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Abstract 
In this paper, a new algorithm is proposed for solving the path 
planning problem of mobile robots. The algorithm is based on 
Artificial Potential Field (APF) methods that have been widely 
used for path planning related problems for more than two 
decades. While keeping the simplicity of traditional APF 
methods, our algorithm is built upon new potential functions 
based on the distances from obstacles, destination point and start 
point. The algorithm uses the potential field values iteratively to 
find the optimum points in the workspace in order to form the 
path from start to destination. The number of iterations depends 
on the size and shape of the workspace. The performance of the 
proposed algorithm is tested by conducting simulation 
experiments. 
Keywords: Mobile robot, Path Planning, Artificial Potential 
Field, Collision Free Path. 

1. Introduction 

Mobile Robot path planning is one of the important 
problems in the field of robotics. Its aim is to find a 
collision free path, where a robot may follow to reach its 
destination (goal) from its current position [1]. This kind 
of problems also exists in applications such as 
manufacturing, transportation and mobile systems [2]. 
In each of these applications we want to find a path that 
satisfies the criteria of optimality. For example, in one 
application a path with minimum length and in another, a 
smooth path with maximum distance from obstacles [1] 
may be required. Therefore the path planning method 
should be flexible enough to allow the users to plan the 
suitable path for their application. 
Because of their mathematical simplicity and 
straightforwardness, Potential Field Method (PFM) is one 
of the mostly studied and used methods in mobile robot 
path planning. The basic idea is that a negative weight is 
assigned to the destination and positive weight to 

obstacles. Then the robot descends down the potential field 
using gradient descent method to reach its destination 
while avoiding obstacles [3]. 
 
Although these methods are fast and efficient, they have 
the following drawbacks and limitations as discussed in 
[4]: 

I. Trap situations due to local minima. 
II. No passage between closely spaced obstacles. 

III. Oscillations in the presence of obstacles. 
IV. Oscillations in narrow passages. 

 
To overcome these limitations, several authors [5-10] have 
tried to solve the local minima problem by presenting new 
potential functions so that the destination becomes the 
global minimum. Others have tried to solve these problems 
by combining the simple potential methods with artificial 
intelligence models like neural network [1], genetic 
algorithm [7][2] and fuzzy logic [11]. But unfortunately 
these methods contribute to increase in the complexity of 
the algorithms. 
 
Our method involves using a simple potential functions; 
the workspace is discretized into a grid of rectangular cells 
where each cell is marked as an obstacle or a non-obstacle. 
We evaluate the potential functions for each cell based on 
its distances from the destination, start and obstacles. 
These values are used to find the optimum points along the 
entire path. We find these points iteratively until there are 
enough points that path can be determined as a consecutive 
sequence of these points beginning from the start location 
and ending at the destination. Simulations experiments 
verify that this algorithm is not bound to the limits as is the 
case with traditional APF methods. 
This paper is organized as follows. In section 2, new APF 
based method is explained. Section 3 examines the 
performance of this method through simulations, and 
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finally section 4 discusses the conclusions and further 
work. 

2. Iterative APF Algorithm 

2.1 The Method 

First, we assume that the workspace is two-dimensional 
space as shown in Fig 1; the workspace includes start and 
end points and obstacles. We discretize the workspace to 
50*50 cells and assume that the robot will fit in one cell 
and each cell is either empty or occupied. We present each 
cell by its coordinates 𝑐 = [𝑥,𝑦].  
Algorithm begins calculating the potential function for 
every empty cell in the workspace.  
𝑈𝑇𝑜𝑡𝑎𝑙(𝑐) = 𝑈𝑆𝑡𝑎𝑟𝑡(𝑐) + 𝑈𝐸𝑛𝑑(𝑐) − 𝑈𝑂𝑏𝑠(𝑐)                (1)  
It is important to note that the distance of the cell from the 
start point is being used in (1). The individual functions 
are expressed as                                                    
𝑈𝑆𝑡𝑎𝑟𝑡(𝑐) = 𝛼

𝐷(𝑐,𝑆𝑡𝑎𝑟𝑡)
        (2) 

𝑈𝐸𝑛𝑑(𝑐) = 𝛼
𝐷(𝑐,𝐸𝑛𝑑)

           (3) 

𝑈𝑂𝑏𝑠(𝑐) = 𝛽
𝐷(𝑐,𝑂𝑏𝑠)

       (4) 

