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Abstract— We consider the path planning problem for a robot
that pushes a disk shaped object in an environment among
obstacles. Instead of only allowing the object to move through the
free space, we also allow the object to slide along the boundaries
of the environment using compliance, extending the possibilities
for the robot to find a push path.

We present an exact algorithm that, given a path for the object
consisting of k£ sections, preprocesses the environment consisting
of n non-intersecting line segments in O(n?logn) and reports
a push path in O(knlogn) time or reports failure if no path
exists. Under the weak assumption of low obstacle density, the
query time is reduced to O((k + n)logn).

Index Terms— pushing, compliance, exact, disk

I. INTRODUCTION

Manipulation refers to a wide variety of changes that can be
applied to an object. One form of manipulation is moving ob-
jects. Objects can be moved in many different ways, roughly
divided in two classes, prehensile (using a form or force
closure grasp) and non-prehensile. Prehensile manipulation
includes grasping (for an overview see the book of Mason
[19]) and squeezing [13]. Non-prehensile manipulation [17]
includes pushing, rotating the support surface [12], rolling
[2] and even throwing [21]. Also more passive forms of
manipulation can be used, for example placing fences along
a conveyor belt [7].

The objective of these manipulation actions can, for ex-
ample, be to change the orientation of objects for industrial
part feeding or navigating an object through an environment.
In these cases, the object itself is passive and can only be
manipulated if an external force is used. This force is applied
on the boundary of the object or on the whole object (using
e.g. gravitational forces). The result of the forces is that the
object rotates, translates, or both. The exact motion of the
object depends on a number of variables: the mass distribution
of the object, the center of friction of the object, the point
where the object is pushed and the friction. Friction can occur
between the object and the surface, between the object and
the manipulator or between the object and the environment
(e.g. the walls). Because of the many variables, the resulting
motion is usually difficult to predict and therefore often
simplifications are used.

In the class of non-prehensile manipulation, pushing (see
[9], [20]) has received the most attention. Here a pusher P
pushes an object O from an initial configuration to a goal
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Fig. 1. An example created by an implementation of our algorithm where
the pusher (the disk in dark gray) pushes the object (the disk in light gray)
while making use of compliance. Also noncompliant sections are used. The
desired path of the object is shown as the dotted line. At certain interesting
points, the motions of the pusher are shown as sequences of circles. Without
using compliance, it is impossible to push the object to its goal.

configuration while avoiding obstacles. If P moves such that
the configuration of O is altered, this is called a transfer
path. From time to time it may be necessary for P to change
its contact point. A motion from one contact point to another
while O does not move, is called a transit path. An important
aspect of pushing is controllability [18]: is it possible to push
an object from an initial state to a goal state? Because of
the variables mentioned before, solving such problems can
be very difficult. The problem shown in Fig. 2a for example
requires many changes of the position of P in order to push
O to its goal.

The path planning problem for a robot pushing an object
using stable pushes [17] imposes nonholonomic constraints
on the motion of the object (see e.g. [17], [18]). Because of
these constraints, for example, once an object is pushed in
one direction, it cannot be pulled in the reverse direction by
reversing the motion of the pusher.

If an object is manipulated by pushing, the most important
variable to take into account is the contact point. To reach
the desired contact point, P needs to maneuver around O.
Sometimes however, there is not enough room for P to reach
the desired contact point or the contact point is blocked by
an obstacle and no push path is found (see Fig. 2b). Also if
the space for P to maneuver is limited, it may need many



transits to achieve the desired motion of O (see Fig. 2¢). These
problems can often be solved by exploiting the boundaries of
the environment. The rationale behind this is that as soon as O
touches one of the boundaries of the environment, they cause
O to change its direction of motion to a path parallel to the
boundary. The contact point changes to a set of contact points,
which all cause O to follow the same path parallel to the
boundary. Such a motion of the object is called a compliant
motion. An example of a push path using compliance is shown
in Fig. 1.

Fig. 2. The pusher P is shown in dark gray, the object O is shown in
light gray, the destination of O is shown as a dotted disk. If no compliance
is allowed, the push path may get very complicated or even impossible to
create. (a) An example where the space of P to maneuver is very limited,
resulting in a very complex pusher path with many transits (alternating
between its current position and the dotted position). (b) Even though a
simple path for O exists to reach its destination, no push path can be created
without compliance. (c) Because P has little space to maneuver, it needs a
complicated path to push O to its destination if no compliance is allowed.

