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Abstract 

We discuss the integration of the SANDROS 
path planner into a general robot simulation and 
control package with the inclusion of a fast 
geometry engine for distance calculations. This 
creates a single system that allows the path to be 
computed, simulated, and then executed on the 
physical robot, The architecture and usage pro- 
cedures are presented. Also, we present exam- 
ples of its usage in typical environments found in 
our organization. The resulting system is as easy 
to use as the general simulation system (which is 
in common use here) and is fast enough (exam- 
ple problems are solved in seconds) to be used 
interactively on an everyday basis. 

1 Introduction 

Path planning has an extensive history [l ,  
21. Work in the last few years has brought the 
field to the point that path planning is computa- 
tionally feasible even interactively for many 
problems [3,4,5,6,7,8,9,10,11,12]. However, 
what has been missing is the use of path plan- 
ning in common situations. It is time to bring 
general path planning to the everyday world of 
robotic simulation and control. 

As work progressed toward this goal with 
the SANDROS [7] path planner which is being 
developed here, we continually encountered 
problems in finding examples on which to exper- 
iment, modifying the experiments quickly, get- 
ting quick experiment turnaround time, and 
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making SANDROS useful to robotic applica- 
tions in our organization. It became clear that 
integrating SANDROS into a widely used simu- 
lation and control system was the key. This inte- 
gration would (a) give easy experimental access 
to all the world models for which that system 
was used; (b) allow use of that system’s modifi- 
cation capabilities to try many variations on an 
experiment; and (c) allow the applications to use 
SANDROS in their natural environment. 

Although SANDROS had helped bring 
computation times from the unacceptable to the 
feasible, solution speed was still the major factor 
in slow experiment turnaround and in the reluc- 
tance to use SANDROS in real applications. 
Analysis showed that SANDROS solution times 
were completely dominated (by several orders of 
magnitude) by the distance calculations between 
the robot and the obstacles. A new geometry 
engine was needed. Strategic planning had fore- 
seen the possibility for such a need for this and 
other computational geometry problems, and 
work on an engine was already nearing comple- 
tion 

With inclusion of the fast geometry engine, 
we were able to obtain solution times on the 
order of seconds for sample problems found in 
our organization. The problems were composed 
of several thousand polygons and run on SGI 
Indigo 2 workstations. Collision-free solution 
paths, then, were obtained much faster than 
could be achieved by manually teaching them. 

In the following section, the three pieces of 
thq system will be described. In section 3, the 
architecture will be presented. In section 4, 
issues of control and usage will be discussed. 
Section 5 will describe some examples of real 
projects using SANDROS in this environment. 
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Lastly, there will be some observations and con- 
clusions. 

2 ThePieces 

2.1 The Simulation Package. The Tele- 
grip@ package (available from Deneb Robotics) 
was chosen for the simulation environment. It is 
widely used and has a published procedural 
interface to the internal data structures. 

2.2 The Path Planner. SANDROS stands 
for Selective And Non-uniformly Delayed 
ReJnement Of Subgoals. It is a resolution-com- 
plete algorithm that has performance commen- 
surate with task difficulty. It uses a global 
planner to generate a path from the start to the 
goal through an initially coarse list of subgoals 
which partition configuration space (c-space, the 
space of all legitimate joint values). It uses a fast 
local planner to check the connection between 
each pair of subgoals. 

If no collision-free path is found using the 
current set of subgoals, the set is selectively 
refined and the global planner is again invoked. 
This process continues until a path is found or c- 
space has been sufficiently explored at the pre- 
scribed resolution to ensure (SANDROS is prov- 
ably complete) that no path exists. The 
SANDROS algorithm has been described in 
detail in [7]. 

2.3 The Geometry Engine. The C-Space 
Toolkit provides a software library (Zibcstk.so) 
that makes it easier to program motion planning, 

simulation, robotics, and virtual reality codes 
using the configuration space [ 131 abstraction. 
SANDROS uses a subset of the CSTk’s func- 
tionality to (a) create hierarchical representa- 
tions of movable and stationary rigid geometric 
objects, and (b) perform fast distance and thresh- 
olded interference detection contact queries in 
terms of object configuration. The hierarchies 
are binary trees with convex hulls at the interior 
nodes and convex polygons andor convex poly- 
hedra at the leaves, and each node is a conserva- 
tive bounding volume of the union of the leaves 
of its subtree. 

