
Path Planning for Everyday Robotics With SANDROS odp- 9 ~ 0 f . b 7 -. 8

Peter Watterberg

pawatte@sandia.gov
fax: (505) 284-4591

We discuss the integration o the 4NDR(S path planner into a general robot simulation
and control package with the inclusion of a fast geometry engine for distance calcula-
tions. This creates a single system that allows the path to be computed, simulated, and
then executed on the physical robot. The architecture and usage procedures are pre-
sented. Also, we present examples of its usage in typical environments found in our
organization. The resulting system is as easy to use as the general simulation system
(which is in common use here) and is fast enough (example problems are solved in sec-
onds) to be used interactively on an everyday basis.

Contributions:

This paper describes the integration of the SANDROS path planner (now using a fast
geometry engine) and a general simulation environment. This has never been done
before. For all the work on patldmotion planning, it has not yet been brought to the gen-
eral robotic environment. The integration was successful enough and SANDROS is fast
enough that the system is used on a regular basis. In addition, this paper suggests a solu-
tion the problem of sharing examples and benchmarks among researchers in path plan-
ning. Prior to this paper, there has been little real progress toward common benchmarks
in path planning.

Keywords:
path planning, simulation systems, collision detection, computational geometry,
motion planning, obstacle avoidance

Targeted Sessions:

Path Planning
Simulators

mailto:pawatte@sandia.gov

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Path Planning for Everyday Robotics With SANDROS*

Peter Watterberg Patrick Xavier

Sandia National Laboratories
Albuquerque, New Mexico

Sandia National Laboratories
Albuquerque, New Mexico

USA 87185-1008 USA 87185-1008

Yong Hwang**

Korea Institute of
Science and Technology

Seoul, Korea

Abstract

We discuss the integration of the SANDROS
path planner into a general robot simulation and
control package with the inclusion of a fast
geometry engine for distance calculations. This
creates a single system that allows the path to be
computed, simulated, and then executed on the
physical robot, The architecture and usage pro-
cedures are presented. Also, we present exam-
ples of its usage in typical environments found in
our organization. The resulting system is as easy
to use as the general simulation system (which is
in common use here) and is fast enough (exam-
ple problems are solved in seconds) to be used
interactively on an everyday basis.

1 Introduction

Path planning has an extensive history [l ,
21. Work in the last few years has brought the
field to the point that path planning is computa-
tionally feasible even interactively for many
problems [3,4,5,6,7,8,9,10,11,12]. However,
what has been missing is the use of path plan-
ning in common situations. It is time to bring
general path planning to the everyday world of
robotic simulation and control.

As work progressed toward this goal with
the SANDROS [7] path planner which is being
developed here, we continually encountered
problems in finding examples on which to exper-
iment, modifying the experiments quickly, get-
ting quick experiment turnaround time, and

*Work supported by the U.S. Department of Energy at
Sandia National Laboratories under contract DE-ACO.1-
94AL85000.
**On sabbatical leave from Sandia National Laboratories

making SANDROS useful to robotic applica-
tions in our organization. It became clear that
integrating SANDROS into a widely used simu-
lation and control system was the key. This inte-
gration would (a) give easy experimental access
to all the world models for which that system
was used; (b) allow use of that system’s modifi-
cation capabilities to try many variations on an
experiment; and (c) allow the applications to use
SANDROS in their natural environment.

Although SANDROS had helped bring
computation times from the unacceptable to the
feasible, solution speed was still the major factor
in slow experiment turnaround and in the reluc-
tance to use SANDROS in real applications.
Analysis showed that SANDROS solution times
were completely dominated (by several orders of
magnitude) by the distance calculations between
the robot and the obstacles. A new geometry
engine was needed. Strategic planning had fore-
seen the possibility for such a need for this and
other computational geometry problems, and
work on an engine was already nearing comple-
tion

With inclusion of the fast geometry engine,
we were able to obtain solution times on the
order of seconds for sample problems found in
our organization. The problems were composed
of several thousand polygons and run on SGI
Indigo 2 workstations. Collision-free solution
paths, then, were obtained much faster than
could be achieved by manually teaching them.