Where 𝐷(𝑐, 𝑆𝑡𝑎𝑟𝑡) is the distance of cell 𝑐 form the start, 
𝐷(𝑐, 𝑆𝑡𝑎𝑟𝑡) is the distance of cell 𝑐 from the end point and 
𝐷(𝑐,𝑂𝑏𝑠) is the distance of cell 𝑐  from the closest 
obstacle. 
We are using somewhat different approach than traditional 
PFM; as these functions imply, there is no difference 
between start and destination positions. The positive 
constants 𝛼,𝛽 (as will be discussed later in section 2.3) are 
used to change the behavior of the generated path. For now 
we assume they are both equal to 1. 
Using the proposed potential functions (1), we evaluate the 
potential value for each empty cell in Fig 1(a). Then we 
sort the cells in descending order based on the value 
assigned to each in the workspace. Considering proposed 
functions 2-4, we expect the cells around the start and end 
to have the highest values and cells near an obstacle to 
have lower values. We have marked all the cells with the 
values that are in top 50 % of the sorted list in Fig 1(b) and 
marked all the cells with the values that are in top 60 % of 
the sorted list in Fig 1(c).  
We now define the notion of threshold to use it in the rest 
of the paper. Setting a threshold means we first pick a 
value from the sorted list of all values and then we mark 
every cell with the value more than this threshold in the 
workspace. For example when we say that threshold value 
is equal to 𝑥, it means that every cell is marked with the 
value more than 𝑥 in our workspace.  
So if we set the threshold value to be large, we get two 
distinct clusters of marked cells around start and 

destination points. Then if we gradually decrease the 
threshold, these two clusters get bigger and bigger until 
they run into each other as shown in Fig 1(c). 
 

 
Fig 1 Procedure of finding the Mid-point with changing the threshold 
value (T). (a) The workspace with start and destination points. (b) The 

clusters when T>T0. (c) clusters when T<T0.  (d) finding Mid-point when 
T = T0. 

 
What we are looking for is to find the threshold value that 
guarantees that there is one and only one cell that connects 
the start point cluster to the end point cluster, see Fig 1(d). 
Values smaller than this threshold value would make a 
connection between two clusters but this threshold value is 
the biggest value that by using all cells that their value is 
bigger than this value, makes it possible for having a path 
between start and end points. We believe this point should 
appear in the path because it optimizes the potential 
functions while making sure that path exists. The point 
that connects these clusters, we call it midpoint and we 
are interested in this point mainly because:  
 

a) There is a path from the start point to the 
midpoint, and there is a path from midpoint to the 
destination. 

b) We know we should be looking for the path 
within the start and destination point clusters 
which are formed on either side of midpoint. 
 

But how do we find it? For every threshold value some 
cells in the workspace are marked and we can check for 
the existence of path from start to end among marked cells. 
We do this by using a simple Breadth-First Search (BFS) 
algorithm. So in order to find the threshold that holds the 
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midpoint criterion (only one point common between two 
clusters), we apply a binary search on the sorted list of 
cells to find the minimum threshold with no connection 
between clusters. Then the value of the next cell in the list 
is the maximum threshold that connects two clusters, see 
Fig 2. 
 

Fig 2. Pseudo code for finding the midpoint 
 
Let N be the number of available cells, Evaluate all these cells.  
A = Sorted array of all cell’s values. 
Binary_Search( 1, N , A ); 
 
Binary_Search( i, j ,A) 
  If ( i == j ) 
    return A[ i + 1] 
  T = A[ ( i + j ) / 2] 
  If ( by using simple BFS, Is end point reachable from start 
                        point using cells with larger value than T ? ) 
    Binary_Search( i, (( i + j ) / 2 ) - 1 , A ) 
  Else 
    Binary_Search( ( i + j ) / 2, j, A ) 
 
 
Notice that we have assumed the values are all distinct but 
sometime two or more cells might have the same value, in 
that case we just go through all the cells in the list and 
change the values to make them different. For example if 
we have two cells with the value 𝑦  and the next cell’s 
value is 𝑥 then we keep one of those cells with value 𝑦 and 
change the other to (𝑦 + 𝑥)/2.   
 
So far we know:  
The path from the start to the midpoint is in the cells that 
are marked as the start point cluster and the path from the 
midpoint to the end is in the cells that are marked as the 
endpoint cluster. so we need to keep track of what cells 
have been marked as the start point or end point clusters so 
for every cell besides keeping the potential value we need 
to keep one bit for showing if it is marked in the start point 
cluster and another bit for showing if it is marked in the 
end point cluster.   
Our next step is to find the midpoint between the start and 
the current midpoint knowing that we should be able to 
find it in the start point cluster of previous procedure of 
finding the midpoint. In other words we want to find the 
midpoint between two points assuming that only some 
cells of the workspace are available. In order to do that we 
need to assign another bit for each cell that shows the 
availability of that cell, see Fig 3. 
   

Fig 3. The procedure of finding the path. (a) Workspace with start and 
destination points. (b) First Mid-point (M1) is found. (c) M2 and M3 are 

found by running the algorithm on (start, M1) and (M1, destination) 
respectively (d) Final path (Mn = 30) 

In Fig 3(c) M2 is the midpoint between start and previous 
midpoint. We do the same to find the midpoint M3 
between previous midpoint and the end point.  