As SANDROS’s queries mix c-space prob- 
ing with continuous motion, the effects of cach- 
ing techniques are somewhat decreased. In 
addition, because SANDROS uses the most 
basic hierarchy and distance-computation fea- 
tures of libcstk, k distance queries are needed for 
one pose of a k link manipulator; however, in our 
experience, the use of a low-pass thresholded 
distance function enables the CSTk to compute 
roughly 50-60 pose-distances per second for a 
manipulator model with 1000-2000 polygons in 
an environment with up to 5000 polygons on a 
250MHz R4400 SGI Indigo2. These polygon 
counts are typical of the gross-motion manipula- 
tor problems here at Sandia.’ On problems 
where the moving body and obstacles have up to 
10,000 polygons total, distance computation 
usually runs at 50-200Mhz, depending on prox- 
imity and stepsize. 

The C-Space Toolkit is implemented in 



C++. The current version has been developed 
and tested on SGI Indigo2 workstations running 
IRM 5.3, but avoids machine-specific instruc- 
tions. The software uses the freeware QHull 
package from U. Minnesota [15] in creating con- 
vex hulls and arbitrarily-aligned bounding 
boxes. 

3 The Architecture 

Fortunately, the three software packages 
that we integrated have relatively well-defined 
interfaces and are cleanly separable. The amount 
of data that must be transferred between pack- 
ages is generally small, and writing a control 
module was relatively straightforward. 

Figure 1 shows the architecture schemati- 
cally. The simulation environment initiates the 
planning of a path by invoking the control mod- 
ule with a description of c-space and the start 
and goal points in that c-space. The control mod- 
ule extracts the geometry (point-polygon infor- 
mation for each object) from Telegrip and passes 
it to the C-Space Toolkit. The control module 
then initiates SANDROS. 

The only other information SANDROS 
requires is the minimum distance between the 
robot and the obstacles at selected c-space 
points. To get this distance, SANDROS passes 
the point coordinates to the control module. The 
control module obtains from Telegrip the world 
transformations for each link of the robot and 
then has the C-Space Toolkit compute the dis- 
tance. When SANDROS is done, it passes back 
the resulting path or a failure flag to the control 
module which in turn notifies Telegrip. 

In the discussions that follow, references to 
SANDROS include the control module and 
SANDROS. Many of the control mechanisms 
are actually implemented in the control module 
as traps when SANDROS does a distance query. 

4 Usage and Control 

The system user can invoke the path plan- 

1 In comparison, CSTk completes the “Complex 
Torus” runs (20K polygon moving object, 98K 
polygon environment) from U. North Caro- 

lina, Chapel Hi11[14], at about 31Hz for full 
distance computation and 44Hz for full con- 

tact detection. 

ner in two ways. From Telegrip’s graphical user 
interface, the user selects a robot for which a 
path is to be planned, a start tag point (also 
known as a frame) and an ending tag. These tags 
or frames are 6 dimensional points (position and 
orientation) and indicate where the robot is to 
place the tool frame or endpoint. Inverse kine- 
matics are done for each point, yielding start and 
goal points in c-space. For kinematically redun- 
dant robots or under-constrained problems, the 
user can arbitrarily pick. It is these points (sets of 
joint values) that are actually passed to S A N -  
DROS. (For underconstrained problems, any 
number of points in the solution space for the 
inverse kinematics can be passed to SANDROS. 
Other types of constraints such as minimum 
cycle time or minimum distance can then be 
applied to select the best path.) SANDROS 
returns an ordered set of points in c-space as the 
computed path. These are converted to an 
ordered set of tag points and made into a path in 
the scene that the robot can follow. 