In the following section, the three pieces of
thq system will be described. In section 3, the
architecture will be presented. In section 4,
issues of control and usage will be discussed.
Section 5 will describe some examples of real
projects using SANDROS in this environment.

Distance Queries,

1 I C-Space
Toolkit

Telegrip Geometries

I
Control
Module I

Query Results C-Space Description

A
C-Space Description, Distance Queries,
Response to Quenes Solution Path

Figure 1

Lastly, there will be some observations and con-
clusions.

2 ThePieces

2.1 The Simulation Package. The Tele-
grip@ package (available from Deneb Robotics)
was chosen for the simulation environment. It is
widely used and has a published procedural
interface to the internal data structures.

2.2 The Path Planner. SANDROS stands
for Selective And Non-uniformly Delayed
ReJnement Of Subgoals. It is a resolution-com-
plete algorithm that has performance commen-
surate with task difficulty. It uses a global
planner to generate a path from the start to the
goal through an initially coarse list of subgoals
which partition configuration space (c-space, the
space of all legitimate joint values). It uses a fast
local planner to check the connection between
each pair of subgoals.

If no collision-free path is found using the
current set of subgoals, the set is selectively
refined and the global planner is again invoked.
This process continues until a path is found or c-
space has been sufficiently explored at the pre-
scribed resolution to ensure (SANDROS is prov-
ably complete) that no path exists. The
SANDROS algorithm has been described in
detail in [7].

2.3 The Geometry Engine. The C-Space
Toolkit provides a software library (Zibcstk.so)
that makes it easier to program motion planning,

simulation, robotics, and virtual reality codes
using the configuration space [131 abstraction.
SANDROS uses a subset of the CSTk’s func-
tionality to (a) create hierarchical representa-
tions of movable and stationary rigid geometric
objects, and (b) perform fast distance and thresh-
olded interference detection contact queries in
terms of object configuration. The hierarchies
are binary trees with convex hulls at the interior
nodes and convex polygons andor convex poly-
hedra at the leaves, and each node is a conserva-
tive bounding volume of the union of the leaves
of its subtree.

As SANDROS’s queries mix c-space prob-
ing with continuous motion, the effects of cach-
ing techniques are somewhat decreased. In
addition, because SANDROS uses the most
basic hierarchy and distance-computation fea-
tures of libcstk, k distance queries are needed for
one pose of a k link manipulator; however, in our
experience, the use of a low-pass thresholded
distance function enables the CSTk to compute
roughly 50-60 pose-distances per second for a
manipulator model with 1000-2000 polygons in
an environment with up to 5000 polygons on a
250MHz R4400 SGI Indigo2. These polygon
counts are typical of the gross-motion manipula-
tor problems here at Sandia.’ On problems
where the moving body and obstacles have up to
10,000 polygons total, distance computation
usually runs at 50-200Mhz, depending on prox-
imity and stepsize.

The C-Space Toolkit is implemented in

C++. The current version has been developed
and tested on SGI Indigo2 workstations running
IRM 5.3, but avoids machine-specific instruc-
tions. The software uses the freeware QHull
package from U. Minnesota [15] in creating con-
vex hulls and arbitrarily-aligned bounding
boxes.

3 The Architecture

Fortunately, the three software packages
that we integrated have relatively well-defined
interfaces and are cleanly separable. The amount
of data that must be transferred between pack-
ages is generally small, and writing a control
module was relatively straightforward.

Figure 1 shows the architecture schemati-
cally. The simulation environment initiates the
planning of a path by invoking the control mod-
ule with a description of c-space and the start
and goal points in that c-space. The control mod-
ule extracts the geometry (point-polygon infor-
mation for each object) from Telegrip and passes
it to the C-Space Toolkit. The control module
then initiates SANDROS.

The only other information SANDROS
requires is the minimum distance between the
robot and the obstacles at selected c-space
points. To get this distance, SANDROS passes
the point coordinates to the control module. The
control module obtains from Telegrip the world
transformations for each link of the robot and
then has the C-Space Toolkit compute the dis-
tance. When SANDROS is done, it passes back
the resulting path or a failure flag to the control
module which in turn notifies Telegrip.