In this paper, we present an exact algorithm that, given a
path for O, calculates a path for P such that O is pushed
along the given path or reports failure if no pusher path
exists. Our algorithm takes O(n?logn) preprocessing time
and reports a push plan in O(knlogn), where k is the
complexity of the object path. If low obstacle density
is assumed (Section V), the query time is reduced to
O((k + n)logn). To create the path for O, any compliant
motion planning technique can be used as long as the
resulting paths consist of straight lines and circular arcs
(the circular arcs can be used to rotate compliantly about a
vertex). In addition noncompliant sections are allowed, for
example to act as a bridge between two compliant sections.
We assume both O and P are disks. Even for this restricted
case it turns out the problem is complicated, for example the
situation of Fig. 2a is difficult to solve even with compliance,
while Figs. 2b+c benefit greatly from compliance.

Although pushing has received considerable attention over
the years, using compliance as an aid to maneuver the object
with a pusher, has not. Often compliance is used to com-
pensate for uncertainty. In [16] the preimage backchaining
approach is introduced. The idea is to compute the points
from which the robot can reach the goal. Then the preimage
is iteratively treated as a new goal until the initial robot con-
figuration has been found. The concept of a back projection is
introduced by [11] and [8] improves an algorithm introduced
in [10] to find a trajectory from a start region to a goal region
amidst planar polygonal obstacles where control is subject
to uncertainty in O(n?logn) time. The coordinated motion
planning problem of two independent robots in a plane using
a cell decomposition is solved in O(n?) time in [22] and [3].

In our results the robots are not independent, their motions
need to be coordinated such that one pushes the other.

II. PRELIMINARIES AND PROBLEM STATEMENT

Given disks O and P having radii r, and r, < 7, in
an environment of disjoint line segments L and a trajectory
7 :[0,1] — R? of O, we compute a push plan ¢ for P
such that if P complies to this plan, it pushes O along 7 or
we report that no path for P exists. We allow the contact
point to slide around the boundary of O. It is assumed that
the friction between O and the supporting plane is large
enough such that there is no motion of O after pushing ceases
(quasistatic assumption). Finally no friction between O and
the environment is assumed, although this restriction can be
lifted easily (see Section VI).

A. Definitions

All angles used throughout this paper are defined in an
absolute coordinate system (i.e. relative to a world frame)
unless stated differently.

We denote the Euclidian distance between two objects a
and b by d(a, b). The disks O and P have radii r, and r, and
are centered around ¢, and c,. For the rest of the definitions
and of this paper, we assume that P is always in contact with
O: d(co, cp) = (1o +1p). Thus we do not allow transit paths
in which P loses contact with O. See the conclusions for
some remarks about allowing such transit paths.

The object path 7 consists of a set I = {1,...k} of k
sections, each occupying a subsequent interval of [0, 1]. Each
1 € I is either a straight line or a circular arc. The section
containing position s € [0, 1] is indicated by I(s) : [0,1] —
{1, .., k}. The start and endpoints of section i € I are called
is and i.. Every section is open in its endpoint, thus: I(is) = @
and I(i.) = I((i+1),) =i+ 1. The end and start points of
two subsequent sections are connected such that the path of
O is C° continuous i.e. 7(i.) = 7((i + 1);). Throughout this
paper we will refer to a path section simply as section.

Definition II.1 (contact transit). A contact transit is a motion
of P while O stands still, it is a circular shaped motion of
radius v, + 1.

Every section ¢ € I is either compliant or noncompliant.

Definition IL2 (compliant). A section v € I defined on the
domain s € lis,i.| is called compliant with obstacle | =
(vo,v1) € L if Vs | d(7(s),l) = ro. In this case l is called
the compliant edge. If the closest point is either vy or vy for
the whole domain, then this vertex is called the compliant
vertex.

A noncompliant section is a section where O does not
touch any [ € L. From the definition it follows that there
are two types of compliant sections: a straight line compliant
section that is compliant with an obstacle edge and a circular
compliant section that is compliant with an endpoint of an
obstacle edge. Both types are shown in Fig. 3.

Since we assume that O and P are in contact for all s €
[0, 1], we define the push plan ¢ for P as o : [0,1] — [0, 27).



Fig. 3. The two types of compliant sections, shown as the dotted lines. O
is shown in light gray, P in dark gray. (a) A straight line compliant section.
(b) A circular shaped compliant section.

