
 1

Abstract—Evolutionary Algorithms (EAs) based Unmanned

Aerial Vehicle (UAV) path planners have been extensively studied

for their effectiveness and flexibility. However, they still suffer

from a drawback that the high quality waypoints in previous

candidate paths can hardly be exploited for further evolution as

they evolve a path as a whole. Due to this drawback, the previous

planners usually fail when encountering lots of obstacles. In this

paper, a new idea of separately evaluating and evolving waypoints

is presented to solve this drawback. By using this new idea, the

high quality waypoints can be highly exploited. For the evaluation

phase, a set of new evaluation functions are derived from the

existing objectives and constraints functions to evaluate each

waypoint. Basically, the derivation can be made only if the

original functions are separable on waypoints. For the evolution

phase, JADE, one state-of-the-art variant of Differential

Evolution (DE) is employed to drive the further evolution for

waypoints. In order to further improve the performance of the

proposed planner, the waypoints are encoded in a rotated

coordinate system with an external restriction. To test the

capabilities of the new planner on planning obstacle-free paths, 5

scenarios with increasing numbers of obstacles are constructed. 3

existing planners and 4 variants of the proposed planner are

employed as compared planners to show the effectiveness and

efficiency of the proposed planner. The results verify the ability of

the proposed planner and the idea of separate evolution in solving

scenarios with large number of obstacles.

Index Terms—Evolutionary Algorithm, Path planning,

Unmanned Aerial Vehicle.

I. INTRODUCTION

nmanned Aerial Vehicles (UAVs) are aircrafts without

human pilots onboard. Due to their great advantages in

terms of crew endurance, UAVs have been entrusted in

high-threatened missions so that human lives can be completely

This work was supported in part by the 973 Program of China under Grant

2011CB707006, the National Natural Science Foundation of China under Grant

61175065, the Program for New Century Excellent Talents in University under

Grant NCET-12-0512, and the Science and Technological Fund of Anhui
Province for Outstanding Youth under Grant 1108085J16.

Peng Yang and Ke Tang are with the USTC-Birmingham Joint Research

Institute in Intelligent Computation and Its Applications, School of Computer
Science and Technology, University of Science and Technology of China

(USTC), Hefei, Anhui 230027, China (e-mail: trevor@mail.ustc.edu.cn ;

ketang@ustc.edu.cn).
J. A. Lozano is with the Intelligent Systems Group, University of the Basque

Country, San Sebastian-Donostia 20018, Spain (e-mail: ja.lozano@ehu.es).

Xianbin Cao is with the School of Electrical Information Engineering,
Beihang University, Beijing 100191, China (e-mail: xbcao@buaa.edu.cn).

kept away from dangers [1], [2]. In the past few decades,

autonomous path planning technique has become increasingly

important to the UAV, as the conventional remotely piloted

techniques can hardly offer sufficient accuracy and timeliness

for complex missions nowadays [3], [4].

The path planning problem for a UAV can be formulated as

an optimization problem that finds a feasible path from the start

to destination for a UAV to follow on [4]. In the literature, a

path is usually represented as a set of segments by a sequence of

waypoints. These segments can be line segments [3], B-spline

Curves [1] or Bezier curves [5]. Hence, path planning, in

general, is to find out a sequence of waypoints as well as the

segments linking each pair of adjacent waypoints to optimize

various objectives subject to a number of constraints. Generally,

the curve-based representations can ensure the smoothness of

candidate paths, while their computational costs are high as

they introduce external local controls for generating paths. In

this paper, line segments based paths are adopted for its

simplicity and efficiency.

Path planning problem is not a problem that only emerges in

the context of UAVs. In fact, it is much more intensively

investigated in the domain of Robotics, where path planning is

usually referred to as motion planning [6], [7]. However, path

planning for UAVs involves two domain-specific challenges

that may not be encountered in a different context (e.g., motion

planning for a robot). First, as UAVs fly above the ground and

can change their altitude during flight, they in essence work in

in a 3-D space. In contrast, motion planning for robots usually

considers 2-D space as robots move on the ground. The

additional degree of freedom significantly enlarges the mission

space, and thereby the solution space of UAVs path planning

problem. Second, a fixed-wing UAV cannot hover and have to

always keep a rather high cruise speed. Such a requirement

induces additional complicated constraints to the path planning

problem. On the contrary, motion planning for robots can be

immune with this requirement, because robots can slow down

and even stop whenever necessary.

The UAV path planning problems can be further categorized

into 3 types, i.e., off-line planning, on-line planning and

cooperative planning. If the global information about the

environment is at hand, the problem is called off-line planning

[1], [4], [9], [18]-[29], [35]. If the circumstance is partially

known or completely unknown in advance, the path will be

planned on-line [1], [9], [20], [22], [28]. In case a mission is too

complex to accomplish by a single UAV, a team of UAVs are

Path Planning for Single Unmanned Aerial
Vehicle by Separately Evolving Waypoints

Peng Yang, Student Member, IEEE, Ke Tang, Senior Member, IEEE, Jose A. Lozano, Member, IEEE,

and Xianbin Cao, Senior Member, IEEE

U

mailto:trevor@mail.ustc.edu.cn
mailto:ketang@ustc.edu.cn
mailto:ja.lozano@ehu.es
mailto:xbcao@buaa.edu.cn

 2

called for, and hence cooperative planning is studied [1], [4],

[20], [28]. All these three types of problems have been proved

to be NP-Complete [10]. Among them, off-line planning is

probably the most commonly adopted approach for UAV path

planning. Besides, on-line planning and cooperative planning

can be viewed as extended versions of off-line planning

problems. Hence, this paper focuses on off-line path planning

problems. For the sake of brevity, UAV off-line path planning

will be referred as path planning in the rest of the paper.

In the literature, UAV path planning problems have attracted

a large variety of optimization applications, including A* [10],

[11], Mixed-Integer Linear Programming [12], [13], Nonlinear

Programming [14], Voronoi Diagram [15], [16] and

Evolutionary Algorithms (EAs) [1], [4], [9], [18]-[29], [35].

One of the difficult problems in the field of the UAV path

planning is to plan a feasible path in a scenario with obstacles.

The difficulty of this problem results from the fact that the

feasible space decreases rapidly with the increase of number of

obstacles. To be detailed, on one hand, as the number of

obstacles increases, the feasible space for each waypoint

decreases. On the other hand, the increased obstacles lead to

much narrower and more zigzag passageways for the UAV, and

thus more waypoints are required to keep a path sufficiently

flyable, i.e., smooth and safe. As a result, it becomes more

difficult to find a feasible path in which all its waypoints are at

feasible positions.

Although the existing EA-based planners are found to be

more flexible and effective than the other approaches on

planning obstacle-free paths, they still usually fail when the

number of obstacles becomes quite large. The reason of the

failure for the existing EA-based planners is that a path is

feasible only if all its waypoints are at feasible positions.

However, when searching for a feasible path, it is unlikely that

the feasible positions for all waypoints can be obtained

simultaneously (e.g., in the same iteration). Instead, it is highly

possible that one candidate path consists of good positions for

some waypoints, while the other waypoints are in bad positions.

In other words, waypoints in a candidate path may be of

different qualities. Nevertheless, existing EA-based approaches

are unable to identify such differences as they regard the whole

candidate path rather than a single waypoint as the unit of

evaluation and evolution. Consequently, all waypoints of a

“bad” path will be regarded as “bad” waypoints and vice versa.
Eventually, the lack of capability to exploit high quality

waypoints leads the existing EA-based planners to an

inefficient search when lots of obstacles exist.

During the investigation of the UAV path planning problems,

it has been noticed that most of the commonly used objective

and constraint functions are separable on waypoints. This fact

enlightens us that if we can explicitly decompose those

evaluation functions and design a new evolution strategy that

can be used to evolve each single waypoint, the waypoints can

be evaluated and evolved separately and thus high quality

waypoints can be exploited to improve the performances of the

whole candidate paths. Inspired by the above considerations, a

new EA-based path planner is proposed. Instead of searching

for a sequence of feasible waypoints simultaneously, the

proposed path planner evaluates and evolves each waypoint

separately. For the evaluation phase, a set of new objective and

constraints functions for single waypoints are derived from the

existing functions which are used to evaluate the whole paths.

For the evolution phase, a state-of-the-art Differential

Evolution (DE), JADE [30] is employed to evolve each single

waypoint. A widely used multi-criteria handling method is also

used to select the evaluated waypoints for selection. In this way,

the planner can be better focused on seeking good positions for

waypoints, and information about previous good positions of

waypoints can be better exploited. To further enhance the

performance of the proposed planner, a recently proposed 3-D

coordinate system [29] is also employed to encode the

waypoints.

Lastly, a set of detailed simulations are carried out. In the

simulations, the proposed planner is compared with 7 compared

planners on 5 scenarios with different numbers of obstacles.

The obstacles are represented as ranges of missiles and

mountains where the UAV is forbidden to fly through. By

randomly setting missiles on ground, the numbers of obstacles

are set as 7, 15, 30, 60 and 120 for the 5 scenarios, respectively.

The simulation results show that the proposed idea can

significantly improve the ability of path planners in scenarios

with lots of obstacles. The proposed planner can outperform all

compared planners when there are lots of obstacles.

The rest of the paper is organized as follows: Section II

describes the evaluation functions of the key factors of UAV

path planning in detail. The proposed path planner is then

introduced in Section III. In Section IV, we test the

effectiveness of the proposed planner by comparing with 7

planners in 5 scenarios with different numbers of obstacles.

Lastly, the conclusions of this work and expectation of further

research is discussed in Section V.

II. PROBLEM DESCRIPTION

When planning a path for an UAV, quite a few important

factors need to be taken into consideration, such as the

maneuverability of the UAV, the environment of the mission

space, safety and cost of the path. These factors are involved

either in the form of objective functions that need to be

maximized/minimized, or in the form of constraints that a path

must comply with. Since the purpose of this paper is not to

construct a new set of realistic evaluation functions, we directly

employ or derive some existing representative functions in the

literature [1], [4], [35] to include several key factors in UAV

path planning. Detailed technical justifications of the chosen

functions could be found in the corresponding references, i.e.,

[1], [4], [35]. Generally, these factors restrict the paths in a

geometric manner. Specifically, the factors to be considered

can be categorized into two types based on the way they restrict

the paths. The first type of factors require only the waypoints

for evaluation. That is, those factors can be evaluated by

checking the locations of waypoints as well as the geometric

relations in between. Examples are maximal turning angle,

maximal slope, minimal path length, minimal flight altitude

and map limited. The other factors are relevant to the segments

as well as waypoints since waypoints are not sufficient to

 3

determine the real states of an UAV. In other words, the

segments may be infeasible even when the corresponding

waypoints are in feasible locations. Examples are minimal risks

of kill, minimal risks of radar detection and the terrain limited.