In the discussions that follow, references to
SANDROS include the control module and
SANDROS. Many of the control mechanisms
are actually implemented in the control module
as traps when SANDROS does a distance query.

4 Usage and Control

The system user can invoke the path plan-

1 In comparison, CSTk completes the “Complex
Torus” runs (20K polygon moving object, 98K
polygon environment) from U. North Caro-

lina, Chapel Hi11[14], at about 31Hz for full
distance computation and 44Hz for full con-

tact detection.

ner in two ways. From Telegrip’s graphical user
interface, the user selects a robot for which a
path is to be planned, a start tag point (also
known as a frame) and an ending tag. These tags
or frames are 6 dimensional points (position and
orientation) and indicate where the robot is to
place the tool frame or endpoint. Inverse kine-
matics are done for each point, yielding start and
goal points in c-space. For kinematically redun-
dant robots or under-constrained problems, the
user can arbitrarily pick. It is these points (sets of
joint values) that are actually passed to S A N -
DROS. (For underconstrained problems, any
number of points in the solution space for the
inverse kinematics can be passed to SANDROS.
Other types of constraints such as minimum
cycle time or minimum distance can then be
applied to select the best path.) SANDROS
returns an ordered set of points in c-space as the
computed path. These are converted to an
ordered set of tag points and made into a path in
the scene that the robot can follow.

SANDROS can also be invoked from the
simulation language that Telegrip provides. The
simulation program can call the same routine as
the graphical user interface. Alternatively, it can
select which c-space points to use and have
SANDROS invoked with those. In this case, the
ordered set of c-space points is returned rather
than the tag points.

There are several parameters that may be
varied to control the action of SANDROS. The
most obvious of these is the coarseness of the
underlying search grid in c-space. This can be
modified by specifying the step size for each
joint in rotational or linear units depending on
whether it is a revolute or prismatic joint. SAN-
DROS attempts to stay a safe distance away
from all obstacles. The distance that is consid-
ered “safe” can be set. Also, the distance at
which a collision occurs can be changed. It is
normally 0.0 but can be set to a small positive
value for an extra margin of safety. SANDROS
will approach closer to obstacles than the mini-
mum safe distance if it has to but will always
detect a collision at or below the collision dis-
tance.

These and other, less important parameters
can be changed in any of three ways. There is a
procedural interface that accepts a parameter
name and value. This can be called from the sim-
ulation program under user control. Alterna-
tively, the desired parameter names and values

can be placed in a SAN-
DROS options file. If this file
exists locally, SANDROS
will read it and change the
specified parameters when it
begins execution. Thirdly, the
values can be modified from
the graphical user interface in
a pop up window.

Even though S A N -
DROS is relatively fast, it is
still quite possible for it to
take unacceptably long when
attempting hard problems.
SANDROS has two interrupt
mechanisms for just such an
occasion. There is a time
limit after which SANDROS
will return with an indication
that it ran out of time. The
value of this time limit
defaults to forever but it can
be set in the same manner as
the above mentioned parame-

Table 1: Examples

example Cleaning

robot polygons

obstacle polygons 3500

workcell size 6 x 6 ~ 4 f.

c-space resolution
joint 1
joint 2
joint 3
joint 4

joint 5

joint 6

1 deg
1 deg
1 deg
1 deg

1 deg

1 deg

Average Plan Time

Longest Plan Time

ters. The invoking piogram can thus be assured
that SANDROS will return in less than a known
time. The invoking program can then declare the
path unsolvable or take steps to simplify the
problem.

In addition, the application can provide a
callback function which SANDROS will call at a
approximately one second intervals. The appli-
cation must return a continue or abort flag. If it
returns an abort flag, SANDROS returns imme-
diately indicating that it was interrupted. This
allows the application to provide the user an
abort button in a graphical user interface.

As a secondary function, the callback rou-
tine is passed a text string that shows how many
distance queries have been made. This is of mar-
ginal interest since the total number of distance
queries that will be needed is unknown. How-
ever, this can provide the proverbial blinking
(a.k.a. idiot) light that lets the user know that the
system is working and not hung up. It can be
very difficult to wait in front of a completely
unchanging interface.

