
Path Planning for Mobile Robots using Iterative Artificial
Potential Field Method

Hossein Adeli1, M.H.N. Tabrizi2, Alborz Mazloomian3, Ehsan Hajipour3 and Mehran Jahed3

 1 Computer Science Department, East Carolina University
Greenville, NC, USA

2 Computer Science Department, East Carolina University
Greenville, NC, USA

3 Electrical Engineering Department, Sharif University of Tech
Tehran, Tehran, Iran

Abstract
In this paper, a new algorithm is proposed for solving the path
planning problem of mobile robots. The algorithm is based on
Artificial Potential Field (APF) methods that have been widely
used for path planning related problems for more than two
decades. While keeping the simplicity of traditional APF
methods, our algorithm is built upon new potential functions
based on the distances from obstacles, destination point and start
point. The algorithm uses the potential field values iteratively to
find the optimum points in the workspace in order to form the
path from start to destination. The number of iterations depends
on the size and shape of the workspace. The performance of the
proposed algorithm is tested by conducting simulation
experiments.
Keywords: Mobile robot, Path Planning, Artificial Potential
Field, Collision Free Path.

1. Introduction

Mobile Robot path planning is one of the important
problems in the field of robotics. Its aim is to find a
collision free path, where a robot may follow to reach its
destination (goal) from its current position [1]. This kind
of problems also exists in applications such as
manufacturing, transportation and mobile systems [2].
In each of these applications we want to find a path that
satisfies the criteria of optimality. For example, in one
application a path with minimum length and in another, a
smooth path with maximum distance from obstacles [1]
may be required. Therefore the path planning method
should be flexible enough to allow the users to plan the
suitable path for their application.
Because of their mathematical simplicity and
straightforwardness, Potential Field Method (PFM) is one
of the mostly studied and used methods in mobile robot
path planning. The basic idea is that a negative weight is
assigned to the destination and positive weight to

obstacles. Then the robot descends down the potential field
using gradient descent method to reach its destination
while avoiding obstacles [3].

Although these methods are fast and efficient, they have
the following drawbacks and limitations as discussed in
[4]:

I. Trap situations due to local minima.
II. No passage between closely spaced obstacles.

III. Oscillations in the presence of obstacles.
IV. Oscillations in narrow passages.

To overcome these limitations, several authors [5-10] have
tried to solve the local minima problem by presenting new
potential functions so that the destination becomes the
global minimum. Others have tried to solve these problems
by combining the simple potential methods with artificial
intelligence models like neural network [1], genetic
algorithm [7][2] and fuzzy logic [11]. But unfortunately
these methods contribute to increase in the complexity of
the algorithms.

Our method involves using a simple potential functions;
the workspace is discretized into a grid of rectangular cells
where each cell is marked as an obstacle or a non-obstacle.
We evaluate the potential functions for each cell based on
its distances from the destination, start and obstacles.
These values are used to find the optimum points along the
entire path. We find these points iteratively until there are
enough points that path can be determined as a consecutive
sequence of these points beginning from the start location
and ending at the destination. Simulations experiments
verify that this algorithm is not bound to the limits as is the
case with traditional APF methods.
This paper is organized as follows. In section 2, new APF
based method is explained. Section 3 examines the
performance of this method through simulations, and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 28

finally section 4 discusses the conclusions and further
work.

2. Iterative APF Algorithm

2.1 The Method

First, we assume that the workspace is two-dimensional
space as shown in Fig 1; the workspace includes start and
end points and obstacles. We discretize the workspace to
50*50 cells and assume that the robot will fit in one cell
and each cell is either empty or occupied. We present each
cell by its coordinates 𝑐 = [𝑥,𝑦].
Algorithm begins calculating the potential function for
every empty cell in the workspace.
𝑈𝑇𝑜𝑡𝑎𝑙(𝑐) = 𝑈𝑆𝑡𝑎𝑟𝑡(𝑐) + 𝑈𝐸𝑛𝑑(𝑐) − 𝑈𝑂𝑏𝑠(𝑐) (1)
It is important to note that the distance of the cell from the
start point is being used in (1). The individual functions
are expressed as
𝑈𝑆𝑡𝑎𝑟𝑡(𝑐) = 𝛼

𝐷(𝑐,𝑆𝑡𝑎𝑟𝑡)
 (2)

𝑈𝐸𝑛𝑑(𝑐) = 𝛼
𝐷(𝑐,𝐸𝑛𝑑)