For the first type of factors, we directly borrow the existing

functions. For the second type of factors, however, the existing

functions have only considered the states of waypoints and

regard those states as the behaviors of the corresponding

segments. In this paper, we try to modify those second type of

functions and approximate the real behaviors of a segment. The

approximation is to first divide each segment into 𝑁𝑑 piecewise

parts and then evaluate the 𝑁𝑑 dividing points (the waypoint is

also regarded as one dividing point). Suppose (𝑑𝑥𝑖𝑗 , 𝑑𝑦𝑖𝑗 , 𝑑𝑧𝑖𝑗)
indicates the 𝑗th dividing point on the segment between (𝑖 − 1)th and 𝑖th waypoint, where 𝑖 = 2,3, … , 𝑁𝑤 , j =

1,2,…, 𝑁𝑑, it can be calculated as:

 (𝑑𝑥𝑖𝑗 , 𝑑𝑦𝑖𝑗 , 𝑑𝑧𝑖𝑗) = (𝑥𝑖−1, 𝑦𝑖−1, 𝑧𝑖−1) + 𝑗 ∙ ((𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) − (𝑥𝑖−1, 𝑦𝑖−1, 𝑧𝑖−1))/𝑁𝑑 (1)

 𝑁𝑑 reflects the trade-off between the computational cost and

the accuracy of approximation. Generally, the larger 𝑁𝑑 is, the

higher accuracy the approximation will have, while the

efficiency will fall. The value of 𝑁𝑑 is problem dependent, and

will be discussed in Section IV.

At the end of this section, the scheme of selecting the final

solution according to these constraints and objectives will be

presented.

A. Objective Functions

1) Minimal Path Length: For military missions, shorter path are

always preferred to longer ones, because shorter paths usually

consume less fuel and have lower chance of encountering some

unexpected threats, e.g., gusty wind and undetected enemy.

Hence, the total length of the path needs to be minimized. This

consideration leads to the objective function Path Length Ratio

(PLR) [1], [35] given by (2),

 𝑓1 = ∑ √(𝑥𝑖−𝑥𝑖−1)2+(𝑦𝑖−𝑦𝑖−1)2+(𝑧𝑖−𝑧𝑖−1)2𝑁𝑤𝑖=2√(𝑥𝑁𝑤−𝑥1)2+(𝑦𝑁𝑤−𝑦1)2+(𝑧𝑁𝑤−𝑧1)2 (2)

where (𝑥𝑖 , 𝑦𝑖,𝑧𝑖), 𝑖 = 2,3, … , 𝑁𝑤, denotes the position of the 𝑖th waypoint in the 3-D mission space, 𝑁𝑤 is the total number

of waypoints of a path (including the starting point and the

destination). Here, the path length ratio is used instead of the

absolute path length. [1] has given the reason that they are

equivalent and the former one is more admissible.

2) Minimal Probability of Kill: If a UAV is within the range of

the hostile missiles, it is at risk. Intuitively, paths with lower

probability of kill (PKill) are safer than those with higher ones.

For each dividing point, the 𝑘th, 𝑘 = 1,2, … ,𝑀 (the number

of missile), hostile missile imposes a certain probability of kill

on the UAV only if that point is inside the region defined by the

missile’s maximal risk distance (seen in Fig. 1), denoted as 𝑅𝑃𝐾𝑚𝑎𝑥𝑘 . The distance between a dividing point and the 𝑘𝑡ℎ

missile is calculated as:

 𝑑𝑖𝑠𝑖𝑗𝑘 = √(𝑑𝑥𝑖𝑗 −𝑚𝑥𝑘)2 + (𝑑𝑦𝑖𝑗 −𝑚𝑦𝑘)2 + (𝑑𝑧𝑖𝑗 −𝑚𝑧𝑘)2

 (3)

where (𝑚𝑥𝑘 , 𝑚𝑦𝑘 , 𝑚𝑧𝑘) is the given location of the 𝑘th missile.

At last, the PKill of the whole path can be calculated as:

 𝑓2 = ∑ ∑ ∑ PK𝑖𝑗𝑘𝑀𝑘=1𝑁𝑑𝑗=1𝑁𝑤𝑖=2 with

 PK𝑖𝑗𝑘 = { (𝑅𝑃𝐾𝑚𝑎𝑥𝑘)4(𝑅𝑃𝐾𝑚𝑎𝑥𝑘)4+(𝑑𝑖𝑠𝑖𝑗𝑘)4 𝒊𝒇 𝑑𝑖𝑠𝑖𝑗𝑘 ≤ 𝑅𝑃𝐾𝑚𝑎𝑥𝑘0 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 . (4)

This formulation (4) is derived from the one suggested in

[35], which is a simplified version of the real PKill in [1] where

the impact of the altitude of the UAV is neglected.

3) Minimal Risks of Radar Detection: UAV can always keep

stealthy until enemy radars detect it. The risks of radar

detection (RRD) should be as small as possible. The RRD is

technically fourth power of the distance between the dividing

point and the radar. [4] suggested a simplified version of the

real RRD. We modify it by evaluating 𝑁𝑑 dividing points for

each segment. The derived function is as follow,

 𝑓3 = ∑ ∑ ∑ RD𝑖𝑗𝑘𝑅𝑘=1𝑁𝑑𝑗=1𝑁𝑤𝑖=2 with

 RD𝑖𝑗𝑘 = {(𝛿𝑑𝑖𝑠𝑖𝑗𝑘)4 𝒊𝒇 𝑑𝑖𝑠𝑖𝑗𝑘 ≤ 𝑅𝑅𝑅𝐷𝑚𝑎𝑥𝑘0 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 (5)

where 𝑑𝑖𝑠𝑖𝑗𝑘 = √(𝑑𝑥𝑖𝑗 − 𝑟𝑥𝑘)2 + (𝑑𝑦𝑖𝑗 − 𝑟𝑦𝑘)2 + (𝑑𝑧𝑖𝑗 − 𝑟𝑧𝑘)2
 (6)

where 𝛿 is a scale of the intensity of the radar, (𝑟𝑥𝑘 , 𝑟𝑦𝑘 , 𝑟𝑧𝑘) is
the location of the 𝑘th radar, 𝑅 is the number of radars, and 𝑅𝑅𝑅𝐷𝑚𝑎𝑥𝑘 represents the maximal risk distance of missile.
4) Minimal Flight Altitude: A UAV may need to fly at a low

altitude to keep mass threats to the enemy on ground. The

formulation of Flight Altitude (FA) is directly borrowed from

[1], as follow,

Fig. 1. a 2-D illustration of the probability of kill and risks of radar

detection imposed on each dividing point. In this figure, 𝑁𝑑 = 6.

 4

 𝑓4 = ∑ FA𝑖𝑁𝑤𝑖=2 𝑤𝑖𝑡ℎ FA𝑖 = { 0 𝒊𝒇 𝑧𝑖 ≤ map(𝑥𝑖 , 𝑦𝑖) (𝑧𝑖 −map(𝑥𝑖 , 𝑦𝑖))/𝑁𝑤 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 (7)

where map(𝑥, 𝑦) is a function that returns the elevation of the

location (𝑥, 𝑦).

B. Constraints Functions

1) Maximal Turning Angle: Subject to the maneuverability of a

UAV, a path should be sufficiently smooth. This requires the

turning angle of the UAV at a waypoint to be kept small. The

turning angle is defined as the angle between its previous

direction and the current direction in the horizontal direction.

That is,

 𝑔1 = 0 𝑤ℎ𝑒𝑟𝑒 𝑔1 = ∑ 𝑐𝑖1𝑁𝑤−1𝑖=2 𝑤𝑖𝑡ℎ 𝑐𝑖1 = {1 𝒊𝒇 𝜃𝑖 > 𝜃𝑚𝑎𝑥0 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (8)

where 𝜃𝑚𝑎𝑥 is the upper limit of the turning angle, 𝜃𝑖 is the

turning angle at the 𝑖th waypoint (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑖 = 2,3, … , 𝑁𝑤. [4]

suggested a formulation of 𝜃𝑖 as follow,

 𝜃𝑖 = arccos ((𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)∙(𝑥𝑖+1−𝑥𝑖 ,𝑦𝑖+1−𝑦𝑖)𝑇‖(𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)‖∙‖(𝑥𝑖+1−𝑥𝑖 ,𝑦𝑖+1−𝑦𝑖)‖) (9)

where ‖𝑥‖ means the norm of vector 𝑥.

2) Limited UAV Slope: Similar to the turning angle, the slope

characterizes the change of flying direction in the vertical

direction, i.e., the diving or climbing angle. The slope is the

included angle between the horizontal and the direction from

the current waypoint towards the next one. For each waypoint

(𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖), 𝑖 = 2,3, … , 𝑁𝑤, [4] suggested its slope as:

 𝑟 = 𝑧𝑖−𝑧𝑖−1||(𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)|| (10)

Similarly, the slope should be in the range of the maximal

diving or climbing angle. For a feasible path, this constraint can

be depicted as (11),

 𝑔2 = 0 𝑤ℎ𝑒𝑟𝑒 𝑔2 = ∑ 𝑐𝑖2𝑁𝑤𝑖=2 𝑤𝑖𝑡ℎ 𝑐𝑖2 = {0 𝒊𝒇 𝛼 ≤ 𝑟 ≤ 𝛽1 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (11)

3) Terrain Limited: A UAV should fly above the rugged terrain

and avoid collisions against the mountains. The height of the

UAV should always be higher than the terrain below it. We

derive the following formulation from [1]. The dividing points

are also used as the segments may be in the mountains. This

constraint can be depicted as follow:

 𝑔3 = 0 where 𝑔3 = ∑ ∑ 𝑐𝑖𝑗3𝑁𝑑𝑗=1𝑁𝑤𝑖=2 𝑤𝑖𝑡ℎ 𝑐𝑖𝑗3 = {1 𝒊𝒇 𝑑𝑧𝑖𝑗 ≤ map(𝑑𝑥𝑖𝑗 , 𝑑𝑦𝑖𝑗) 0 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (12)

4) Map Limited: Before executing a mission, a certain related

mission space is usually investigated. Conversely, the areas

outside the mission space is ordinarily unknown and may

conceal unexpected dangerous, e.g., unknown hostile army.

Thus, UAV should always fly in the mission space to keep

away from uncertainties. Commonly, the mission space is

assumed as a cube. For a feasible path, it should be inside of the

cube. [1] suggested this constraint as follow,

 𝑔4 = 0 where 𝑔4 = ∑ 𝑐𝑖4𝑁𝑤𝑖=2 𝑤𝑖𝑡ℎ 𝑐𝑖4 = {0 𝒊𝒇 InRange(𝑥𝑖 , 𝑦𝑖)1 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 (13) InRange(𝑥𝑖 , 𝑦𝑖) = (𝑙𝑥 ≤ 𝑥𝑖 ≤ ℎ𝑥)⋀(𝑙𝑦 ≤ 𝑦𝑖 ≤ ℎ𝑦) (14)

where 𝑙𝑥 and ℎ𝑥 are the lower and higher bounds for 𝑥

coordinate system, and 𝑙𝑦 and ℎ𝑦 are the lower and higher

bounds for 𝑦 coordinate.

C. Selection of the Final Solution

The problem above described appears to be a Multi-objective

Optimization Problem (MOP) at the first sight as there are

several conflicting objective functions to optimize. Commonly,

a MOP outputs a set of Pareto optimal solutions, which will be

presented to human experts to determine the final solution to be

followed on by the UAV. However, this does not fit the context

of UAV path planning as no human expert is onboard to make

such a choice. Hence, a final solution should be selected for the

UAV. Usually, a common practice in the context of UAV is to

integrate different objectives. In the literature, some previous

work solve this problem by using weighted sum [4], [9],

[19]-[21]. However, those weighted parameters appear very

difficult to fine-tune as different objectives are in different

scales. In this paper, we adopt a more intuitive scheme

proposed in [1]. This scheme considers different human

preferences to the objectives. Detailedly, this scheme takes two

cases into account:

1) For all the feasible paths such that 𝑓2=0, i.e., there is no

chance for the UAV to be destroyed. The path with the smallest 𝑓1, i.e., path length, is selected as the final output. If there exist

more than one path sharing the same value of 𝑓2 and 𝑓1, we

randomly select one of them as the final best output. This is

because the objectives Minimal Probability of Radar Detection

and Minimal Flight Altitude looks equally important to the

UAV.