The push plan ¢ defines the position of P for a corresponding
position on the trajectory 7.

Definition I1.3 (push position). At position s on the path, the
position of P is denoted by o(s). o(s) is an angle relative
to the center of O. At position s, the world coordinates of P

are: (0(s))
cos(o(s
7(s) + ( sin(o(s)) > (ro +1p)-
For the desired object path 7 our goal is to calculate a

corresponding push plan ¢ such that if P complies to this
path, it pushes the object along 7.

Definition I1.4 (free push range). The free push range
FPR(7(s)) is the set of push positions that do not collide
with any | € L (see Fig. 4a).

Definition IL.5 (push range). For every 7(s) a set of push po-
sitions PR(7(8)) is specified, called the push range. PR(7(s))
is defined such that if P pushes O while o(s) € PR(7(s)) then
O follows 1. The push range is a continuous set of angles
from PRy(7(s)) to PR.(7(s)). The position of the pusher
o(s) € PR(7(s)) iff o(s) is in the interval of the smallest
rotation between PRy(7(s)) and PR.(7(s)).

If ¢ € I is a compliant section (see Fig. 4b) then:

e PRy(7(s)) = arctan(7'(s)) + 7.

o PR.(7(s)) = arctan(7'(s)) + 3.

This also holds for circular compliant sections. If o(s) €
PR(7(s)), O slides along the compliant edge or rotates about
a vertex. If ¢ is noncompliant then:

e PRy(7(s)) = arctan(7'(s)) + 7.

e PR.(7(8)) =PRp(7(s)).

This definition shows that for a noncompliant section, there
is only one push position such that O is pushed along the
desired path section.

Depending on the direction of 7(s) it may be necessary
to subtract 7 from both PR,(7(s)) and PR.(7(s)). For a
compliant section, the position of PR,(7(s)) always moves
toward 7(s) while the position of PR.(7(s)) maintains a
distance of 7, + r), from 7(s).

Definition I1.6 (valid push range). The valid push range (Fig.
4c) consists of those push positions that are both free and
within the push range:

VPR(7(s)) = FPR(7(s)) N PR(7(s))

VPR(7(s)) may consist of multiple intervals, split up by
obstacles if I(s) is a compliant section. At most one of
these intervals is reachable for P from its current position.
Therefore we define the reachable valid push range.

Definition ILI.7 (reachable valid push range). The reachable
valid push range (Fig. 4d), RVPR(7(s),0(s)) is the set of
push positions that is reachable for the pusher from its current
position o(s) and object position T(s) using a contact transit.
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Fig. 4. Illustrations of the four ranges for a compliant section. P is shown in
dark gray, O in light gray, obstacles are black. The ranges show the possible
placements of the center of P. (a) The free push range FPR, these are all push
positions for which the pusher is collision free. (b) The push range PR consists
of all push positions that result in a motion of O in the desired direction
(shown as the dotted arrow). (c) The valid push range VPR = PR N FPR.
(d) The reachable valid push range RVPR; the part of VPR that is actually
reachable for P from its current position by a contact transit.

B. Problem statement

Using the definitions of the previous section, we formally
define our problem:

Given a collision free desired path T for O consisting of k
sections, that are allowed to be compliant, amidst a collection
of disjoint obstacle line segments L, create a push plan o for
P such that if P complies to this plan, it pushes O along T.

C. Preliminaries

The object path, given by the user, consists of k. compliant
sections and k, noncompliant sections (k. + k, = k).
The only restrictions on this path are that its noncompliant
sections consist of straight lines and the compliant sections
follow parts of the union boundary of the Minkowski sum
Uier(l ® D) where D is a disk of radius r,. The union
boundary consists of line segments and circular arcs of radius
To.

We will frequently use the union boundary of the
Minkowski sum of Ujer, (16D) where D is a disk of radius 7.
This union boundary consists of all placements for the center
of P where P is in touch with an obstacle. In the rest of this
paper we shall denote this union boundary of the Minkowski
sum by the union boundary. Since the Minkowski sums of
each pair of line segments are pseudodisks and the obstacles
together form a collection of pseudodisks, the complexity of
the union boundary is O(n) (see [6]).