5 Examples

In the following examples, the cleaning and
gantry examples are real world problems with
good simulation models of the physical work-

Spot Weld

4765 2870

40x23~12 ft 12x8~10 ft

5.0 in
5.0 in
1.3 in

4.0 deg

4.0 deg

8.0 deg

1 deg
1 deg
1 deg
2 deg

2 deg

2 deg

cells. The spot weld problem is purely a simula-
tion problem with no corresponding real
hardware. No effort was made to find particu-
larly hard or easy paths in these examples.
Rather, several real paths were planned that were
needed in the course of everyday work. All
examples are 6 DOF problems. The results are
shown in Table 1. These examples were run on
an SGI Indigo 2 with a 250MHz processor. All
times are in wall clock seconds.

5.1 A Program Controlled Example.

The first example involves a robot with 6
revolute joints in a medium sized workspace (6
feet on a side). The robot is suspended from the
ceiling and controls a nozzle that is used for pre-
cision cleaning of a manufactured part. The
spray is to be applied very precisely to specific
features of the part to maximize effective clean-
ing and minimize (possibly hazardous) waste.

There are hundreds of tag points (frames)
that must be visited to clean the part. The tag
points are calculated automatically since it
would be infeasible to teach that many points as
precisely as is required. In moving from one tag
point to the next, the features of the simulation
system are used to determine if there is a colli-
sion between the robot and the part or other
obstacles in the workcell. If a collision is
detected, SANDROS is invoked to compute a

Figure 2

collision-free path.
In this application, the goal was to achieve

complete automation of the process. Rather than
intervene and manually teach safe points or use
an ad hoc method, this new planning capability
was applied. As can be seen from table 1, the
planning times are quite acceptable. In fact, the
path planning turned out to be one of the lessor
contributors to the overall time to process a part.

For this example, the longest delay caused
by the path planning effort is in extracting the
geometry and initializing the geometry engine’s
data structures. This takes about 30 seconds.
This is not a major drawback as it is only done
the first time SANDROS is called. After that, it
is only necessary to obtain new transformations
for the objects. If the same workcell is going to
be used over and over, the geometry engine’s
data structures can be saved to disk and reloaded
rather than recomputed. This happens in a few
seconds.

5.2 A Gantry Robot Example. This
example demonstrates the use of the planner
through a graphical user interface. The environ-
ment is somewhat cluttered. The workcell con-
tains two gantry robots, two other robots and
tables, tubs and assorted detritus (see figure 2).
This workcell is used for various tests and dem-
onstrations. Without SANDROS, the workcell
operator must manually move the robot very
carefully from one spot to another. With SAN-
DROS, the workcell operator need only select

the positions to which the robot must move. The
planner and control system can then get the
robot there safely.

5.3 A Spot Welding Example. Spot weld-
ing contains a common requirement of having
the robot perform a sequence of tasks at particu-
lar locations with collision free motion being the
only requirement in moving from one task to the
other. This is an ideal application for path plan-
ning. In this example, the welder must weld a
series of points along the flange of a fender. The
two pieces of the fender are held by a fixture.

The planning time to get from one weld
point to another is normally less than a second.
Only when the robot must go up and over the fix-
ture clamps does the time get as high as 10 sec-
onds. Clearly, these are times are much faster
than teaching points.

6 Conclusions

We have successfully integrated the SAN-

DROS path planner into a widely used simula-
tion and control system. It is easily and quickly
invoked by the user for any problem. The solu-
tion times, which are normally on the order of
seconds, make it feasible to use automated path
planning as the default action rather than teach-
ing safe points or using ad hoc methods. As pro-
cessors become faster and further improvements
are made to the path planning system, we foresee
the time when systems will, as a matter of

course, invoke a path planner for every move
when not explicitly prevented from doing so.

We now have a greatly expanded universe
of examples on which to experiment and experi-
ment turnaround time is generally very quick. It
is much easier now to find out what SANDROS
works well on and what it doesn’t. It is easy to
try variations and new ideas for the planner. Fur-
thermore, we have seen SANDROS being used
in real work for the first time.