2) For all the feasible paths such that 𝑓2> 0, i.e., it is probably

that the UAV will be destroyed. We first calculate the relative 𝑓2𝑖 of each 𝑖th path as 𝑟𝑓2𝑖= 𝑓2𝑖/min𝑖(𝑓2𝑖). Then, the paths with 𝑟𝑓2𝑖 ≥V (for example, with V =1.05) are discarded, which

makes the non-discarded 𝑗th paths have a value of 𝑓2𝑗 that is

insignificantly larger than the minimum. At last, the path with min𝑗(𝑓1𝑗) is selected. Therefore, the final output has a 𝑓2 that is

a bit larger than the minimum, as well as a reasonable path

length 𝑓1.

III. THE PROPOSED PLANNER

 5

Most of these EA-based approaches adopt a similar iterative

search framework. That is, a candidate solution to the path

planning problem is encoded as a real-valued vector that

represents the positions of all the waypoints, and the optimal

path is iteratively searched in the corresponding real space. At

each iteration, a number of candidate paths are generated and

evaluated with respect to the objective functions and

constraints. Only those paths with higher fitness will be

maintained, based on which new candidate paths will be

generated by applying some search operators to the maintained

paths. The search process terminates when the optimal (or

sufficiently good) solution is obtained or a given time budget is

reached. The above-described EA-based approaches have

shown to be very effective for UAV path planning when

obstacles in the mission space are few. However, when the

obstacles increase, those planners usually fail. This results from

the common disadvantage that the high quality waypoints in

previous candidate paths appear very difficult to exploit. To be

specific, a path is optimal only if all its waypoints are at optimal

positions. When searching for the optimal path, it is unlikely

that the optimal positions for all waypoints can be obtained

simultaneously (e.g., in the same iteration). Instead, it is highly

possible that one candidate path consists of good positions for

some waypoints, while the other waypoints are assigned good

positions in another candidate path. In other words, waypoints

in a candidate path may be of different quality. However,

existing EA-based approaches are unable to identify such

differences. Intuitively speaking, all waypoints of a “bad” path
will be regarded as “bad” waypoints and vice versa. Such a
search behavior will make it difficult to exploit high quality

waypoints in previous candidate paths and eventually lead to an

inefficient search.

During the investigation of the UAV path planning problems,

it has been noticed that most of the commonly used objective

and constraint functions are separable on waypoints. This fact

enlightens us that if we can explicitly decompose those

evaluation functions and design a new evolution strategy that

can be used to evolve each single waypoint, the waypoints can

be evaluated and evolved separately and thus high quality

waypoints can be exploited to improve the performances of the

whole candidate paths. Inspired by the above considerations, a

new EA-based path planner is proposed. Instead of searching

for the feasible path as a whole, the proposed path planner

evaluates and evolves each waypoint separately. Detailedly, at

each generation, for each path 𝑗, its waypoints are separately

evolved in an ascending order, i.e., the (𝑖 + 1)th waypoint will

be evolved after the 𝑖th one has been evolved, 𝑖 = 2,3, … , 𝑁𝑤 − 1 . For the 𝑖th waypoint of the 𝑗th path, its

offspring is generated by referring to the 𝑖th waypoints of all

the other candidate paths, 𝑖 = 2, 3, … , 𝑁𝑤 − 1 , 𝑗 = 1,2, … , 𝑁𝑝 . In this way, the information of the other 𝑖th

waypoints in the population can be explicitly exploited to

improve the quality of the currently being evolved 𝑖th waypoint.

After a new offspring is produced, it is asked to compete with

its parent for survival based on their fitness values. To evaluate

the waypoints, a set of new evaluation functions are derived

from the commonly used functions introduced in Section II.

The evolution of each single waypoint is performed by a

state-of-the-art Differential Evolution (DE), JADE. The

diagram of the evolution of waypoints is illustrated in Fig. 2.

The evolution of each waypoint, i.e., the inner loop in Fig. 2, is

only executed once at each generation here. Ideally, it can be

executed any fixed times, say 𝑁. As the larger 𝑁 is, more local

information of the waypoint can be used and the new produced

waypoint may be with better quality. However, the efficiency

of optimization will drop as more time budgets are required for

the local improvements. For simplification and efficiency, here

we set 𝑁=1. A widely used multi-criteria handling method is

also used to select the evaluated waypoints. To further enhance

the performance of the proposed planner, a recently proposed

3-D coordinate system [29] is also employed to encode the

waypoints.

In the EAs framework, a path planner usually consists of

several key components, i.e., evaluation, reproduction,

selection and path representation. To detailedly introduce the

proposed planner, each key component is described one by one

in this section.

A. New Evaluation Functions

Each waypoint should be evaluated before evolution.

However, the above-mentioned evaluation functions cannot be

adopted in our framework as they can only be used for

evaluating the global states of a path. Fortunately, those

Fig. 2 The framework of the proposed path planner. 𝑁𝑤 is the number of

waypoints of a path and 𝑁𝑝 is the number of paths.

 6

commonly used evaluation functions are found separable on

waypoints. The reason is that those objectives restrict the flight

of the UAV at the geometric level, where most objects

concerned are the points, segments and angles, which are all

separable on points, i.e., waypoints. To be specific, the

behavior of a waypoint usually depends on, except for itself,

one or two neighbor waypoints. For example, the Minimal Path

Length and Maximal Turning Angle involve three waypoints,

i.e., the previous neighbor, the current waypoint and its

successive neighbor, while the rest functions require the

information about the current waypoint and its previous

neighbor. In the framework of the proposed planner, as the

waypoints of a new candidate path are produced in sequence,

the knowledge of the previous neighbor can easily be obtained

as they are produced earlier, while the information about the

successive neighbor is unknown. Considering this, the two

rules are given as below:

1) For the evaluation function involving two waypoints, its

local version is calculated relevant to the previous neighbor and

the current waypoint.

2) For the evaluation function involving three waypoints, its

local version is calculated relevant to the previous neighbor, the

current waypoint and the destination.

The idea behind the second rule is driven by: suppose all the

previous waypoints have been determined and the current

waypoint is the last intermediate waypoint, where should it be?

Although this idea sounds a bit greedy and the transcribed local

versions are only approximations of their global ones, it works

well as we will see later in the simulation results.

Based on the two rules, the new evaluation functions, i.e.,

local versions, are introduced as follows.

1) Minimal Path Length: As seen in Fig. 3, for the 𝑖th waypoint

(𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖), the PLR is calculated as follows:

 𝑓′1,𝑖 = √(𝑥𝑖−𝑥𝑖−1)2+(𝑦𝑖−𝑦𝑖−1)2+(𝑧𝑖−𝑧𝑖−1)2√(𝑥𝑁𝑤−𝑥𝑖−1)2+(𝑦𝑁𝑤−𝑦𝑖−1)2+(𝑧𝑁𝑤−𝑧𝑖−1)2

 + √(𝑥𝑁𝑤−𝑥𝑖)2+(𝑦𝑁𝑤−𝑦𝑖)2+(𝑧𝑁𝑤−𝑧𝑖)2√(𝑥𝑁𝑤−𝑥𝑖−1)2+(𝑦𝑁𝑤−𝑦𝑖−1)2+(𝑧𝑁𝑤−𝑧𝑖−1)2 (15)

2) Minimal Probability of Kill: Given the location of the 𝑘th

missile (𝑚𝑥𝑘 , 𝑚𝑦𝑘 , 𝑚𝑧𝑘), the PKill of the 𝑖th waypoint

(𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖) can be calculated as:

 𝑓′2,𝑖 = ∑ ∑ PK𝑖𝑗𝑘𝑀𝑘=1𝑁𝑑𝑗=1 (16)

where PK𝑖𝑗𝑘 can be calculated following (4).

3) Minimal Risks of Radar Detection: Given the 𝑘th radar

(𝑟𝑥𝑘 , 𝑟𝑦𝑘 , 𝑟𝑧𝑘), the RRD of the 𝑖th waypoint (𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖) can be

calculated as:

 𝑓′3,𝑖 = ∑ ∑ RD𝑖𝑗𝑘𝑅𝑘=1𝑁𝑑𝑗=1 (17)

where RD𝑖𝑗𝑘 can be calculated following (5).

4) Minimal Flight Altitude: For the 𝑖th waypoint (𝑥𝑖 , 𝑦𝑖,𝑧𝑖), the

FA is calculated as follows:

 𝑓′4,𝑖 = FA𝑖 (18)

where FA𝑖 can be calculated following (7).

5) Maximal Turning Angle: As seen in Fig. 4, the turning angle

of the 𝑖th waypoint can be calculated as follow,

 𝜃𝑖 = arccos ((𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)∙(𝑥𝑁𝑤−𝑥𝑖 ,𝑦𝑁𝑤−𝑦𝑖)𝑇‖(𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)‖∙‖(𝑥𝑁𝑤−𝑥𝑖 ,𝑦𝑁𝑤−𝑦𝑖)‖). (19)

The constraint of waypoint (𝑥𝑖 , 𝑦𝑖,𝑧𝑖) can be written as:

 𝑔′1,𝑖 = 0 where 𝑔′1,𝑖 = {1 𝒊𝒇 𝜃𝑖 > 𝜃𝑚𝑎𝑥0 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 (20)

Fig. 3 A 2-D illustration of the 𝑖th and (𝑖 + 1)th waypoints’ PLR, where the

circles indicate the evolved waypoints and the start means the current waypoint

to be served.

Fig. 4 A 2-D illustration of the 𝑖th and (𝑖 + 1)th waypoints’ turning angle,
where the circles indicate the evolved waypoints and the start means the current

waypoint to be served.

 7

6) Limited UAV Slope: For each waypoint (𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖), 𝑖 = 2,3, … , 𝑁𝑤 -1, its slope can be calculated as (10), and the

constraint of waypoint (𝑥𝑖 , 𝑦𝑖,𝑧𝑖) can be written as:

 𝑔′2,𝑖 = 0 𝑤ℎ𝑒𝑟𝑒 𝑔′2,𝑖 = {0 𝒊𝒇 𝛼 ≤ 𝑟 ≤ 𝛽1 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 (21)

7) Terrain Limited: This constraint of the 𝑖th waypoint

(𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖), 𝑖 = 2,3, … , 𝑁𝑤-1, can be transribed as:

 𝑔′3,𝑖 = 0 where 𝑔′3,𝑖 = ∑ 𝑐𝑖𝑗3𝑁𝑑𝑗=1 𝑤𝑖𝑡ℎ 𝑐𝑖𝑗3 = { 1 𝒊𝒇 𝑑𝑧𝑖𝑗 ≤ map(𝑑𝑥𝑖𝑗 , 𝑑𝑦𝑖𝑗) 0 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (22)

8) Map Limited: The penalty of the 𝑖th waypoint (𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖), 𝑖 = 2,3, … , 𝑁𝑤-1, on this constraint can be calculated as follows,

 𝑔′4,𝑖 = 0 where 𝑔′4,𝑖 = 𝑐𝑖4 𝑤𝑖𝑡ℎ 𝑐𝑖4 = {0 𝒊𝒇 InRange(𝑥𝑖 , 𝑦𝑖)1 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 (23)

 Notice that, for the new evaluation functions transcribed by

the first rule, the behaviors of the last segment, from the (𝑁𝑤 − 1)th waypoint to the destination, should be laid on the

waypoint the (𝑁𝑤 − 1)th waypoint as well. This is reasonable

as the (𝑁𝑤 − 1)th waypoint determines the last two segments.