SANDROS can also be invoked from the 
simulation language that Telegrip provides. The 
simulation program can call the same routine as 
the graphical user interface. Alternatively, it can 
select which c-space points to use and have 
SANDROS invoked with those. In this case, the 
ordered set of c-space points is returned rather 
than the tag points. 

There are several parameters that may be 
varied to control the action of SANDROS. The 
most obvious of these is the coarseness of the 
underlying search grid in c-space. This can be 
modified by specifying the step size for each 
joint in rotational or linear units depending on 
whether it is a revolute or prismatic joint. SAN- 
DROS attempts to stay a safe distance away 
from all obstacles. The distance that is consid- 
ered “safe” can be set. Also, the distance at 
which a collision occurs can be changed. It is 
normally 0.0 but can be set to a small positive 
value for an extra margin of safety. SANDROS 
will approach closer to obstacles than the mini- 
mum safe distance if it has to but will always 
detect a collision at or below the collision dis- 
tance. 

These and other, less important parameters 
can be changed in any of three ways. There is a 
procedural interface that accepts a parameter 
name and value. This can be called from the sim- 
ulation program under user control. Alterna- 
tively, the desired parameter names and values 



can be placed in a SAN- 
DROS options file. If this file 
exists locally, SANDROS 
will read it and change the 
specified parameters when it 
begins execution. Thirdly, the 
values can be modified from 
the graphical user interface in 
a pop up window. 

Even though S A N -  
DROS is relatively fast, it is 
still quite possible for it to 
take unacceptably long when 
attempting hard problems. 
SANDROS has two interrupt 
mechanisms for just such an 
occasion. There is a time 
limit after which SANDROS 
will return with an indication 
that it ran out of time. The 
value of this time limit 
defaults to forever but it can 
be set in the same manner as 
the above mentioned parame- 

Table 1: Examples 

example Cleaning 

robot polygons 

obstacle polygons 3500 

workcell size 6 x 6 ~ 4  f. 

c-space resolution 
joint 1 
joint 2 
joint 3 
joint 4 

joint 5 

joint 6 

1 deg 
1 deg 
1 deg 
1 deg 

1 deg 

1 deg 

Average Plan Time 

Longest Plan Time 

ters. The invoking piogram can thus be assured 
that SANDROS will return in less than a known 
time. The invoking program can then declare the 
path unsolvable or take steps to simplify the 
problem. 

In addition, the application can provide a 
callback function which SANDROS will call at a 
approximately one second intervals. The appli- 
cation must return a continue or abort flag. If it 
returns an abort flag, SANDROS returns imme- 
diately indicating that it was interrupted. This 
allows the application to provide the user an 
abort button in a graphical user interface. 

As a secondary function, the callback rou- 
tine is passed a text string that shows how many 
distance queries have been made. This is of mar- 
ginal interest since the total number of distance 
queries that will be needed is unknown. How- 
ever, this can provide the proverbial blinking 
(a.k.a. idiot) light that lets the user know that the 
system is working and not hung up. It can be 
very difficult to wait in front of a completely 
unchanging interface. 

5 Examples 

In the following examples, the cleaning and 
gantry examples are real world problems with 
good simulation models of the physical work- 

Spot Weld 

4765 2870 

40x23~12 ft 12x8~10 ft 

5.0 in 
5.0 in 
1.3 in 

4.0 deg 

4.0 deg 

8.0 deg 

1 deg 
1 deg 
1 deg 
2 deg 

2 deg 

2 deg 

cells. The spot weld problem is purely a simula- 
tion problem with no corresponding real 
hardware. No effort was made to find particu- 
larly hard or easy paths in these examples. 
Rather, several real paths were planned that were 
needed in the course of everyday work. All 
examples are 6 DOF problems. The results are 
shown in Table 1. These examples were run on 
an SGI Indigo 2 with a 250MHz processor. All 
times are in wall clock seconds. 

5.1 A Program Controlled Example. 

The first example involves a robot with 6 
revolute joints in a medium sized workspace (6 
feet on a side). The robot is suspended from the 
ceiling and controls a nozzle that is used for pre- 
cision cleaning of a manufactured part. The 
spray is to be applied very precisely to specific 
features of the part to maximize effective clean- 
ing and minimize (possibly hazardous) waste. 