III. GLOBAL APPROACH

In order solve the problem stated in Section II-B, we need
to create a push plan for P such that P avoids the obstacles.
Without loss of generality, we divide the problem into four
subproblems all representing one type of section. All 4 cases
are illustrated in Fig. 5.

o creating a push plan for straight-line compliant sections

 creating a push plan for circular compliant sections

« creating a push plan for noncompliant sections

« finding a contact transit to reach VPR(7(is)) at the start
of section 7 € I.



Fig. 5. The four possible sections. (a) For a straight line compliant section,
we need to find a push plan in which the pusher is at one of the illustrated
positions. (b) For a circular compliant section the push range rotates as O
advances on its section. (c) For a noncompliant section of O, there is only
1 push position. (d) If the pusher is outside the push range at the start of a
section, a contact transit iS necessary.

A. Straight line compliant sections

For a straight line compliant path segment ¢ € I on the
domain s € [ig, i.], the corresponding push plan may consist
of multiple push plan sections because P may need to avoid
obstacles. We call a push plan monotonically descending
when o(s) only moves in the direction of PRy(7(s)) while
pushing O along the section. A monotonically descending
path exists if we assume that at the start of the section P is
as close to PR.(7(is)) as possible. We start by pushing until
P hits an obstacle. Next, we let P follow the union boundary
for as long as the path of P is descending (after that, P fits
underneath the obstacle). Now, we again find the first obstacle
that will be hit by P (which is now at a different position).
We repeat this procedure until we have reached the end of
the section. This approach ensures that P only changes its
position if necessary. The path ¢ of P consists of straight
line sections and circular sections. As each obstacle can be
hit only once (in one object path section), in total at most n
changes of the pusher position are required per section.

Note that we could also start as close to PRy(7(is)) as
possible but then no monotonically ascending or descending
path for P can be guaranteed. The complexity of both
approaches is the same.
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Fig. 6. An example of a pusher path (shown as the solid black arrow)
avoiding two obstacles. The desired path of the object is shown as the dotted
arrow. The dotted lines show L @ D and O @ D, where D is a disk of radius
rp. For clarity the compliant edge at the bottom is not dilated.

B. Circular compliant segments

When the object is pushed compliant around an outer
vertex in a certain section ¢ € I on the domain s € [is, i.],
the section of O is circular shaped. If P is at the same
relative position inside PR(7(s)) during the section, the path
of the pusher is also circular. The radius of this pusher
path depends on the exact position of P within PR(7(s)). If
o(s) = PR¢(7(s)) then the radius of the circular shaped path
the pusher follows is 2r, + 1, (Fig. 7a). If o(s) = PRy(7(s)),
this radius is smaller. The smaller the radius of the path of the

pusher, the smaller the combined sweep planes of O and P
(because a larger part of the pusher moves inside the shadow
region of the object which is collision free by definition).

Fig. 7. Pushing O around a vertex. (a) If o(s) = PRe(7(s)), its path is
circular shaped of radius 27, +7p. (b) The pusher path if o(s) = PRy(7(s)).
(c) Calculating the radius of the pusher path of (b). It can easily be seen that

e= /12 + 2rpro + 2r2.

Using this observation, we use the following approach
to create a pusher path. First, we try to determine the
smallest s : PRy(7(s)) € RVPR(7(s),c(s)). If this s exists,
we transit P to PRy(7(s)) and maintain that position for
the rest of the section. This preserves completeness because
this position for P maximizes the part of the path of
P that is within the shadow region of O. As soon as
PRy (7(s)) € RVPR(7T(s),0(s)), the pusher can follow a path
where o(s) = PRy(7(s)) for the rest of the section (provided
that this path for P is collision free, else we report failure).
If o(s) = PRy(7(s)) during a circular compliant section,

then the radius of the path of P equals /72 + 27,7, + 212

(see Fig. 7b).

Before the pusher can follow a path for which o(s) =
PRy (7(s)) however, it first needs to reach PRy (7(s)). For this,
we use the following approach, as illustrated in Fig. 8a..d. At
the start of the section, we try to move P in a straight line
perpendicular to the compliant edge. This will start pushing
O around the vertex. If an obstacle is encountered, we follow
the union boundary as long as P is moving toward the vertex
of the compliant edge. In the meantime P pushes O along its
desired path. The process is repeated until o(s) = PRy(7(s))
or s = ie.