B. Reproduction and Selection

In the proposed planner, the reproduction component is
independent of the other components, e.g., selection, evaluation
and representation. Ideally, any strategy of reproduction can be
adopted to drive the evolution. Here, JADE [30], one
state-of-the-art variant of Differential Evolution (DE), is
employed to evolve waypoints. DE is arguably one of the most
powerful stochastic real-parameter optimization algorithms and
its variants have been widely used in solving many real world
problems [31]. DE shares the same framework with traditional
EAs. Within this framework, DE employs a differential
mutation operator that creates trial vectors (individuals) by
adding the weighted difference vector between two individuals
to a third one. This novel mutation strategy turns out to be very
efficient. In recent years, DE has been extensively studied and
lots of variants have been proposed [31]. Among them, JADE
[30] is undoubtedly one of the state-of-the-art variants. JADE is
an adaptive version of DE that requires very few parameters to
be tuned.

It is very easy to implement JADE into the proposed path

planner. For intuition, we first list the framework of the

proposed path planner in Table I and then explain them in

details. In the pseudo code, each waypoint is denoted as 𝑥𝑗,𝑖𝑡 ,

where 𝑖 = 2,3, …𝑁𝑤 − 1; 𝑗 = 1,2, …𝑁𝑝 , which means the 𝑖th

waypoint of the 𝑗th path at the 𝑡th generation. And 𝑥𝑗,𝑖,𝑚𝑡 , where 𝑚 = 1,2,3, means the 𝑚th coordinate value of waypoint 𝑥𝑗,𝑖𝑡 ,

i.e., the 𝑥, 𝑦, 𝑧 coordinate, respectively. 𝜇𝐶𝑅𝑖 and 𝜇𝐹𝑖 are

adaptive parameters for updating 𝐶𝑅 and 𝐹 , i.e., two key

parameters for crossover and mutation, for the 𝑖th waypoints.

Steps 9 to 12 describe the mutation scheme: firstly, three

distinct 𝑖th waypoints are randomly selected from the whole

population at the 𝑡th generation, denoted as 𝑥𝑞𝑏𝑒𝑠𝑡 , 𝑥𝑟1 and 𝑥𝑟2,

respectively. Specifically, 𝑥𝑞𝑏𝑒𝑠𝑡 must be selected from the top 𝑞% of the 𝑖th waypoints. The value of 𝑞 is usually chosen from [5, 20]. The term 𝑥1:𝑁𝑝,𝑖𝑡 indicates all the 𝑖th waypoints at the 𝑡th generation. Strictly, the selected waypoint 𝑥𝑞𝑏𝑒𝑠𝑡 may not

be the best reference for generating offspring for the waypoint 𝑥𝑗,𝑖𝑡 . This is because the good behavior of 𝑥𝑞𝑏𝑒𝑠𝑡 is referred to a

path different from the 𝑗th path and a good waypoint of one

path may not be good in the other path. Nevertheless, this

mutation scheme is still reasonable: at the early stage of the

search process, candidate paths are quite diverse. Although the

feasibility of the segment from 𝑥𝑗,𝑖−1𝑡 to 𝑥𝑞𝑏𝑒𝑠𝑡 cannot be

guaranteed, the location of 𝑥𝑞𝑏𝑒𝑠𝑡 is at least in the good (or even

feasible) regions. This information provides a bias for the

generated offspring towards the feasible regions. This stage can

be seen as the coarse tuning. As the optimization goes on,

waypoints in each order will gradually converge and candidate

paths will get closer to each other. At this stage, the information

of 𝑥𝑞𝑏𝑒𝑠𝑡 can be used to fine tune the waypoints and gradually

drive the segments to feasibility.

 With this mutation scheme, a new potential waypoint 𝑣𝑗,𝑖𝑡 is

generated by step 12. After that, the crossover scheme is from

steps 13 to 20 with respect to the three coordinates. The

evaluation and ranking is at step 21, where the parent waypoint

and offspring waypoint are asked to compete for survival. As

introduced in the subsection III.A, the evaluations of the parent

and offspring waypoints are in relation to their common

previous waypoint 𝑥𝑗,𝑖−1𝑡 , and the destination if necessary. The

ranking of the parent and its offspring in terms of their

evaluation values will be introduced later in this subsection. At

step 24, 𝑆𝐶𝑅𝑖 and 𝑆𝐹𝑖 record the value of 𝐶𝑅 and 𝐹 of successful

reproduction where offspring is better than its parent. The

update scheme is shown in step 29 and 30, where mean𝐴(𝑆𝐶𝑅𝑖)
is the ordinary arithmetic mean and mean𝐿(𝑆𝐹𝑖) is the Lehmer

mean that is

 mean𝐿(𝑆𝐹𝑖) = ∑ 𝐹2𝐹∈𝑆𝐹𝑖∑ 𝐹𝐹∈𝑆𝐹𝑖 . (24)

Parameter c is used to control the adaptation of 𝜇𝐶𝑅𝑖 and 𝜇𝐹𝑖 .

The authors of [30] suggest that 𝑐 works well if it is chosen

within the range of [0.05, 0.2]. In this work, we set 𝑐 as 0.1.

After 𝜇𝐶𝑅𝑖 and 𝜇𝐹𝑖 are updated, the parameters 𝐶𝑅 and 𝐹 are

adaptively generated in step 8, where randn(𝜇𝐶𝑅𝑖 , 0.1) is the

Gaussian distribution with mean 𝜇𝐶𝑅𝑖 and standard deviation

0.1. randc(𝜇𝐹𝑖 , 0.1) represents the Cauchy distribution with

mean 𝜇𝐹𝑖 and scale parameter 0.1. Step 32 indecates the next

generation starts.

The parent waypoint and new reproduced waypoint are

evaluated at step 21. After evaluation, they will compete for

 8

survival by comparing their fitness. However, it is not intuitive

for such a comparison as each waypoint receives a vector of

fitness values rather than a scalar. To deal with this difficulty,

most previous work try to combine the fitness vector into a

scalar with some weight parameters [4], [9], [19]-[21].

However, those weight parameters appear very difficult to

fine-tune as different constraints and objectives are in different

scales. In this paper, a multi-criteria handling method [33]

based on the priorities is adopted to select the best waypoint,

which has already been used in [1], [29] and [34]. In fact, we

have already introduced a priorities based selection scheme in

Section II. However, it cannot be adopted here as it is used to

select the best path for output rather than a temporarily better

waypoint. The first step of the waypoint selection scheme is to

place all these 8 constraints and objectives in different priority

levels, which reflects the human preferences. To be specific, 4

constraints are placed in the highest level as they must be

satisfied. PL and PKill that should be firstly minimized are

placed in the second level and RRD and FA are placed in the

lowest level. Then, a waypoint 𝑎 is said to dominate waypoint 𝑏, only if one of the following situations happen:

1) 𝑎 and 𝑏 are all feasible and 𝑎 dominates 𝑏 based on the

criteria in second level.
2) 𝑎 and 𝑏 are all feasible and 𝑎 cannot dominate 𝑏 based on

the criteria in second level, but 𝑎 dominates 𝑏 based on the

criteria in lowest level.
3) 𝑎 is feasible but 𝑏 is not.

4) 𝑎 and 𝑏 are all infeasible, while 𝑎 dominates 𝑏 based on

the criteria in the highest level.
If waypoint 𝑎 dominates waypoint 𝑏 , 𝑎 is selected as the

survivor, and vice versa. If 𝑎 and 𝑏 cannot dominate each other,

we will keep the parent waypoint alive.

C. Representation of Waypoints

In most existing work, the waypoint is usually represented as

a 3-D coordinate within a Cartesian coordinate system or a

polar coordinate system in previous work. Recently, [29]

discussed the shortage of these two coordinate systems, either

generating very large search spaces or appearing very difficult

for local controls, e.g., mutation and crossover. To solve these

problems, [29] proposed a new coordinate system. The new

coordinate system (𝑥’, 𝑦’, 𝑧’), is actually a rotation of the

Cartesian coordinate system (𝑥, 𝑦, 𝑧), where its x’ axis lies

along the horizontal direction from the start to the destination

and y’ keeps being orthogonal to x’ axis, and z’ axis stays the

same with z axis. A 2-D illustration of the relation between

these two coordinate systems is shown in Fig. 5. For any

waypoint (𝑥𝑖′, 𝑦𝑖′, 𝑧𝑖′), 𝑖=1,2,…𝑁𝑤, in rotated coordinate system,

its codification in Cartesian coordinate system, (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), is

mathematically defined as follows:

{
 𝑥𝑖 = 𝑥1 + cos (𝜑 + 𝜙) ∙ √𝑥𝑖′2 + 𝑦𝑖′2𝑦𝑖 = 𝑦1 + sin(𝜑 + 𝜙) ∙√𝑥𝑖′2 + 𝑦𝑖′2𝑧𝑖 = 𝑧𝑖′

 (25)

where 𝜑 is the angle included by the direction from start to

waypoint and x’ axis, and 𝜙 is the angle between x’ axis and x

axis. According to (25), for example, the codifications of the

start and destination in the rotated coordinate system are

(0, 0, 𝑧1) and (√(𝑥𝑁𝑤 − 𝑥1)2 + (𝑦𝑁𝑤 − 𝑦1)2, 0 , 𝑧𝑁𝑤),

respectively.

Fig. 5.The adopted coordinate system is a rotation of Cartesian coordinate.

Table I: The Framework of The Proposed Path Planer

1 Begin

2 Set 𝑡 = 1; 𝜇𝐶𝑅𝑖 = 0.5; 𝜇𝐹𝑖 = 0.5; 𝑖 = 2,3,…𝑁𝑤 − 1.

3 Uniformly generate 𝑁𝑝 candidate paths, of which each

waypoint is denoted as 𝑥𝑗,𝑖𝑡 . 𝑗 = 1,2,…𝑁𝑝.

4 repeat until a fixed number of generations runs out

5 Set 𝑆𝐹𝑖 = 𝜙; 𝑆𝐶𝑅𝑖 = 𝜙;
6 For j = 1 to 𝑁𝑝

7 For i = 2 to 𝑁𝑤 − 1

8 𝐶𝑅 = randn(𝜇𝐶𝑅𝑖 , 0.1), 𝐹 = randc(𝜇𝐹𝑖 , 0.1);
9 Randomly choose 𝑥𝑞𝑏𝑒𝑠𝑡 from the 𝑞% “best”

waypoints of 𝑥1:𝑁𝑝,𝑖𝑡 .