We keep executing this algorithm to find midpoints until 
there is a co llision free path between every two 
consecutive midpoints and that would be our final path as 
shown in Fig 3(d). Fig 4 shows the pseudo code for the 
algorithm. 

The number of midpoints, needed for the path, depends on 
the complexity of the workspace. For a simple workspace 
like Fig 3, a path can be found with only three midpoints. 
But usually we let the algorithm to find certain number of 
midpoints to generate a smoother path. The path shown in 
Fig 3(d) is created using 30 midpoints.   

2.2 Time and Space Complexity 

Let N be the number of cells in the workspace. It takes 
𝑂(𝑁) time to evaluate all the cells. To find the midpoint of 
a workspace we need to sort all values of the cells. This 
can be done in 𝑂(𝑁) memory and 𝑂(𝑁𝐿𝑔𝑁) time.  
Then, for different threshold values we check whether the 
end point is reachable from the start point or not, using 
BFS algorithm from the start point and by ignoring the 
cells with value less than the threshold value. Since each 
cell in the workspace has four neighbors, BFS takes 
𝑂(𝑁)memory and 𝑂(𝑁)time. Moreover, we search for the 
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largest of such thresholds using Binary-Search algorithm, 
so the whole procedure of finding a midpoint for a 
workspace can be implemented in 𝑂(𝑁𝐿𝑔𝑁) time. On the 
other hand, the maximum number of calling 
Find_MidPoint function is 𝑂(𝑁) as at each call, the 
midpoint and potentially some other cells are excluded 
from the existing workspaces. Searching for Midpoints can 
be performed separately for different workspaces and so 
the complete algorithm can be implemented in 
𝑂(𝑁)memory and 𝑂(𝑁2𝐿𝑔𝑁)time, which is quite fast and 
efficient.  
 

Fig 4. Pseudo code for finding the path 
 
Inputs = Start, Destination, Workspace  
Output = Collision free path  
  
Function Find_Path (Start, End, Workspace) 
   If < Endpoints are close enough and there is a  collision free   
             straight line connecting them > 
        Return Segment( Start, End ); 
   Else  
     [ MidPoint, First_Workspace, Second_Workspace]  =  
                          Find_MidPoint( Start, End, Workspace ) 
     First_Path = Find_Path ( Start, MidPoint, First_Workspace ) 
     Second_Path=FindPath( MidPoint, End, Second_Workspace ) 
     Return  Merge( First_Path, Second_Path ) 
  
Function Find_MidPoint( Start, Destination, Workspace )           
  
      Evaluate all the cells in the Workspace 
      A = Sorted array of all available cells in Workspace in  
             descending order  
      N = Length of A 
      T = Binary_Search( 1, N , A ) 
      Midpoint = Cell having the value T 
      First_Workspace = Start point cluster 
      Second_Workspace = End point cluster 
      Return ( Midpoint, First_Workspace, Second_Workspace ) 
 
 
2.3 Adjusting α and β 
 
It can be observed from potential functions that by 
increasing α, we put more emphasis on the distances from 
start and end points so that having a large value for α 
produces a shorter path as shown in Fig 5(b) but the path 
might be close to obstacles. By increasing β we put more 
emphasis on the distance from obstacles and it means that 
selecting a l arge value for β gives us a longer path with 
bigger distance from the obstacles. Fig 5(a) shows such a 
path. 

 
Fig 5. The effect of α  and β variation on final path. (a) Path with large β  

(b) Path with large α  . 

3. Simulation Experiments  

We have tested the performance of our algorithm using 
several different workspaces. Two of these tests are 
presented in this paper. We have tried to cover all the 
possible cases that give rise to limitations of traditional 
APF methods. Both of these tests have points that can be 
local minima; they also have closely spaced obstacles, and 
narrow passages as shown in Fig 6 and Fig 7. In both 
workspaces the path is found very quickly with less using 
40 midpoints. 
 

 
Fig 6. Path planning in a workspace with local minima, closely spaced 

obstacles and narrow passages 
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Fig 7.  Path planning in a workspace with local minima, closely spaced 

obstacles and narrow passages 

4. Conclusion 

In this paper a new method called Iterative Potential Field 
method is presented for efficient path planning of mobile 
robots. Using this method, a smooth path with reasonable 
distance form obstacles is identified while keeping the 
path as short as possible. Using the values of proposed 
potential functions the algorithm iteratively finds the 
optimum points to create the path. We called these points, 
midpoints and algorithm finds as many of them as needed 
in order to generate a path from start to destination. 
Simulations results show the successfully generated paths 
for two workspaces. For future works, this method can be 
implemented for real time navigation or in the workspace 
with moving obstacles.  
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