There are hundreds of tag points (frames) 
that must be visited to clean the part. The tag 
points are calculated automatically since it 
would be infeasible to teach that many points as 
precisely as is required. In moving from one tag 
point to the next, the features of the simulation 
system are used to determine if there is a colli- 
sion between the robot and the part or other 
obstacles in the workcell. If a collision is 
detected, SANDROS is invoked to compute a 



Figure 2 

collision-free path. 
In this application, the goal was to achieve 

complete automation of the process. Rather than 
intervene and manually teach safe points or use 
an ad hoc method, this new planning capability 
was applied. As can be seen from table 1, the 
planning times are quite acceptable. In fact, the 
path planning turned out to be one of the lessor 
contributors to the overall time to process a part. 

For this example, the longest delay caused 
by the path planning effort is in extracting the 
geometry and initializing the geometry engine’s 
data structures. This takes about 30 seconds. 
This is not a major drawback as it is only done 
the first time SANDROS is called. After that, it 
is only necessary to obtain new transformations 
for the objects. If the same workcell is going to 
be used over and over, the geometry engine’s 
data structures can be saved to disk and reloaded 
rather than recomputed. This happens in a few 
seconds. 

5.2 A Gantry Robot Example. This 
example demonstrates the use of the planner 
through a graphical user interface. The environ- 
ment is somewhat cluttered. The workcell con- 
tains two gantry robots, two other robots and 
tables, tubs and assorted detritus (see figure 2). 
This workcell is used for various tests and dem- 
onstrations. Without SANDROS, the workcell 
operator must manually move the robot very 
carefully from one spot to another. With SAN-  
DROS, the workcell operator need only select 

the positions to which the robot must move. The 
planner and control system can then get the 
robot there safely. 

5.3 A Spot Welding Example. Spot weld- 
ing contains a common requirement of having 
the robot perform a sequence of tasks at particu- 
lar locations with collision free motion being the 
only requirement in moving from one task to the 
other. This is an ideal application for path plan- 
ning. In this example, the welder must weld a 
series of points along the flange of a fender. The 
two pieces of the fender are held by a fixture. 

The planning time to get from one weld 
point to another is normally less than a second. 
Only when the robot must go up and over the fix- 
ture clamps does the time get as high as 10 sec- 
onds. Clearly, these are times are much faster 
than teaching points. 

6 Conclusions 

We have successfully integrated the SAN-  

DROS path planner into a widely used simula- 
tion and control system. It is easily and quickly 
invoked by the user for any problem. The solu- 
tion times, which are normally on the order of 
seconds, make it feasible to use automated path 
planning as the default action rather than teach- 
ing safe points or using ad hoc methods. As pro- 
cessors become faster and further improvements 
are made to the path planning system, we foresee 
the time when systems will, as a matter of 



course, invoke a path planner for every move 
when not explicitly prevented from doing so. 

We now have a greatly expanded universe 
of examples on which to experiment and experi- 
ment turnaround time is generally very quick. It 
is much easier now to find out what SANDROS 
works well on and what it doesn’t. It is easy to 
try variations and new ideas for the planner. Fur- 
thermore, we have seen SANDROS being used 
in real work for the first time. 

One of the first improvements will be to 
incorporate learning into the planner as 
described by Chen [16]. In environments that do 
not change or change slowly, significant 
improvements can be realized by remembering 
what was learned of c-space in the previous runs. 
Another important step will be the inclusion of 
human interaction. More and more paths will 
become quickly computable, but there will 
always remain some difficult problems that 
require significant exploration of c-space at a 
very fine resolution. For these problems, human 
insight could speed up the problem by orders of 
magnitude. 

We have been pleased with the benefits of 
integrating SANDROS into Telegrip. We expect 
that other groups would see similar benefits from 
integrating other planners into widely used simu- 
lation and control packages. A direct benefit to 
the entire community of such efforts would be 
the possibility of creating benchmarks that can 
be easily exchanged. We could all then easily 
share interesting experiments and meaningfully 
compare results. 
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