10 Randomly choose 𝑥𝑟1 ≠ 𝑥𝑗,𝑖𝑡 from 𝑥1:𝑁𝑝,𝑖𝑡 .

11 Randomly choose 𝑥𝑟2 ≠ 𝑥𝑟1 ≠ 𝑥𝑗,𝑖𝑡 from 𝑥1:𝑁𝑝,𝑖𝑡 .

12 𝑣𝑗,𝑖𝑡 = 𝑥𝑗,𝑖𝑡 + 𝐹 ∙ (𝑥𝑞𝑏𝑒𝑠𝑡 − 𝑥𝑗,𝑖𝑡) + 𝐹 ∙ (𝑥𝑟1 − 𝑥𝑟2).
13 Generate 𝑚rand = randint(1,3);

14 For m = 1 to 3

15 If m = 𝑚rand or rand(0,1) < 𝐶𝑅

16 𝑢𝑗,𝑖,𝑚𝑡 = 𝑣𝑗,𝑖,𝑚𝑡 ;

17 Else

18 𝑢𝑗,𝑖,𝑚𝑡 = 𝑥𝑗,𝑖,𝑚𝑡 ;

19 End

20 End

21 If f(𝑥𝑗,𝑖−1𝑡 , 𝑥𝑗,𝑖𝑡) ≤ f(𝑥𝑗,𝑖−1𝑡 , 𝑢𝑗,𝑖𝑡)

22 𝑥𝑗,𝑖𝑡+1 = 𝑥𝑗,𝑖𝑡 ;

23 Else

24 𝑥𝑗,𝑖𝑡+1 = 𝑢𝑗,𝑖𝑡 ; 𝐶𝑅 → 𝑆𝐶𝑅𝑖 , 𝐹 → 𝑆𝐹𝑖
25 End

26 End

27 End

28 For i = 2 to 𝑁𝑤 − 1

29 𝜇𝐶𝑅𝑖 = (1 − 𝑐) ∙ 𝜇𝐶𝑅𝑖 + 𝑐 ∙ mean𝐴(𝑆𝐶𝑅𝑖);
30 𝜇𝐹𝑖 = (1 − 𝑐) ∙ 𝜇𝐹𝑖 + 𝑐 ∙ mean𝐿(𝑆𝐹𝑖);
31 End

32 t = t + 1;

33 End

34 End

 9

 Within the rotated coordinate system, an external restriction

is imposed on the encoded paths. This restriction forces the 𝑥′
coordinates of waypoints along the paths to be monotone

increasing. With this restriction, the search space can be

significantly reduced. To be specific, as the waypoints along

the x′ axis will not intersect, the search space can be explicitly

equally divided into 𝑁𝑤 − 2 subspaces along the x′ axis. And

within each subspace, the 𝑁𝑤 − 2 corresponding intermediate

waypoints will be generated. Consequently, the whole search

space has been reduced for (𝑁𝑤 − 2)𝑁𝑤−2 times. Some other

researchers [35] have also noticed the advantage of this

restriction, and a quite similar rotated coordinate system has

been adopted. Although this advantage is attractive, this

restriction compromises the flexibility of the planners as the

UAV cannot go backward. In relation with this shortage, the

researchers briefly mentioned in [35] that there are very few

cases where a UAV needs to go backward to bypass the

obstacles. In fact, such cases only happen at the beginning of

the flight and at the end of the path. The cause of this case is that

the angle 𝜂1, included by the x′ axis and the line-of-sight (LOS)

between the start/destination and the edge of the obstacles, is

larger than 90°. From this point of view, we can easily remedy

this limitation by artificially inserting an Intermediate Fixed

point (IF) somewhere safe, so that the new angle 𝜂2 at the IF is

smaller than 90°, as seen in Fig. 6. The angle 𝜂2 is defined as

the included angle between the LOS from the IF to

start/destination and the LOS from the IF to the edge of the

obstacles. After that, the original path planning problem can be

solved as two sub-problems from the start to the IF and from the

IF to the destination, as illustrated with the dot line in Fig. 6.

The use of IF is not a new idea as it has been used in [1] to

control the B-spline curves. The proper location for IF is

usually very easy to obtain. Although the artificial insertion

slightly decreases the autonomous capacity of the proposed

planner, it is still worthwhile, considering its contribution to the

reduction of the search space.

Note that the waypoints are encoded in rotated coordinate

system through the whole search process. However, since the

new evaluation functions require the Cartesian coordinate

encoded waypoints, it is necessary to generate a Cartesian

coordinate copy of those waypoints according to (25) as the

inputs of the evaluation phase.

IV. SIMULATION RESULTS

Ideally, by evolving waypoints separately, the waypoints

with better quality can be better exploited to guide the evolution.

To verify its actual ability, the proposed planner is asked to

handle different scenarios with increasing obstacles. In each

scenario, the proposed planner is compared with 7 compared

planners from different viewpoints. The superiorities of the

proposed planner over the compared planners are shown based

on the effectiveness and efficiency. To test how the evaluation

accuracy influences the proposed planner, the impacts of the

number of dividing points, i.e., 𝑁𝑑, is also analyzed and tested.

The sensitive analysis is also given for a proper choice of the

only EA-related parameter, i.e., 𝑁𝑤. Lastly, we clarify that the

proposed planner is insensitive to the quality of the initialized

solutions.

A. Scenarios Description

In the field of path planning for UAVs, there are no widely

accepted benchmark problems. Hence, we have designed 5

scenarios with different numbers of obstacles for the simulation.

Detailedly, the scenarios consist of three key components, i.e.,

terrain, obstacles and the start as well as the destination. The

terrain here is represented as the landscape of a variant of the

well-known Foxhole Shekel optimization problem (seen in Fig.

7), formulated as (26).

 ℎ(𝒙) = ∑ 0.1∑ (𝑥𝑗−𝑎𝑖𝑗)2+𝑐𝑖2𝑗=130𝑖=1 (26)

where parameters 𝒂 and 𝒄 are employed to vary the landscape.

The reason of adopting this terrain is that the landscape appears

very rugged and the local optima can be imaged as “mountains”
in real life, which is similar to the real terrain. The mission

space is limited within the space of [0,10] × [0,10] × [0,1.5].
The obstacles are the zones that are dangerous and even

prohibited for the UAV to fly through. In our scenarios, the

obstacles are depicted as the range of hostile missiles and

mountains. The number of obstacles is varied by randomly

setting the missiles on the ground in the range of [1,9] × [1,9].

Fig. 6.The inserted fixed point can remedy the limitation of the external

restriction. The left figure shows the situation where the start is crowded by

obstacles. While the right figure shows the situation at the destination. The
solid lines are LOSs from the UAV to the destination or the edge of

obstacles. The dotted lines are the possible paths for the UAV.

Fig. 7.The landscape of Modified Foxholes Shekel problem consists of

some mountains and valleys, which is close to a real terrain.

 10

Specifically, the number of missiles in the 5 scenarios is set as 7,

15, 30, 60 and 120, respectively. For each missile, a coupled

radar is set aside the missile. The diameters of the range of

missiles and radar detections are set 0.5 and 1.5, respectively.

The start position of mission is set at (0.5, 0.5, ℎ([0.5, 0.5]))
and the destination is set at (9.6, 9.6, ℎ([9.6, 9.6])).
B. Compared Algorithms

In the literature, there are quite a few related work focusing

on planning obstacles-free paths. In this simulation, we select 3

recently proposed EA-based planners as the first group of

compared algorithms, denoted as planner A, B and C,

respectively. The aim of this group of comparisons is to show

the effectiveness and efficiency of the proposed planner.

Planner A [1] was based on Genetic Algorithms (GAs). The

candidate paths were first initialized in Polar coordinate system

and then evolved in the Cartesian coordinate system. The

evolution was processed by a single-point crossover and

Gaussian mutation. The immigrants were also included.

Planner B [29] encoded the candidate paths in the rotated

coordinate system. Within such a codification, the evolution

process was driven by a simple Estimation of Distribution

Algorithm (EDA), i.e., UMDAc . [34] suggested a set of

comparison measures for UAV path planning. By using these

measures, a lot of EA-based variants, including GAs, DEs and

Particle Swarm Optimizations (PSOs) were compared. Among

them, two DE-based approaches, i.e., D14 and D15 in [34],

were found most effective. As D14 and D15 perform generally

the same, we thus simply employ D15 as the compared planners

C. Planner C encodes the candidate paths in Cartesian

coordinate system. A DE/rand/1/bin reproduction strategy is

used to evolve the candidate paths. All these three planners

employ the same selection strategy with the proposed planner.

Despite of the first comparison group, two variants of the

proposed planner were also employed as compared planners.

The purpose of this comparative study is to show how the

proposed separate evolution idea improves the performance of

path planning. We denote these 2 planners as Planner D and E,

respectively. Both these 2 planners use the same selection

strategy and EA, i.e., JADE, with the proposed planner.

Specifically, Planner D encodes the waypoints in the rotated

coordinate system with external restriction as the proposed

planer does, while it excludes the proposed separate evolution

strategy. Instead, it evolves the whole candidate path as the

existing work does. Planner E evolves the waypoints separately

as the proposed planner does, but it encodes the waypoints in

the ordinary Cartesian coordinate system.

There are two kinds of parameters for planners, i.e.,

non-EA-related parameters and EA-related parameters. One

typical non-EA-related parameter is the number of waypoints

in a path, i.e., 𝑁𝑤 . In the UAV path planning problems, a

candidate path is usually represented as a sequence of

waypoints. This candidate path is in fact an approximation to a

real flight. From this point of view, more waypoints can keep

the candidate path closer to a real flight. However, the search

space will be too large and both the effectiveness and efficiency

of the planner will fall. To balance this trade-off, there is no

widely acknowledged criterion for choosing an optimal 𝑁𝑤 .

Instead, the existing planners usually select a rather small 𝑁𝑤

that sufficiently guarantees the feasibility of candidate paths.

This idea is also used in this paper to set 𝑁𝑤. In our simulation,

the increasing obstacles in 5 scenarios lead to increasingly

narrower and more zigzag feasible passageway for the UAV.

To keep the path sufficiently smooth and safe, 𝑁𝑤 should be

increased for the scenarios with more obstacles. Thus, by

testing several different possible values, we find some feasible 𝑁𝑤, i.e., 𝑁𝑤 =7, 10, 12, 15 and 20, for the proposed planner in

the corresponding scenarios with 7, 15, 30, 60 and 120

obstacles, respectively. Taking the scenario with 7 obstacles as

an example, we tested the proposed planner with 𝑁𝑤 = 4, 7, 10.

We found that 𝑁𝑤 = 4 cannot guarantee good performances of

the proposed planner, while 𝑁𝑤 = 10 requires much more

computational time. Hence, we set 𝑁𝑤 = 7 for that scenario.

Generally speaking, some other values of 𝑁𝑤 can also be used

as long as the feasibility of candidate paths and the

computational efficiency can be guaranteed.

Relating to 𝑁𝑤, another non-EA-related parameter is 𝑁𝑑, i.e.,

the number of dividing points in each segment. Recall that the

purpose of using dividing points is to detect the violations of

segments regarding the missiles, radars and mountains. If the

interval between two adjacent dividing points is smaller than

the range of missiles, radars and mountains, the violations of

segment are highly possible to be detected. This geometric

relation can be depicted as follow,

 𝑃𝐿(𝑁𝑤−1)∙𝑁𝑑 < 𝐷 (27)

where 𝑃𝐿 is the path length and 𝐷 is the minimal diameter of

the range of missiles, radars or mountains. The ranges of

mountains are usually larger than 0.5, i.e., the diameter of the

range of missiles. Hence, we set 𝐷 = 0.5. The smallest 𝑁𝑤, i.e.,

7, and the largest feasible path length, which is 1.5 times of the

distance between start and destination, are also considered. The

value 1.5 is the preference of Minimal Path Length Ratio, as

shown in Table III. According to (27), we have 𝑁𝑑 > 4 .

