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Abstract. This work considers the problem of planning optimal paths for a mobile robot traversing 

complex terrain. In addition to the existing obstacles, locations in the terrain where the slope is too steep 

for the mobile robot to navigate safely without tipping over become mathematically equivdent to extra 

obstacles. To solve the optimal path problem, we use a dynamic programming approach. The dynamic 

programming approach utilized herein does not suffer the difficulties associated with spurious local 

minima that the artificial potential field approaches do. In fact, a globally optimal solution is guaranteed 

to be found if a feasible solution exists. The method is demonstrated on several complex examples 

including very complex terrains. 

1. Introduction 

Path planning for mobile robots has 

involved all of the extremes in terms of available 

environment information. The worst case is that 

in which the robot's collision-avoidance 

mechanism is simply to "repel" from obstacles 

that it comes very close to [Brooks, Arkin]. 

Sensors involved include proximity sensors. An 

intermediate case is one in which the robot has a 

camera or sonar [Cho and Lim 1, Cho and Lim 21 
and can "see ahead" a limited distance, much like 

a human would when driving an ATV though 

rough and/or obstacle-infested terrain. The best 

case is that in which knowledge of all obstacles is 

available so that the vehicle can be guaranteed to 

find an optimal path if a feasible path exists (see 

[Hou and Zheng] and the references cited 

therein). It is this latter best-case scenario that is 

of concern in this paper. 

All such problems can be reduced to that 

of finding an optimal path through a sequence of 
adjacent feasible or admissible locations, where 

the inadmissible or "forbidden" locations are 

obstacle locations. This work will focus on the 

problem of complex terrain navigation in which 

forbidden regions arise from not only obstacles 

such as buildings, fences, and bodies of water but 

also from excessively steep terrain that could 

cause the vehicle to tip over. This work will 

focus upon planning minimum-distance paths 

(which are essentially minimum-time paths) 

where it is reasonable to expect that travel-time 

has some correlation with probability of being 

detecteddestroyed by the enemy. The method 

used is a dynamic programming b s o n  and 

Casti] one which is guaranteed to produce a 

globally optimal solution. This globalness of 

solution contrasts with previous work that use 

artificial repulsive potentials for obstacles (see 

[Hou and Zheng] and the references cited therein) 

because these latter approaches can lead to not 

only suboptimal paths but can also completely 

fail to find a feasible path, even when one exists, 

both of these cases being related to the problem of 

spurious local minima. Despite these difficulties 

with the potential approach, it is of interest 

because it can be computationally cheaper; 

however we have found the cost of solving for 

globally optimal solutions to be trivial for the 

problems considered herein so that the 

computational consideration was not an issue. 

2. Problem Statement 

The problem considered herein is that of 

finding a minimum-distance, and hence 
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minimum-time, feasible path over complex 

terrain between a given starting position and 

given goal position. Many locations on the 

terrain are "forbidden" because the slope of the 

terrain is too steep for the mobile robot to 

navigate safely without tipping over. There exist 

other forbidden regions of the domain that act as 

additional obstacles. These may include bodies of 

water or regions where the probability of 

detection by the enemy is known to be high. 

Other cost functions, besides distance traveled, 

could also be considered. For example, the 

probability of being detected by the enemy could 

be used as a cost function, where each location in 

the terrain has an associated probability of 

detection. The cost function would then be 

multiplicative instead of additive but can still be 

handled by the dynamic programming approach 

utilized herein. 

3. Method of Solution 

The domain with hills defined by 

z = z(x, y )  and other obstacles will be gridded up 

into an array of equally-spaced grid points. Grid 

points are defined as forbidden if the grade 

(slope) of the terrain z = z(x, y )  is too large or if 

some other obstacle exists at that grid point. The 

rectangular array of grid points is enumerated the 

same way as the associated matrix. Let M denote 

such a matrix and let 

M,, = 0 if (ij] is forbidden (3.1) 

M,, = 1 if (ij] is not forbidden (3.2) 

Let tensor Ck,, denote the "cost to go" for the kth 

time step back from the final time at the (ij) grid 

location. In one time step, the vehicle can make 

one of the following 8 moves which constitute the 

set of all possible diagonal and non-diagonal 

moves 
( i t i + l , j c  j - I ) ,  ( i t i + l , j t j ) ,  

(i t i+ l , j  t j + I ) ,  ( i t i - l , j + j - l ) ,  

( i  t i- 1 , j  t j ) ,  ( i  t i - 1 , j  t j + 1) , 

( i  t i, j t j - l), ( i  t i, j t j +1) (3.3) 

If we let (icd,jcnti)  denote the final required 

destination, then clearly the "cost to go" for k=l 

is given by 

} (3.4) 
-1, if i f iend or j f jend 

' I r j .  = { 0, otherwise 

where a Ck,j = -1 will be used to indicate that 

location ( i j )  is not a valid location for the kth 

backward time step. Equation (3.4) simply states 

that the only valid location at the last time step is 
( i d , j c d ) ,  i.e., the vehicle must reach its 

destination. 