 (3)

𝑈𝑂𝑏𝑠(𝑐) = 𝛽
𝐷(𝑐,𝑂𝑏𝑠)

 (4)

Where 𝐷(𝑐, 𝑆𝑡𝑎𝑟𝑡) is the distance of cell 𝑐 form the start,
𝐷(𝑐, 𝑆𝑡𝑎𝑟𝑡) is the distance of cell 𝑐 from the end point and
𝐷(𝑐,𝑂𝑏𝑠) is the distance of cell 𝑐 from the closest
obstacle.
We are using somewhat different approach than traditional
PFM; as these functions imply, there is no difference
between start and destination positions. The positive
constants 𝛼,𝛽 (as will be discussed later in section 2.3) are
used to change the behavior of the generated path. For now
we assume they are both equal to 1.
Using the proposed potential functions (1), we evaluate the
potential value for each empty cell in Fig 1(a). Then we
sort the cells in descending order based on the value
assigned to each in the workspace. Considering proposed
functions 2-4, we expect the cells around the start and end
to have the highest values and cells near an obstacle to
have lower values. We have marked all the cells with the
values that are in top 50 % of the sorted list in Fig 1(b) and
marked all the cells with the values that are in top 60 % of
the sorted list in Fig 1(c).
We now define the notion of threshold to use it in the rest
of the paper. Setting a threshold means we first pick a
value from the sorted list of all values and then we mark
every cell with the value more than this threshold in the
workspace. For example when we say that threshold value
is equal to 𝑥, it means that every cell is marked with the
value more than 𝑥 in our workspace.
So if we set the threshold value to be large, we get two
distinct clusters of marked cells around start and

destination points. Then if we gradually decrease the
threshold, these two clusters get bigger and bigger until
they run into each other as shown in Fig 1(c).

Fig 1 Procedure of finding the Mid-point with changing the threshold
value (T). (a) The workspace with start and destination points. (b) The

clusters when T>T0. (c) clusters when T<T0. (d) finding Mid-point when
T = T0.

What we are looking for is to find the threshold value that
guarantees that there is one and only one cell that connects
the start point cluster to the end point cluster, see Fig 1(d).
Values smaller than this threshold value would make a
connection between two clusters but this threshold value is
the biggest value that by using all cells that their value is
bigger than this value, makes it possible for having a path
between start and end points. We believe this point should
appear in the path because it optimizes the potential
functions while making sure that path exists. The point
that connects these clusters, we call it midpoint and we
are interested in this point mainly because:

a) There is a path from the start point to the
midpoint, and there is a path from midpoint to the
destination.

b) We know we should be looking for the path
within the start and destination point clusters
which are formed on either side of midpoint.

But how do we find it? For every threshold value some
cells in the workspace are marked and we can check for
the existence of path from start to end among marked cells.
We do this by using a simple Breadth-First Search (BFS)
algorithm. So in order to find the threshold that holds the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 29

midpoint criterion (only one point common between two
clusters), we apply a binary search on the sorted list of
cells to find the minimum threshold with no connection
between clusters. Then the value of the next cell in the list
is the maximum threshold that connects two clusters, see
Fig 2.

Fig 2. Pseudo code for finding the midpoint

Let N be the number of available cells, Evaluate all these cells.
A = Sorted array of all cell’s values.
Binary_Search(1, N , A);

Binary_Search(i, j ,A)
 If (i == j)
 return A[i + 1]
 T = A[(i + j) / 2]
 If (by using simple BFS, Is end point reachable from start
 point using cells with larger value than T ?)
 Binary_Search(i, ((i + j) / 2) - 1 , A)
 Else
 Binary_Search((i + j) / 2, j, A)

Notice that we have assumed the values are all distinct but
sometime two or more cells might have the same value, in
that case we just go through all the cells in the list and
change the values to make them different. For example if
we have two cells with the value 𝑦 and the next cell’s
value is 𝑥 then we keep one of those cells with value 𝑦 and
change the other to (𝑦 + 𝑥)/2.