Generally, 𝑁𝑑 reflects the trade-off between accuracy of

evaluations and computational cost. The larger 𝑁𝑑 is, the

higher accuracy of evaluations we can get, while the efficiency

will fall. In this simulation, we simply set 𝑁𝑑 = 6 for all the

planners. Furthermore, we also test the proposed planner with 𝑁𝑑 = 12 and 𝑁𝑑 = 18 to see how 𝑁𝑑 influences the planner.

The EA-related parameters of planners A and C are those

suggested in the original work [2] and [34]. In [29], the

EA-related parameters of planner B, i.e., population size, are

problem-dependent. For the purpose of unifying the population

sizes in different scenarios, they are set as 200 in this paper. The

EA-related parameters of Planners D and E are set the same

with the proposed planner. As all the components of the

proposed planner are parameterless, there is actually only one

EA-related parameter to be fine-tuned, i.e., the population size 𝑁𝑝. After a set of parameter sensitive analyses (which will be

discussed later), 𝑁𝑝 is set to 10. For intuition, the parameter

settings of these 8 planners are listed in Table II, where 𝑁𝑒𝑤6,

 11

𝑁𝑒𝑤12 and 𝑁𝑒𝑤18 are the proposed planner with 𝑁𝑑 =6, 12, 18, respectively.

TABLE II. PARAMETER SETTINGS

Planners Parameters

A 𝑁𝑝=30, 𝑁𝑠=12, 𝑃𝑐=0.75, 𝑃𝑚=0.008, 𝐶𝑚𝑠=0.1, 𝐶𝑚𝑏=0.5; 𝑁𝑑=6

B 𝑁𝑝=200, 𝑁𝑠=100; 𝑁𝑑=6

C 𝑁𝑝 = 100, 𝐹𝑚𝑖𝑛 = 0.1, 𝐹𝑚𝑎𝑥 = 0.8; 𝑁𝑑=6

D 𝑁𝑝=10; 𝑁𝑑=6

E 𝑁𝑝=10; 𝑁𝑑=6 𝑵𝒆𝒘𝟔 𝑁𝑝=10; 𝑁𝑑=6 𝑵𝒆𝒘𝟏𝟐 𝑁𝑝=10; 𝑁𝑑=12 𝑵𝒆𝒘𝟏𝟖 𝑁𝑝=10; 𝑁𝑑=18

C. Performances Measures

Through the whole simulations, the best path of each planner

in each scenario is output when 100 generations run out. All the

results are obtained by repeating 𝑁𝑟=25 runs on the Matlab

2012b software on a windows-8 personal computer with

i3-2350 @ 2.30GHz CPU and 2GB RAM.

To compare the final outputs, generally, most of the previous

work lack of a statistical analysis. This situation makes the

comparison among UAV planners far from rigorous.

Fortunately, some researchers [34] have noticed this gap and

suggested several metrics for statistical comparison in UAV

path planning domain. In this paper, we adopt one of them, i.e.,

the Statistical Front-Dominance Ranking Procedure (SFDRP)

metric to measure the ability of the 8 planners. SFDRP

measures the performances of two planners, for example,

planner A and B, to see if they are statistically different by

comparing their final outputs in terms of corresponding

objectives and constraints. The term (◇𝐴𝑙𝐵1:𝑁𝑟) counts the

numbers of the best path of the 𝑙th run obtained by planner A is

dominated by each of the 𝑁𝑟 best paths obtained by planner B

and vice versa (◇𝐵𝑙𝐴1:𝑁𝑟) . To be detailed, ◇𝐴𝑙𝐵1:𝑁𝑟 =∑ 𝐼𝑐(𝐴𝑙 ≺ 𝐵𝑚)𝑚=1:𝑁𝑟 and ◇𝐵𝑙𝐴1:𝑁𝑟 = ∑ 𝐼𝑐(𝐵𝑙 ≺ 𝐴𝑚)𝑚=1:𝑁𝑟 ,

where 𝐼𝑐(⋅) is the indicator function that returns 1 if the input

condition is true and 0 otherwise, and A ≺ B means B

dominates A. Then, the non-parametric Wilcoxon rank sum test

is applied to the vectors [◇𝐴1𝐵1:𝑁𝑟 + 1,◇𝐴2𝐵1:𝑁𝑟 + 1,… ,◇𝐴𝑁𝑟𝐵1:𝑁𝑟 +1] and [◇𝐵1𝐴1:𝑁𝑟 + 1,◇𝐵2𝐴1:𝑁𝑟 + 1,… ,◇𝐵𝑁𝑟𝐴1:𝑁𝑟 + 1] . If this test

finds a statistically significant difference, the median of each

vector can be used to infer which planner dominates the other

one. To illustrate the results of the statistical test, [34] suggests

a type of graphic presentation (as seen in Fig. 8). In each cell of

each graphic we represent when a planner in the Y axis is better

(less dominated, in white), equivalent (no statistically different,

in gray) or worst (more dominated, in black) than a planner in

the X axis.

Despite of the statistical analysis of the outputs, we have also

constructed the comparisons on the average of the convergence

speed and elapse time of each planner. Briefly, we first

calculate the generation when all the constraints are satisfied,

denoted as 𝐺𝑐, the generation when PKill and PRL are satisfied,

denoted as 𝐺𝑠 , and the generation when RRD and FA are

satisfied, denoted as 𝐺𝑡 . And the elapse time 𝐸𝑇 of each

planner in each run is noted. Then we average each metric

above with respect to those runs where the corresponding

indices are satisfied, denoted as 𝐺�̃�, 𝐺�̃�, 𝐺�̃� and 𝐸�̃�, respectively.

If the objectives/constraints of any planner have never been

satisfied through all 25 runs, the corresponding 𝐺�̃�/𝐺�̃�/𝐺�̃� will

be noted as N/A. Lastly, the number of successful runs out of

total 25 runs is also calculated, denoted as 𝑆𝑅. Generally, a

constraint or an objective is said to be satisfied if its value is

less than its preference. If all constraints and objectives are

satisfied, it is said a successful run. The preferences listed in

Table III. As seen in Table III, no constraint violation is

allowed. The PLR should be less than 1.5 as we have

introduced earlier. The preference of PKill is set to be 0 so that

no risk of kill is permitted. That is, the zones within the range of

hostile missiles are actually obstacles that are prohibited to fly

through. The UAV should fly no higher than 0.5 above the

terrain. Since that the diameter of range of missiles is also 0.5,

the preference of flight altitude in fact prevents the UAV from

flying above the missiles. Consequently, the UAV can only

bypass the obstacle from its flank. The preference of RRD

should be related to the scale of the intensity of the radars.

TABLE III. PREFERENCES OF CRITERIA

Constraints

Name Maximal

Turning

Angle

Limited

UAV Slope

Terrain

Limited

Map

Limited

Priority

Level

1𝑠𝑡 1𝑠𝑡 1𝑠𝑡 1𝑠𝑡
Preference 0 0 0 0

Objectives

Name Minimal

Path

Length

Ratio

Minimal

Risks of

Kill

Minimal

Risks of

Radar

Detection

Minimal

Flight

Altitude

Priority

Level

2𝑠𝑡 2𝑠𝑡 3𝑠𝑡 3𝑠𝑡
Preference 1.5 0 30 0.5

D. Results and Analyses

First, the results of all the 25 runs of those 8 planners in each

scenario have been statistically analyzed. Those results are

shown by means of graphic representations in Fig.8. Among all

the planners, 𝑁𝑒𝑤6, 𝑁𝑒𝑤12 and 𝑁𝑒𝑤18 perform the best when

the number of obstacles increases. Within these three new

planners, 𝑁𝑒𝑤6 has slightly better results. However, we cannot

claim any superiority of 𝑁𝑑 = 6 over 𝑁𝑑 = 12 and 𝑁𝑑 = 18 as

they have different evaluation accuracy. In [34], the DE-based

planner (Planner C) is empirically better than the GA-based

planner. This also happens when the obstacles are few (see Fig.

8(a)). However, when encountering more obstacles, GA-based

Planner A performs significantly better than Planner C, which

seems to be in contradiction with the conclusion in [34]. In fact,

 12

(a) (b) (c)

 (d) (e)

Fig. 8.The statistical analyses of the 8 planners in scenarios with 7, 15, 30, 60 and 120 ADUs are shown in (a)-(e), respectively. In the axes, 1-8 are with respect

to the Planners 𝑁𝑒𝑤6, 𝑁𝑒𝑤12, 𝑁𝑒𝑤18, A, B, C, D and E. In each cell of each graphic we represent when the planners in the Y axis is better (less dominated, in

white), equivalent (no statistically different, in gray) or worst (more dominated, in black) than the planners in the X axis.

the reason behind these distinct results is comprehensible. In

[34], all compared planners are encoded in Cartesian coordinate

system, and the selected DEs outperform GAs. While the

candidate paths of Planner A [1] here are first generated in

Polar coordinate system and then evolved freely in Cartesian

coordinate system. The Polar coordinate system has been

acknowledged to be able to reduce the search space. Hence,

when the obstacles increase and the feasible space decreases,

Planner A overtakes Planner C in terms of the reduced search

space. It can be inferred from this pair of results that the choice

of the encoded coordinate system has an important impact on

the planners especially when there are large number of

obstacles. Similar conclusion can be obtained by comparing 𝑁𝑒𝑤6 and Planner E. The only difference between these two

planners is the employed coordinate systems. Apparently, 𝑁𝑒𝑤6 outperforms Planner E in all scenarios. In relation to this

pair of comparison, the advantage of 𝑁𝑒𝑤6 can be owed to the

rotated coordinate system that it can significantly reduce the

search space. Note that the superiority of 𝑁𝑒𝑤6 is not only

based on the employed rotated coordinate system. As seen in

Fig. 8, Planner E performs significantly better than Planner D in

the latter four scenarios. As the basis planners of 𝑁𝑒𝑤6, the

performances of Planner D and Planner E reflect the real

contributions of the rotated coordinate system and separate

evolution to 𝑁𝑒𝑤6. From the results, it can be inferred that the

rotated coordinate system contributes less, comparing to the

proposed idea of separate evolution.

Besides statistical analyses, the convergence speed, runtime

and successful rate of the 8 planners are listed in Table IV-VIII.

