expanded nodes. Where

g is the cost of traveling to n and h is the pre-

dicted cost of traveling to the goal node.

4. If n is a goal node, exit successfully tracing back

the solution

5. Expand node n, generating all its successors with

pointers back to n

Figure 6: Ego graph points on the sensor footprint

Figure 7: Connected Ego graph not a�ected by single

obstacle out of the path way

Figure 8: Ego graph a�ected by multiple obstacles in

the path way



Figure 9: Ego graph with optimum path

Figure 10: The NIST HMMWV

6. For n0 successor of n

(a) Load the pre-calculated, o� line,cost f(n0).

(b) If n0 was neither OPEN nor CLOSED, then

add it to OPEN, assigning f(n0) to node n0

(c) if n0 already resided in OPEN or CLOSED,

compare the newly computed f(n') with

that previously assigned to n0. If the new

value is lower substitute it for the old one

changing the pointer. If the matching node

resided in CLOSED move it to OPEN

7. goto 2

VI. Discussion and Conclusions

The path planner presented in this paper has signif-

icant advantages over traditional A* implementations

based on the following important ideas:

1. The assumption that a Cartesian grid map, at-

tached to the vehicle front, which includes terrain

features and obstacles critical to path planning,

is available for o�-line computations before the

vehicle starts its operation in a particular mis-

sion.

2. The implementation of a computing approach

that use as map reference point the predicted po-

sition of the vehicle when the planning cycle is

�nished, combines o�-line and on-line algorithms

(thus overcomes timing constraints by e�ciently

transforming and fusing sensor data, and hash

tables based on realistic trajectories).

3. The use of stored computations that take into

consideration vehicle dynamics, (including cur-

rent vehicle speed, wheel angle and rate of steer-

ing, for avoiding obstacles).

4. Dealing with modi�ed data resolution based on

distance in front of the vehicle. The two �rst

layers are made of realistic trajectories while the

rest of the ego-graph is made from simple connec-

tions. The accuracy that the trajectories cross

points is best at the �rst layer (at 10 Meters)

and lower in the second layer (at 20 Meters).

This concept is based on the assumption that

continuos replanning take care for the accuracy

near the vehicle.

These ideas enabled us to achieve a hierarchical

RCS/NASREM architecture incorporating a subsys-

tem level planner that works in the 50-Meter range

which:

1. Provides trajectory and speed control to the

lower level for ensuring that the vehicle is kept

on a smooth path towards its ultimate goal, and

avoid obstacle scanned by the sensor. See NIST

HMMWV at Figure 10.

2. Avoids obstacles while operating within the op-

erative range of the vehicle dynamic and compu-

tation timing constraints.

3. Vehicle behavior is smoothly and the turning

wheel not jumpy.

For path planning of autonomous vehicle over

rough terrain the conclusions are:

1. Realistic trajectories that map the vehicle ability

to pass through obstacle area are essential.

2. Trajectories must take into consideration vehicle

dynamics including current wheel angle and rate

of steering.

3. Planner with A* searcher for optimal trajectory

is applicable for prede�ne set of trajectories and

an obstacles pixels to trajectory table.

4. The concept of the planning in modi�ed data

resolution representation works very well.

5. The NIST RCS hierarchical architecture system

provides the basis for determining the range of

operation, the planning timing period and the

resolution the of data.



6. In order to achieve smooth driving the plan-

ner must provide a proper (at least kinematics

based) trajectory and speed recommendations to

the subsystem (traveler) that keep the vehicle on

the chosen route.

VII. References

[1] R. Bellman and S. E. Dreyfus. Applied Dynamic

Programming. Princeton University Press, 1962.

[2] P. Hart, N. Nilsson, and B. Raphael. A formal

basis for the heuristic determination of minimum

cost paths. IEE Trans. System Science and Cy-

bernetics, 4(2):100{107, 1968.

[3] H. P. Moravec. Robot Rover Visual Navigation.

UMI Res. Press, 1981.

[4] T. Perez-Lozano. Spatial planning: A con�gura-

tion space approach. IEEE Trans. Computers, 32,

1983.

[5] A. Meystel. Autonomous Mobile Robots. World

Scienti�c, 1991.

[6] J. Albus, A. Meystel, and S. Uzzaman. Nested

motion planning fon an autonomous robot. In

IEEE International Conference on Aerospace Sys-

tems, Westlake Village, CA., 1993.

[7] J. Albus. Outline for a theory of intelligence.

IEEE Transactions on Systems, Man, and Cyber-

netics, 21:473{509, 1991.

[8] G. Pappas and K. Kyriakopoulos. Modeling and

feedback control of nonholonomic mobile vehicles.

In Proceedings of the 31st Conference on Decision

and Control, Tucson, Arizona, December 92.

[9] K. Murphy. Analysis of robotic vehicle steering

and controller delay. In Fifth International Sym-

posium on Robotics and Manufacturing, Wailea,

HI, August 1994.