One of the first improvements will be to
incorporate learning into the planner as
described by Chen [16]. In environments that do
not change or change slowly, significant
improvements can be realized by remembering
what was learned of c-space in the previous runs.
Another important step will be the inclusion of
human interaction. More and more paths will
become quickly computable, but there will
always remain some difficult problems that
require significant exploration of c-space at a
very fine resolution. For these problems, human
insight could speed up the problem by orders of
magnitude.

We have been pleased with the benefits of
integrating SANDROS into Telegrip. We expect
that other groups would see similar benefits from
integrating other planners into widely used simu-
lation and control packages. A direct benefit to
the entire community of such efforts would be
the possibility of creating benchmarks that can
be easily exchanged. We could all then easily
share interesting experiments and meaningfully
compare results.

References

[13 Jean-Claude Latombe. Robot Motion Planing,
Kluwer Academic Publishers, Norwell, Ma,
1991.

[2] Yong K. Hwang and Narendra Ahuja, “Gross
Motion Planning - A Survey,” ACM Computing
Surveys, 24(3):219-291, September 1992.

[3] Koichi Kondo, “Motion Planning with Six
Degrees of Freedom by Multistrategic Bidirec-
tional Heuristic Free-space Enumeration”,
IEEE Transactions on Robotics and Automa-
tion, 7(3):267-277, June199 1.

[4] Kamal Kant Gupta, “Fast Collision Avoidance
for Manipulator A r m s : A Sequential Search
Strategy”, IEEE Transactions on Robotics and
Automation, 6(5):522-532, July 1990.

[5] Kamal Kant Gupta and Z. Guo, “Motion Plan-
ning for Many Degrees of Freedom”, IEEE
Transactions on Robotics and Automation,
11:6, December 1995.

[6] Kamal Kant Gupta and Xinyu Zhu, “Practical
Global Motion Planning for Many Degrees of
Freedom: A Novel Approach within Sequential
Framework”, Proc. IEEE International Confer-
ence on Robotics and Automation, pp 2038-
2043,1994.

[7] P.C. Chen and Y.K. Hwang. “SANDROS: A
Motion Planner with Performance Proportional
to Task Difficulty”, Proc. IEEE International
Conference on Robotics and Automation, pp

[8] C. Connolly and R. Grupen, “On the Applica-
tion of Harmonic Functions to Robotics”, Jour-
nal of Robotics Systems, 10(7):931-946, 1993.

[9] Pierre Bessiere, Juan Manuel Ahuactzin, et al.,
“The ‘Ariadne’s Clew” Algorithm: Global
Planning with Local Methods”, Proc. of IEEW
RSJ Conference on Intelligent Robots and Sys-
tems, 1993.

[lo] Lydia Kavraki and Jean-Claude Latombe,
“Randomized Prepocessing of Configuration
Space for Path Planning: Articulated Robots”,
IROS, 1994.

[1 11 Juan-Manuel Ahuactzin and Kamal Gupta, “On
Manipulation Planning”, Proceedings of ZEEE
Intemtional Symposium on Assembly and
Task Planning, pp 67-72,1995.

[12] S. Cameron C. Qin and A. McLean, “Toward
Efficient Motion Planning for Manipulators
with Complex Geometry”, Proc. of IEEE Znter-
national Symposium on Assembly and Task
Planning, pp 207-212, 1995.

[131 T. Lozano-Perez, “Spatial Planning: A Config-
uration Space Approach”, IEEE Trans. on
Computers, 32(2): 108-120, 1983.

[14] S. Gottschalk, M.C. Lin, and D. Manocha,
“OBB-Tree: A Hierarchical Structure for Rapid
Interference Detection”, Proc. ACM SIG-
GRAPH ‘96,1996.

[15] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa,
“The Quickhull Algorithm for Convex Hulls”,
to appear in ACM Trans. on Mathematical SOB-
ware. Also as Tech. Rept. GCG 53, Geometry
Center at U. Minnesota, 1993.

[16] P.C. Chen, “Adaptive Path Planning: Algorithm
and Analysis”, Proc. IEEE International Con-
ference on Robotics and Automation, pp 721-

2346-2353,1992.

c

728,1995

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or sewice by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect' those of the
United States Government or any agency thereof.