So far we know:
The path from the start to the midpoint is in the cells that
are marked as the start point cluster and the path from the
midpoint to the end is in the cells that are marked as the
endpoint cluster. so we need to keep track of what cells
have been marked as the start point or end point clusters so
for every cell besides keeping the potential value we need
to keep one bit for showing if it is marked in the start point
cluster and another bit for showing if it is marked in the
end point cluster.
Our next step is to find the midpoint between the start and
the current midpoint knowing that we should be able to
find it in the start point cluster of previous procedure of
finding the midpoint. In other words we want to find the
midpoint between two points assuming that only some
cells of the workspace are available. In order to do that we
need to assign another bit for each cell that shows the
availability of that cell, see Fig 3.

Fig 3. The procedure of finding the path. (a) Workspace with start and
destination points. (b) First Mid-point (M1) is found. (c) M2 and M3 are

found by running the algorithm on (start, M1) and (M1, destination)
respectively (d) Final path (Mn = 30)

In Fig 3(c) M2 is the midpoint between start and previous
midpoint. We do the same to find the midpoint M3
between previous midpoint and the end point.

We keep executing this algorithm to find midpoints until
there is a co llision free path between every two
consecutive midpoints and that would be our final path as
shown in Fig 3(d). Fig 4 shows the pseudo code for the
algorithm.

The number of midpoints, needed for the path, depends on
the complexity of the workspace. For a simple workspace
like Fig 3, a path can be found with only three midpoints.
But usually we let the algorithm to find certain number of
midpoints to generate a smoother path. The path shown in
Fig 3(d) is created using 30 midpoints.

2.2 Time and Space Complexity

Let N be the number of cells in the workspace. It takes
𝑂(𝑁) time to evaluate all the cells. To find the midpoint of
a workspace we need to sort all values of the cells. This
can be done in 𝑂(𝑁) memory and 𝑂(𝑁𝐿𝑔𝑁) time.
Then, for different threshold values we check whether the
end point is reachable from the start point or not, using
BFS algorithm from the start point and by ignoring the
cells with value less than the threshold value. Since each
cell in the workspace has four neighbors, BFS takes
𝑂(𝑁)memory and 𝑂(𝑁)time. Moreover, we search for the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 30

largest of such thresholds using Binary-Search algorithm,
so the whole procedure of finding a midpoint for a
workspace can be implemented in 𝑂(𝑁𝐿𝑔𝑁) time. On the
other hand, the maximum number of calling
Find_MidPoint function is 𝑂(𝑁) as at each call, the
midpoint and potentially some other cells are excluded
from the existing workspaces. Searching for Midpoints can
be performed separately for different workspaces and so
the complete algorithm can be implemented in
𝑂(𝑁)memory and 𝑂(𝑁2𝐿𝑔𝑁)time, which is quite fast and
efficient.

Fig 4. Pseudo code for finding the path

Inputs = Start, Destination, Workspace
Output = Collision free path

Function Find_Path (Start, End, Workspace)
 If < Endpoints are close enough and there is a collision free
 straight line connecting them >
 Return Segment(Start, End);
 Else
 [MidPoint, First_Workspace, Second_Workspace] =
 Find_MidPoint(Start, End, Workspace)
 First_Path = Find_Path (Start, MidPoint, First_Workspace)
 Second_Path=FindPath(MidPoint, End, Second_Workspace)
 Return Merge(First_Path, Second_Path)

Function Find_MidPoint(Start, Destination, Workspace)

 Evaluate all the cells in the Workspace
 A = Sorted array of all available cells in Workspace in
 descending order
 N = Length of A
 T = Binary_Search(1, N , A)
 Midpoint = Cell having the value T
 First_Workspace = Start point cluster
 Second_Workspace = End point cluster
 Return (Midpoint, First_Workspace, Second_Workspace)

2.3 Adjusting α and β

It can be observed from potential functions that by
increasing α, we put more emphasis on the distances from
start and end points so that having a large value for α
produces a shorter path as shown in Fig 5(b) but the path
might be close to obstacles. By increasing β we put more
emphasis on the distance from obstacles and it means that
selecting a l arge value for β gives us a longer path with
bigger distance from the obstacles. Fig 5(a) shows such a
path.

Fig 5. The effect of α and β variation on final path. (a) Path with large β

(b) Path with large α .

3. Simulation Experiments

We have tested the performance of our algorithm using
several different workspaces. Two of these tests are
presented in this paper. We have tried to cover all the
possible cases that give rise to limitations of traditional
APF methods. Both of these tests have points that can be
local minima; they also have closely spaced obstacles, and
narrow passages as shown in Fig 6 and Fig 7. In both
workspaces the path is found very quickly with less using
40 midpoints.