Let L,( f , j ,m)  be the i value the vehicle 

moves to from (i^,f)  using the mth (of 8) move 

type (of those indicated in (3.3)). Let &(i^,f,m) 

be t h e j  value the vehicle moves to from (i,f) 
using the mth (of 8) move type. Let ( i - , j - )  

denote the grid point in the lower-right-most 

position of Figure 1. Let the function F be 

defined as follows: 

F(i , j ,m, i - ,  j , )  = 
-1 if L, (i,j ,m) c (1 ,..., i-) or 

b ( i , j , m )  E ( ~ , . . . J - )  or 

distance between (it j) 
and (L,(i, j , m X L , ( i , j , m ) )  ' I ' otherwie 1 

integers m: 

M ( L , ( i , j , m ) , L , ( i , j , m ) ) =  0 (3.5) 

Let Skij denote the following set of 

(3.6) 

m: m ~ ( 1 ,  ..., 8), 

F(i,j,m,i-.i-) *-1 
C k . 4 ( i . j . m ) . h ( i . j . m )  f -1, 

Let Zh7 denote the optimal i location to move 

forward-in-time to from the position (?, j)  at 

backward time step k, and let Jh7 denote the 

optimal j location to move to from the position 

(f,j) at backward time step k. Then the Ck+lj, j ,  

Z k + , , i . j ,  and Jt+l.i,. (V i , j )  can be calculated from 

the C,, ( V i , j )  as follows: 

If Skij is an empty set, Ck+,*i*j = -1 (3.7) 

Else 

'k+l, i . j  = m d b j  min( F(i ,  j y  m 7  inlax 3 j- + 't.4 (i . j .m)&(i. j .m) 1 

mi+,,i,j a r ~ ~ n ( ~ ( i ~ j ~ m ~ i - , i - ) + ~ ~ . ~ ( i , j , m ~ , ~ ( i . j , m )  mEShi ) 
(3.8) 

(3.9) 
' k + l , i j  = 4 ( i t j9ml+ l , i . j )  (3.10) 

.h+, , ; , j  = 4 (i, j ,  4 + l , i . j  1 (3.1 1) 

Endif 

Let (is,,, ,jsru,) denote the starting location of the 

vehicle. We proceed in this manner for 

k=1,2,3,4, ... until one of two things happens: 

Case (1): Ck+l.;,,o,,,j=,m f -1 (3.12) 

Case (2): The set of Ck+lj,j values for 

which Ck+l.,,j #-1 has the same number of 

members as the set of CkU values for which 

Ckij # -1. (3.13) 
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In Case (I), an optimal solution has been 

(3.14) 

(3.15) 

i' = I  (3.16) 

j ' =  J (3.17) 

thus giving us an optimal sequence of k grid 

positions that move us from (i,,,,j,,,) to 

In Case (2), no feasible solution exists as 

moving back one time step has not increased the 

size of the set of valid grid locations. This means 

that no matter how many more time steps we step 

back, the set will remain the same so that it will 

clearly never contain (inn,, j,,,) . 
We should note that the cost to find the 

optimal sequence of moves is O(7iN) where 7i is 

the number of grid points in  the rectangular 

region and N the number of time steps (where N 
is not known a priori). 

obtained and is generated by 
.- . 
1 = 'sa, 
.* 

J = isan 
LOop~=l to k-1 

P1.1. 

P1.J' 

End Loop 

Ci, I j, ). 
8 -  

10- 

12 

14- 

4. Numerical Examples 
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Figure 1 below illustrates an optimal 

path. The solid dots denote grid points that are 

not forbidden. All other grid points are 

forbidden. The circle denotes the starting 

position and the 'I+" denotes the goal position. 
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Figure 1. Example Time-Optimal Solution, nz 

Denotes the Number of Admissible Locations or 

"Stepping Stones" 

. . . . .  
0 . . . .  . . .  : .  .j)- 

......... . . .  . . . . .  . . . . .  . . . .  . . . . . . . .  . . . . .  

Figure 2 below illustrates a problem that 

is infeasible. The algorithm of Section 3 

recognizes the problem as infeasible at k=6 (the 

6th backward time step). 

16' I 
0 2 4 6 8 10 12 14 16 

TuS125 

Figure 2. Example of Infeasible Problem, 

Automatically Recognized as Infeasible by the 

Algorithm 

Figure 3 illustrates an optimal path for 

another case. 

We consider next a case in which the 

forbidden points are generated by an actual 

surface which is illustrated in Figure 4 below. 
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Figure 4. Illustration of a Surface Terrain 
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The allowable grade was set to 25 degrees. The 

starting point and goal point are illustrated in 

Figure 5 below. 

0.- 

5 -  

10 - 

In Figure 5 the upper left corner corresponds to 
the point (x,y)=(-3,-3) in Figure 4. We see 

then from Figure 5 that the robot's net travel is 

mostly in the +x direction. 

Finally Figure 6 and Figure 7 below 

show how the solution changes as the grid is 

made coarser and coarser. 
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Figure 7. Illustration of Time-Optimal Path 

5. Conclusion 

This work demonstrated that dynamic 

programming could be used to obtain optimal 

paths for a mobile robot traversing complex 
terrain. Locations in the terrain at which the 

slope is too steep for the robot to navigate safely 

without tipping over become mathematically 

equivalent to obstacle locations, which are added 
to the set of existing obstacle locations. With 

only two state variables ( X  and y position), 

dynamic programming is very effective and is 
guaranteed to find a globally optimal path. 
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