c O

Fig. 8. An example of a pusher path that pushes O around a vertex. P is
shown as a dot that represents its center. (a) The situation at the start of the
section. The dotted arrow shows the trajectory of O. (b) First we push perpen-
dicular to the compliant edge until an obstacle is encountered. (c) We follow
the union boundary of the obstacles until o(s) = PRy (7(s)). (d) Now we

/T2 + 2rpro + 272,

push following a circular shaped path having radius

Note that an exception occurs when at the start of the
section, PRy(7(is)) is reachable but an obstacle blocks the
first part of the path (Fig. 9a). In this case, we partially follow
the union boundary in order to avoid the obstacle (Fig. 9b).
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Fig. 9. (a) Even though PR, (7(%s)) is initially reachable for P, it is blocked
a little later. (b) This is resolved by first following the union boundary.

C. Noncompliant sections

If a section 7 € I on the domain s € [ig, i.] is noncompli-
ant, then PRy(7(s)) = PR.(7(s)). Thus for a noncompliant
section the push range consists of only one single push
position. If PRy(7(s)) € FPR(7(s)) on the entire domain, a
push plan exists. Only if an obstacle is present in the wedge
(see Fig. 10) between the pusher and the object when s = i,
and the section is long enough such that P actually collides
with this obstacle, then no push plan for this section exists

and we report failure.
<"

Fig. 10. For a noncompliant section, only if an obstacle is present in one
of the wedges (shown in black) at the start of the section, no push plan may
exist.

D. Contact transits

Contact transits are necessary at the start of section ¢ € 1
if o(is) ¢ VPR(7(is)). In this case, we need to construct a
contact transit for the pusher such that o(i5) € VPR(7(is)).
Such a situation can only occur at the start of a section.

When a contact transit is necessary, P has the choice
between a clockwise or counter-clockwise path. If the current
or next section is compliant, then one of these paths is always
blocked by the compliant edge. During a contact transit, the
path of P is always circular shaped having radius ry, + r,. If
both paths are blocked by an obstacle then the transit is not
possible and failure is reported.

IV. THE DATA STRUCTURES

In the previous section we described the global approach.
For actually computing the path, a number of collision queries
must be answered. In this section we will describe the data
structures that are needed for this.

A. Straight line compliant sections

A straight line compliant section ¢ € I is defined on the
domain s € [is,i.]. We now want to determine the first
obstacle that forces P to change its position. For this, we
use ray shooting. A ray is shot from position of the center
of the pusher at s = i, parallel to the compliant edge in the
direction of the section of O and the first element of the union
boundary that the ray hits corresponds to the first obstacle
that will be hit by P. Next, we push O until P actually hits
the obstacle. Now P can follow the union boundary as long

as this boundary is monotonically descending (as shown in
Fig. 6). If the boundary ceases to descend monotonically,
the pusher is at a position where it fits underneath the
obstacle. Since the obstacles consist of line segments, we
cannot encounter this obstacle again during section i. We
establish the next obstacle that the pusher will hit, again we
use ray shooting from the current position of P parallel to
the compliant edge. This procedure is repeated until the object
reaches the end of the section.

In order to find the colliding obstacle we need to perform
a ray shooting query in a space consisting of circular arcs
and line segments (that form the union boundary of the
Minkowski sum of the obstacles and P). A procedure for
ray shooting amidst possibly intersecting algebraic arcs in
the plane is given in [15]. It describes a data structure that
can be preprocessed in time O(n?logn) and has size (n?).
Ray shooting queries can then be solved in O(logn) time.
Since, in worst case, an element of the union boundary can
be encountered at every straight line compliant section, the
total number of ray shooting queries is O(k.n).

Lemma IV.1. We can preprocess the scene in O(n?logn)
time such that a push plan for a straight line compliant section
can be found in O(nlogn) time. There are k. compliant
sections, resulting in a total query time of all straight line
compliant sections of O(k.nlogn).