Planner 𝑁𝑒𝑤6, Planner D and Planner E consume the least 𝐸�̃�

due to the small population size, i.e., 𝑁𝑝 = 10 . 𝑁𝑒𝑤12 and 𝑁𝑒𝑤18 also have the same population size, while they are more

computationally expensive. This is because they evaluate more

dividing points for each segment, which elevates the evaluation

accuracy while compromises the efficiency. Planners A, B and

C spend much more computational time than the others due to

TABLE IV. COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND

SUCCESS RATE OF 8 PLANNERS ON 7-MISSILES SCENARIO

Planner 𝑮�̃� 𝑮�̃� 𝑮�̃� 𝑬�̃�

(s)

𝑺𝑹

(%) 𝑵𝒆𝒘𝟔 5.84 6.60 7.04 127.74 100 𝑵𝒆𝒘𝟏𝟐 7.44 10.40 11.44 208.18 100 𝑵𝒆𝒘𝟏𝟖 8.72 12.88 13.42 360.16 96

A 5.75 8.48 8.48 363.55 100

B 4.92 5.8 6.04 1549.37 100

C 24.96 27.20 27.52 1392.68 100

D 28.08 30.12 31.24 122.04 100

E 16.71 18.40 18.74 128.08 92

TABLE V. COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND

SUCCESS RATE OF 8 PLANNERS ON 15-MISSILES SCENARIO

Planner 𝑮�̃� 𝑮�̃� 𝑮�̃� 𝑬�̃�

(s)

𝑺𝑹

(%) 𝑵𝒆𝒘𝟔 8.44 10.44 11.08 218.99 100 𝑵𝒆𝒘𝟏𝟐 10.52 20.52 20.52 360.35 100 𝑵𝒆𝒘𝟏𝟖 10.36 15.76 16.72 530.34 100

A 13.24 19.71 23.70 577.38 92

B 18.52 24.64 28.20 2811.79 100

C 83.00 86.00 89.50 2233.14 8

D 62.16 63.56 66.83 195.36 72

E 38.75 43.09 43.74 204.32 92

 13

TABLE II. COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND

SUCCESS RATE OF 8 PLANNERS ON 30-MISSILES SCENARIO

Planner 𝑮�̃� 𝑮�̃� 𝑮�̃� 𝑬�̃�

(s)

𝑺𝑹

(%) 𝑵𝒆𝒘𝟔 11.52 16.68 20.44 250.64 100 𝑵𝒆𝒘𝟏𝟐 12.28 23.32 28.58 424.99 96 𝑵𝒆𝒘𝟏𝟖 11.84 22.88 29.38 649.72 96

A 8.92 32.40 29.23 664.71 52

B 38.36 50.36 61.52 3564.82 92

C N/A N/A N/A 2546.61 0

D 80.67 84.75 84.00 238.14 8

E 57.00 64.80 65.00 247.90 20

TABLE III. COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND

SUCCESS RATE OF 8 PLANNERS ON 60-MISSILES SCENARIO

Planner 𝑮�̃� 𝑮�̃� 𝑮�̃� 𝑬�̃�

(s)

𝑺𝑹

(%) 𝑵𝒆𝒘𝟔 13.36 18.32 36.92 303.55 96 𝑵𝒆𝒘𝟏𝟐 12.92 22.04 46.04 481.16 96 𝑵𝒆𝒘𝟏𝟖 12.76 19.80 45.92 769.26 100

A 16.21 41.71 40.00 891.92 12

B 77.13 88.73 N/A 4512.69 0

C N/A N/A N/A 3075.40 0

D N/A N/A N/A 288.53 0

E N/A N/A N/A 295.40 0

the larger population sizes. However, those larger population

sizes cannot remain them effective in scenarios involving lots

of obstacles due to their poorly exploitation of high quality

waypoints. Specifically, Planner C deteriorates rapidly when

obstacles increase. Planner A has the ability of generating paths

satisfying all 4 constraints rapidly in all scenarios. This is

because the polar coordinate system essentially restricts the

turning angle and slope and Planner A actually has only two

constraints, i.e., Map Limited and Terrain Limited, to satisfy.

As a result, 𝑁𝑒𝑤6 keeps high stability on both efficiency and

effectiveness in all scenarios. On one hand, its 𝐸�̃� is acceptable

and its convergence speed is very fast. Note that the 𝐸�̃� is the

total runtime for 100 generations. Thus, it is easy to know that 𝑁𝑒𝑤6 spends the least runtime to obtain the feasible solution by

calculating
𝑮�̃�×𝑬�̃�100 . On the other hand, 𝑁𝑒𝑤6 keeps very high 𝑆𝑅

for all scenarios and is statistically the best.

As analyzed above, 𝑁𝑒𝑤12 and 𝑁𝑒𝑤18 also have very good

TABLE IV. COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND

SUCCESS RATE OF 8 PLANNERS ON 120-MISSILES SCENARIO

Planner 𝑮�̃� 𝑮�̃� 𝑮�̃� 𝑬�̃�

(s)

𝑺𝑹

(%) 𝑵𝒆𝒘𝟔 19.56 26.29 48.55 408.88 88 𝑵𝒆𝒘𝟏𝟐 16.64 24.92 53.95 560.63 80 𝑵𝒆𝒘𝟏𝟖 17.44 26.38 51.15 854.05 80

A 17.16 N/A N/A 1116.74 0

B N/A N/A N/A 5378.61 0

C N/A N/A N/A 3845.90 0

D N/A N/A N/A 391.78 0

E N/A N/A N/A 386.24 0

TABLE V. COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND

SUCCESS RATE AMONG PLANNERS A, D AND E ON 60-MISSILES SCENARIO

Planner 𝑮�̃� 𝑮�̃� 𝑮�̃� 𝑬�̃�

(s)

𝑺𝑹

(%)
A 8.92 32.40 29.23 664.71 52

D 80.67 84.75 84.00 238.14 8 𝑫𝟑𝟎 75.20 81.57 91.25 777.99 16

E 57.00 64.80 65.00 247.90 20 𝑬𝟑𝟎 50.80 59.46 64.46 715.12 96

(a) (b) (c)

 (d) (e)

Fig. 9.The best paths of 𝑁𝑒𝑤6, 𝑁𝑒𝑤12 and 𝑁𝑒𝑤18 in 5 scenarios are shown in (a)-(e), respectively. The star-line represents the best path of Planner 𝑁𝑒𝑤6, the

diamond-line indicates the best result of Planner 𝑁𝑒𝑤12 and the circle-line is the best path of Planner 𝑁𝑒𝑤18.

 14

final outputs. It is difficult to tell how 𝑁𝑑 impacts the proposed

planner by statistical analyses. In other words, the evaluation of

candidate paths are essentially related to 𝑁𝑑. To illustrate the

impacts of 𝑁𝑑, the best paths, out of 25 runs, of 𝑁𝑒𝑤6, 𝑁𝑒𝑤12

and 𝑁𝑒𝑤18 in the 5 scenarios are shown in Fig. 9 (a)-(e) in a

2-D view, respectively. In these figures, the ranges of missiles

and radars are represented by groups of concentric circles. With

the preferences in Table III, the paths are forbidden to go

through the smaller circles and are better to be out of the bigger

circles. The terrain is depicted in color contour line where

higher places are darker. The paths of 𝑁𝑒𝑤6 , 𝑁𝑒𝑤12 and 𝑁𝑒𝑤18 are presented as star-lines, diamond-lines and

circle-lines, respectively. The stars, diamonds and circles are

the corresponding waypoints. As seen, the best paths always

keep smooth and avoid all the obstacles, i.e., missiles and

mountains, in all scenarios. No significant differences between

the best paths of three planners can be observed in Fig. 9, which

implies that 𝑁𝑑 = 6 is sufficient for planners to detect the

radars, missiles and mountains. Specially, one interesting

phenomenon is that the paths of the three planners get closer

when obstacles increase. This is because the increasing

obstacles reduce the feasible space and thus the effective

planners have fewer choices for producing best paths.

Both Planner D and Planner E can overtake Planner C. While

the superiority of Planner A over Planner D and Planner E may

be because Planner A uses a larger population size. To verify

this viewpoint, we have made another comparison among

Planner A, Planners D and E with the same population size, i.e., 𝑁𝑝 = 30. As the purpose of this comparison is to show whether

a larger population size will influence the performances of

Planner D and Planner E or not, we simply give just one

example on the scenario with 30 obstacles for illustration. The

results are shown in Table IX. As seen, when 𝑁𝑝 increases from

10 to 30, the 𝑆𝑅 of Planner E improves significantly from 20%

to 96%, which means Planner 𝐸30 is more stable than Planner A.

Hence, it verifies the point that it is the larger population size

that makes Planner A outperforms the original Planner E. For

Planner D, although Planner 𝐷30 is slightly better than Planner

D, it seems that the population size 𝑁𝑝 = 30 is still not enough

for a remarkable promotion. It can be observed that, due to the

effective exploitation of waypoints, Planner 𝐸30 benefits much

more than Planner 𝐷30 from the increased 𝑁𝑝. This comparison

shows the advantages of the proposed idea of separate

evolution. On the other hand, it again verifies that the separate

evolution idea contributes more than the rotated coordinate

system to the proposed planner.

Besides the comparisons among planners, we also carry out a

parameter sensitive analyses of the new proposed planners. As

most planners employ 6 dividing points, we thus analyze the

parameter sensitivity based on 𝑁𝑒𝑤6. There is only one

parameter, i.e., 𝑁𝑝, that needs carefully fine-tuned. To find out

a proper 𝑁𝑝 , the performances of 𝐺�̃� , 𝐸�̃� and 𝑆𝑅 of 𝑁𝑒𝑤6

with different values of 𝑁𝑝, i.e., 6, 8, 10, 12 and 14, on the 5

scenarios are recorded and shown in Fig. 10 (a)-(c). The reason

of testing these three metrics is that 𝐺�̃� indicates the generation

when the path has satisfied all objectives and constraints, i.e.,

the convergence speed, 𝐸�̃� presents the real running time,

while 𝑆𝑅 reflects the stability of the planner. And the reason of

testing such small population sizes is because we believe the

separately evolving strategy has highly effectively exploited

the better waypoints during optimization and thus the

population can be reduced. As seen in Fig. 10 (a)-(c), in each

scenario, as the 𝑁𝑝 increases, 𝐺�̃� keeps generally the same, and 𝑆𝑅 increases. However, 𝐸�̃� also generally increases, which

means that higher computation times will be required to

produce relatively good outputs. These results show that such a

small 𝑁𝑝 appears very sensitive, hence we need to determine a

proper 𝑁𝑝. To balance the trade-off between the effectiveness

and efficiency, we suggest 𝑁𝑝=10.

In the above analyses, the advantages of the proposed idea of

separate evolution has been discussed. It is shown that the

proposed planner is more effective and efficient than the

compared planners. Besides, it is also shown that the separate

Fig. 10(c). 𝑆𝑅 of the proposed planner with 𝑁𝑝 = 6, 8, 10, 12, 14 on 5

scenarios.

Fig. 10(a). 𝐺�̃� of the proposed planner with 𝑁𝑝 = 6, 8, 10, 12, 14 on 5

scenarios. Here, the proposed planner cannot produce feasible path with 𝑁𝑝 = 6 and 8 on the last scenario, thus the corresponding lines miss

Fig. 10(b). 𝐸�̃�(s) of the proposed planner with 𝑁𝑝 = 6, 8, 10, 12, 14 on 5

scenarios.

 15

evolution makes the proposed planner more stable than the

compared planners. This stability results from the fact that the

separate evolution is insensitive to the quality of the initialized

solutions. To illustrate this viewpoint, the process of Planner E

on the first scenario is recorded. The reason of choosing

Planner E instead of 𝑁𝑒𝑤6 is to eliminate the influence of the

rotated coordinate system. As seen in Fig.11, the initialized

waypoints are scattered in the mission space and the candidate

paths are far from feasible. Under the impact of the separate

evolution, waypoints in each order will finally converge to a

rather good state, respectively. This is because, for all the 𝑖th

waypoints, there will be one or several optimal locations, in

terms of the global information of all the other waypoints. The

process of the separate evolution can be regarded as a

sub-problem that finding the optimal solution for the 𝑖th

waypoint of a path, regarding all the 𝑖th waypoints as the

candidate population. From this point of view, the separate

evolution can have a better ability of convergence and thus is

insensitive to the quality of the initialized population.