Fig 6. Path planning in a workspace with local minima, closely spaced

obstacles and narrow passages

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 31

Fig 7. Path planning in a workspace with local minima, closely spaced

obstacles and narrow passages

4. Conclusion

In this paper a new method called Iterative Potential Field
method is presented for efficient path planning of mobile
robots. Using this method, a smooth path with reasonable
distance form obstacles is identified while keeping the
path as short as possible. Using the values of proposed
potential functions the algorithm iteratively finds the
optimum points to create the path. We called these points,
midpoints and algorithm finds as many of them as needed
in order to generate a path from start to destination.
Simulations results show the successfully generated paths
for two workspaces. For future works, this method can be
implemented for real time navigation or in the workspace
with moving obstacles.

References
[1] N. Sadati, J. Taheri, “Hopfield Neural Network in Solving

the Robot Motion Planning Problem”, IASTED Intl. Conf. on
Applied Informatics (AI2002), Innsbruck, Austria, Feb 2002.

[2] H. Mahjoubi, F. Bahrami, and C. Lucas, “Path Planning in an
environment with static and dynamic obstacles using Genetic
Algorithm: A Simplified Search Space Approach,” IEEE
Congress on Evolutionary, pp. 2483-2489, 2006.

[3] O. Khatib, "Real-time Obstacle Avoidance for Manipulators
and Mobile Robots," Intl. J. of Robotics Research, Vol. 5,
No. 1, pp 90-98,1986.

[4] Y. Koren and J. Borenstein, "Potential Field Methods and
Their Inherent Limitations for Mobile Robot Navigation"
Proceedings of the IEEE Conference on R obotics and
Automation, pp. 1398-1404, Sacramento, California,April 7-
12, 1991.

[5] S.S. Ge and Y.J. Cui,“New potential functions for mobile
robot path planning,” IEEE Trans. on R obotics and
Automation, pp. 615-620,2000.

[6] J. Agirrebeitia, R. Avilés, I.F. de Bustos and G. Ajuria, “A
new APF strategy for path planning in environments with
obstacles”, Mechanism and Machine Theory (2005), pp.
645–658

[7] Cosio A. F., Castaneda P. A. “Autonomous robot navigation
using adaptive potential fields”, Mathematical and Computer
Modelling. – 2004. – Volume 40. – P. 1141–1156.

[8] Barraquand, J., Langlois, B., and Latombe, J. C.. “ Numerical
potential field techniques for robot path planning”.IEEE
Transactions on Systems, Man, and Cybernetics 22:224–241
1992

[9] Benamati, L.; Cosma, C.; Fiorini, P.; , "Path planning using
flat potential field approach," Advanced Robotics, 2005.
ICAR '05. Proceedings, 12th International Conference on ,
vol., no., pp.103-108, 18-20 July 2005

[10] Cheol-Taek Kim; Ju-Jang Lee; , "Mobile robot navigation
using multi-resolution electrostatic potential field," Industrial
Electronics Society, 2005. IECON 2005. 31st Annual
Conference of IEEE, vol., no., pp. 5 pp., 6-10 Nov. 2005

[11] Meng, Rui, Su, Wei-Jun, Lian, Xiao-Feng. ”Mobile robot
path planning based on dynamic fuzzy artificial potential
field method” Computer Engineering and Design, Vol. 31,
no. 7, pp. 1558-1561. 16 Apr 2010

Hossein Adeli received his B.Sc. degree in Electrical Engineering
from Sharif University of Technology, Iran, 2009. He is currently a
computer science Master’s student at East Carolina University,
USA. His research interests are in the areas of Robotics, Artificial
Intelligence and Machine Learning.

M.H.N Tabrizi received his B.S. degree in Computer Science from
Manchester University, UK. He then completed his M.S. and Ph.D.
from Automatic Control and Systems Engineering Department,
Sheffield University, UK. He worked in Manchester University for
two years prior to his appointment at East Carolina University in
1984. He is the Graduate Program Director of Computer Science
and founder and director of Software Engineering program at East
Carolina University. His research interests are in the areas of
Cloud Computing, Virtual Reality, Modeling and Simulation,
Computer Vision, Signal and Image Processing, Software
Engineering, and Computer Science Education. His publications
include diverse areas of research in computer science, technology,
and software engineering. He was named ECU’s scholar teacher
in 2000 and has received best paper award.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 32