B. Circular compliant sections

As stated before, the preferred position of P during
a circular compliant section ¢ € I is PRy(7(s)). We
try to find the smallest s : s € [is,i.] for which
PRy(7(s)) € RVPR(7(s),0(s)). If this s exists, then
o(s) = PRp(7(s)) and from then on the radius of the circular
72 + 2rpr, + 212 (Fig. 7). The
number of positions where a circular compliant section
can occur, is 2n (at every vertex of the obstacles). We can
preprocess the environment by finding all intersections of all
possible circular shaped paths of P with the union boundary.
72+ 2rpr, + 212
to the environment at every vertex. The total number of
elements in this environment is O(n). We find intersections
by using a plane sweep algorithm. The original version of
this algorithm is described in [5] by Bentley and Ottmann.
Balaban [4] described an algorithm that also works for
curved segments. His algorithm takes O(nlogn + ¢) time
and uses O(n) space to list all ¢ intersections. In worst
case, if all obstacles are close together, ¢ = O(n?), resulting
in a time bound of O(n?) in our situation. The algorithm
of Balaban requires the segments to have at most one
intersection with any vertical line, which means that we may
need to split certain circular shaped path sections of P into
two separate pieces.

shaped path of P equals

For this we add circular arcs with radius

In order to reach PRy (7(s)) (see Fig. 8), we proceed similar
to Section IV-A. First, we shoot a ray from the current posi-
tion of P to the compliant edge in a direction perpendicular to
the compliant edge. Then, we push O until P collides. Next,



we follow the union boundary as long as P is moving toward
the vertex of the compliant edge. Then, we shoot another ray.
This procedure is repeated until o(s) = PRy(7(8)) V 8 = ie.
If o(s) = PRy(7(s)) we continue with a circular compliant
72 4 211, + 212 For the ray
shooting we can reuse the structure of Section IV-A.

section for P having radius

Lemma IV.2. All circular compliant sections together cost
O(n?) preprocessing time in order to find all intersections.
For the ray shooting part, we reuse the data structure of
Section IV-A. In worst case we encounter every obstacle at
every circular section. Thus, the ray shooting queries for all
circular sections together cost O(k.nlogn) time.

C. Noncompliant sections

For a noncompliant section ¢ € I, there is only one valid
push position. The only way to invalidate the pusher path is
if an obstacle is present in one of the wedges shown in Fig.
10 and ¢ is long enough for the collision to actually occur.
We can check this by shooting a ray from the pusher position
at the start of the segment in the direction of 7(is). If the ray
collides with the union boundary before the end of the section,
then no pusher path for this section exists. We can reuse the
data structure created in Section IV-A. Since there are k,,
noncompliant sections, the total query time is O(k,, logn).

Lemma IV.3. The total query time used for the noncompliant
sections together is O(ky logn).

D. Contact transits

Since the object path is known in advance, we also know all
positions where contact transits may be necessary. Since the
total number of sections of 7 is k, so is the number of contact
transits. The path of P during a contact transit is always
circular shaped of radius r,+7, (in the case of two subsequent
noncomplaint sections there are two possible directions and
thus two possible circular paths).

If the circular arc of the path of P intersects the union
boundary, then no transit following this path is possible.
We can again preprocess the environment using Balaban’s
algorithm by finding all intersections of the contact transit
circular arcs with the union boundary as described in IV-B.
In worst case we encounter every obstacle at the start of every
section resulting in kn intersections.

Lemma IV.4. In order to find all possible intersections during
contact transits, in the query phase we use O((k+n)log(k+
n) + kn) time.

E. Run time analysis

For the two types of compliant sections, we need ray shoot-
ing. Also for the noncompliant sections, one ray shooting
query is necessary. The preprocessing time for the algorithm
is O(n?logn). We can also preprocess the plane sweep
necessary for the circular compliant sections. According to
Lemma IV.2, this preprocessing takes O(n?) time.

Combining Lemmas IV.1, IV.2 and IV.3 results in a total ray
shooting query time of O(knlogn). For the contact transits

we need a total query time of O((k + n)log(k + n) + kn)
(Lemma 1V.4).

Theorem IV.1. A push plan such that the object is pushed
along a path consisting of both compliant and noncompliant
sections can be calculated in O(knlogn). The preprocessing
takes O(n?logn) time. The complexity of the pusher plan is
O(kn).

V. LOW OBSTACLE DENSITY

In practical settings, the complexity of the free space tends
to remain far below the theoretical worst-case complexity
bounds. A realistic assumption about the complexity of
the free space is low obstacle density. Motion planning in
environments having low obstacle density has been well
studied, see e.g. [23]. Before we formally define low obstacle
density, we first devise a useful property of the object path.

If a straight line compliant section ¢ € [ is longer than some
threshold d and O has been pushed at least a distance d on the
current section, we are certain that on the domain s € [i5 +
d,i.] the following holds: PRy(7(s)) € RVPR(7(s),o(s)).

Thus, if s = is + d we are certain to be able to transit P
to PRy(7(is + d)) and stay at that position for the rest of the
section. This can be seen as follows. Since it is not possible
for an obstacle to enter the shadow region O after the start of
the section, an obstacle that blocks PRy (7(s)) from being in
RVPR(7(s),0(s)) already does so at the start of the section,
see Fig. 11 for the calculation of d.

Fig. 11.  Calculating the minimum distance d that O has to move to
guarantee that PRy, (7 (is +d)) € RVPR(7(is +d), o(is+d)). The black area
is the union of all possible obstacles. (a) The start of the object path section.
(b) The first chance for P to reach PRy (7(is + d)). (c) The calculation of

d. It is easy to see that d = , /47“% + 4rpro.

Lemma V.1 (Reachability of PRy). If (i. — i5) >

\ /47“?, +4rpr, for compliant segment i, the following holds
Jor s € [is + (/412 + drpro, i)

PRy (7(5)) € RVPR(T(s),0(s))
Usually low obstacle density is defined as follows:

Definition V.1 (Low obstacle density). Let IR? be a space
with a set T of obstacles. Then IR? is said to be a low obstacle
density space if any region with minimal enclosing circle of
radius \ intersects at most a constant number of objects E €
T" with minimal enclosing circle of radius at least c for some
constant ¢ > 0.

The total sweep plane of P and O together in a circular
compliant section always fits within a disk of radius 3r,



(recall that r, < r,). For a straight line compliant section,
using Lemma V.1 it is easy to see that the total sweep plane of
P and O together on the domain s € [is, 75+ 4 /47’12J + 4rpro)
also fits within a disk of radius 3r,.

Let A be the length of the smallest obstacle [ € L. If our
environment L with n non-intersecting line segments satisfies
the low obstacle density property, then at most a constant
number of obstacles intersects with a disk shaped region of
radius ¢ for some ¢ > 0.

If we assume that r, < c\ for some ¢ > 0, then a
disk shaped region of radius r, intersects at most a constant
number of obstacles. This implies that a disk shaped region
of radius 3r, also intersects at most a constant number
of obstacles. Since each obstacle can be encountered at
most once every section, we know that P can encounter at
most a constant number of obstacles in a compliant section.
Therefore at most a constant number of ray shooting queries
is needed for a compliant segment if the environment satisfies
the low obstacle density.

We now partially restate Theorem IV.1.

Theorem V.1. If the environment satisfies the low obstacle
density property and if the radius of O is at most a constant
times the size of any obstacle, then a push plan such that
O is pushed along a path consisting of both compliant and
noncompliant sections can be calculated in O((k + n)logn)
time. The complexity of the pusher plan is O(k).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have studied the contact pushing prob-
lem for two disks where we are allowed to make use of
compliance in order to extend the number of pushable paths.
Exploiting the boundaries increases the possibilities of finding
a push plan. The problem can be solved in O(knlogn) time
and, using a realistic assumption about the environment, it can
even be solved in O(klogn) time. Fig. 1 shows an example
of a path created by an implementation of our planner.

We have ignored the friction between O and the environ-
ment but this can easily be incorporated by narrowing the
push range according to the friction cone. Since compliance
is used, friction between O and P is allowed because it does
not affect the direction of motion of O at a compliant section.

At certain discretized positions along the path of O it may
be necessary to perform a non-contact transit of P (moving to
another interval of VPR) in order to find a path. We have found
a polynomial algorithm to incorporate non-contact transits,
and we are currently working to improve this algorithm.

A challenging open problem is to adapt the algorithm to
work for non-disc shaped objects. In that case, PR is not only
dependent on the compliant edge but also on the topology
of the object. Also not all pushes will be stable, i.e. pushing
at certain positions on the boundary of O will cause O to
rotate despite the compliant edge.

In this paper we strictly follow the given path of O. We
could however, given a start and goal configuration, create

a path for O such that it is guaranteed we find a push plan
(provided one exists). Using our algorithm we can verify the
pushability of the compliant sections. Noncompliant sections
can then be added to act as bridges between compliant parts
of the path. In order to create these bridges, non-complete
methods such as PRM [14] could be used.

An open problem is the maximum complexity of o. We
have proved that for pushers of radius r, < (3 — 2v/2)r, the
complexity of the push plan is O(k) (without any assumption
about the obstacle density), but for larger pushers this has yet
to be proved.
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