V. CONCLUSION AND FUTURE WORK

The path planning technique is very important to the

autonomy of Unmanned Aerial Vehicles (UAVs). In this field,

three major tasks are required to be solved. This paper studies

the off-line planning problem, which is the basic of the other

two, i.e., on-line planning and cooperative planning. There

have been quite a few research work proposed for the off-line

planning problem. However, they are usually ineffective when

the scenarios involve lots of obstacles. The reason behind those

failures are that the information of better waypoints are not

highly exploited during the optimization. This paper proposes a

new idea to solve this shortage by separately evaluating and

evolving the waypoints. To practice this idea into the UAV path

planning, we first derive a set of new evaluation functions from

the existing evaluation functions for the evaluations of single

waypoints. This derivation is based on that those evaluation

functions are separable on waypoints. For the purpose of

separately evolving the waypoints, JADE is employed. A

rotated coordinate system is also used to encode the waypoints

for the reduction of the search space. To validate the proposed

planner, we compare it with 7 planners from different

viewpoints on 5 scenarios with increasing obstacles. From the

simulation results, the effectiveness and efficiency of the

proposed planner are shown. The advantages of the separate

evolution idea are also discussed.

Although the advantages of the new proposed planner has

been shown, the EA-based off-line planners still required to be

further studied. For example, our work has to pre-define the

number of waypoints, i.e., 𝑁𝑤, which is still difficult for a UAV

to decide on-the-fly. Hence, a strategy that can autonomously

choose the number of waypoints for UAV is to be studied.

As the on-line planning and cooperative planning are based

on off-line planning, we may further extend our work onto

those two problems as they are more practical in real life

missions. As a matter of fact, the path planning for single UAV

is usually regarded as the cornerstone of cooperative path

planning for multiple UAVs. The cooperation constraints, e.g.,

time cooperation, distance cooperation, are usually independent

from the other objectives and constraints. Hence, ideally, we

can extend our proposed planner to a cooperative planner by

introducing external cooperation constraints as [1] does.

REFERENCES

[1] E. Besada-Portas, L. de la Torre, J.M. de la Cruz, B. Andres-Toro,
Evolutionary trajectory planner for multiple UAVs in realistic scenarios,

IEEE Transactions on Robotics. 26 (2010) 619–634.

[2] Sarris, Zak, and STN ATLAS. Survey of UAV applications in civil
markets (June 2001). The 9 th IEEE Mediterranean Conference on

Control and Automation (MED'01). 2001.
[3] C. Goerzen, Z. Kong, B. Mettler. A Survey of Motion Planning

Algorithms from the Perspective of Autonomous UAV Guidance.

Journal of Intelligent and Robotic Systems. 57(1-4). 2010. Pages 65-100.
[4] C. Zheng, L. Li, F. Xu, F. Sun, M. Ding, Evolutionary route planner for

unmanned air vehicles, IEEE Transactions on Robotics 21 (2005) 609–
620.

[5] Y. V. Pehlivanoglu, O. Baysal, and A. Hacioglu, “Vibrational genetic
algorithm based path planner for autonomous UAV in spatial data based

environments,” in Proc. 3rd Int. Conf. Recent Adv. Space Technol., 2007,
vol. 7, pp. 573–578.

[6] Latombe, J.: Robot Motion Planning. Kluwer Academic, Boston (1991)

[7] C. Yang, H. He and X, An, Motion Planning of Intelligent Vehicles. In

proceedings of IEEE International Conference on Vehicular Electronics

and Safety, 13-15 Dec. 2006. pp. 333-336. Beijing.

[8] N. Dadkhah, B. Mettler. Survey of Motion Planning Literature in the
Presence of Uncertainty: Considerations for UAV Guidance. Journal of

Intelligent and Robotic Systems. 65(1-4). 2012. Pages 233-246.

[9] I. K. Nikolos, K. P. Valavanis, N. C. Tsourveloudis, and A. N. Kostaras.
Evolutionary algorithm based offline/online path planner for UAV

navigation, IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 33, no. 6, pp.

898–912, Dec. 2003.
[10] R. J. Szczerba, P. Galkowski, I. S. Glicktein, and N. Ternullo. Robust

algorithm for real-time route planning, IEEE Trans. Aerosp. Electron.

Syst., vol. 36, no. 3, pp. 869–878, Jul. 2000.
[11] K. I. Trovato. A* Planning in Discrete Configuration Spaces of

Autonomous Systems. PhD thesis, Amsterdam University, 1996.

Fig. 11 the 1st, 40th and 80th generation of the procedure of Planner E on the first scenarios is recorded to illustrate the behavior of the proposed idea of

separate evolution.

 16

[12] A. G. Richards, J. P. How. Aircraft Trajectory Planning with Collision

Avoidance Using Mixed-Integer Linear Programming. In Proceeding of
the American Control Conference (May 2002).

[13] J. J. Ruz, O. Arévalo, de la Cruz, J.M, and G. Pajares. Using MILP for

UAVs Trajectory Optimization under Radar Detection Risk. In
Proceedings of the 11th IEEE International Conference on Emerging

Technologies and Factory Automation (Prague, September 2006).

[14] A.Raghunathan, V.Gopal, D.Subramanian, L.Biegler and T.Samad.
Dynamic Optimization Strategies for 3D Conflict Resolution of Multiple

Aircraft. AIAA Journal of Guidance, Control and Dynamics, 27 (4).

(2004), 586-594.
[15] P. Bhattacharya and M. L. Gavrilova. Voronoi diagram in optimal path

planning, in Proc. IEEE Int. Symp. on Voronoi Diagrams in Science and

Engineering, 2007, pp. 38-47.
[16] R. W. Beard. Coordinate system target assignment and intercept for

unmanned air vehicles, IEEE Trans. on Robotics and Automation, vol. 18,

no. 6, pp. 911-922, Dec. 2002.
[17] C. Hocaoglu and A.C. Sanderson. Planning multiple paths with

evolutionary speciation, IEEE Trans. on Evolutionary Computation, Jun

2001, vol.5, pp. 169-191.
[18] S. Mittal and K. Deb. Three-dimensional offline path planning for UAVs

using multi-objective evolutionary algorithms, in Proc. IEEE Congr. Evol.

Comput., 2007, vol. 7, pp. 3195–3202.
[19] I. Hasircioglu, H. R. Topcuoglu, and M. Ermis. 3-d path planning for the

navigation of unmanned aerial vehicles by using evolutionary algorithms,

in Proc. Genet. Evol. Comput. Conf., 2008, pp. 1499–1506.
[20] I. K. Nikolos, N. C. Tsourveloudis, andK. P.Valavanis. Evolutionary

algorithm based path planning for multiple UAV cooperation, in
Advances in Unmanned Aerial Vehicles. Berlin, Germany:

Springer-Verlag, Jan. 2007, pp. 309–340.

[21] R. Zhang, C. Zheng, and P.Yan. Route planning for unmanned air
vehicles with multiple missions using an evolutionary algorithm, in Proc.

IEEE 3rd Int. Conf. Nat. Comput., 2007, pp. 1499–1506.

[22] De La Cruz, J.M., E. Besada-Portas, L. de la Torre, B. Andres-Toro, and J.
A. Lopez-Orozco. Evolutionary path planner for UAVs realistic

environments. in 10th Annual Genetic and Evolutionary Computation

Conference, GECCO 2008, July 12, 2008 - July 16, 2008. 2008. Atlanta,
GA, United states: Association for Computing Machinery.

[23] G. Sanders, T. Ray. Optimal offline path planning of a fixed wing

unmanned aerial vehicle (UAV) using an evolutionary algorithm. IEEE
Congress on Evolutionary Computation, 25-28 Sept. 2007. pp.

4410-4416. Singapore.

[24] C. Jia. UAV Mission Planning: Problem Modeling and Solution Methods.
PhD thesis, 2011, National University of Singapore.

[25] A. Brintaki, I. Nikolos, Coordinate systemd UAV path planning using

differential evolution, Operational Research 5 (2005) 487–502.
[26] S. Li, X. Sun, Y. Xu, Particle swarm optimization for route planning of

unmanned aerial vehicles, in: 2006 IEEE International Conference on

Information Acquisition, pp. 1213–1218.
[27] Q. Ma, X. Lei, Application of improved particle swarm optimization

algorithm in UCAV path planning, in: International Conference on

Artificial Intelligence and Computational Intelligence, pp. 206–214.
[28] P.B. Sujit, R. Beard, Multiple uav path planning using anytime algorithms,

in: 2009 American Control Conference, pp. 2978–2983.

[29] P. Yang, K. Tang and J. A. Lozano, “Estimation of Distribution
Algorithms based Unmanned Aerial Vehicle Path Planner Using a New

Coordinate System”, in: IEEE Congress on Evolutionary Computation,

July, 2014, Beijing, accepted
[30] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution

with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5,

pp. 945–958, Oct. 2009.
[31] Das, S. and Suganthan, P.N., Differential Evolution: A Survey of the

State-of-the-Art. IEEE Trans. Evol. Coput., vol 15, no 1, pp. 4-31, Oct.

2010.
[32] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist

multi-objective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, 6(2):182–197, 2002.
[33] C. M. Fonseca and P. J. Fleming. Multi-objective optimization and

multiple constraint handling with evolutionary algorithms—Part I:

Unified formulation, IEEE Trans. Syst.,Man, Cybern. A, Syst. Humans,
vol. 18, no. 1, pp. 26–37, Jan. 1988.

[34] Besada-Portas, E., De La Torre, L., Moreno, A., & Risco-Martín, J. L.

(2013). On the performance comparison of multi-objective evolutionary
UAV path planners. Information Sciences, 238, 111-125

[35] Zhang, Xiangyin, and Haibin Duan. "An Improved Constrained

Differential Evolution Algorithm for Unmanned Aerial Vehicle Global
Route Planning."Applied Soft Computing (2014).

Peng Yang received his B.Eng. degree in

computer science and technology from the

University of Science and Technology of

China (USTC), Hefei, China, in 2012. He

is currently pursuing the Ph.D degree from

the USTC-Birmingham Joint Research

Institute in Intelligent Computation and Its

Applications (UBRI), School of Computer

Science and Technology, University of

Science and Technology of China (USTC). His research

interests include evolutionary computation, estimation of

distribution algorithm and their real-world applications.

Ke Tang (S’05-M’07-SM’13) received

the B.Eng. degree from the Huazhong

University of Science and Technology,

Wuhan, Hubei, China, in 2002, and the

Ph.D. degree from the School of Electrical

and Electronic Engineering, Nanyang

Technological University, Singapore, in

2007.

He is currently a Professor with the

USTCBirmingham Joint Research Institute in Intelligent

Computation and Its Applications, School of Computer Science

and Technology, University of Science and Technology of

China (USTC), Hefei, Anhui, China. He is also an Honorary

Senior Research Fellow with the School of Computer Science,

University of Birmingham, Birmingham, U.K. He has authored

and co-authored more than 40 refereed publications. His major

research interests include machine learning, pattern analysis,

evolutionary computation, data mining, metaheuristic

algorithms, and real-world applications.

Prof. Tang is an Associate Editor of the IEEE

COMPUTATIONAL INTELLIGENCE MAGAZINE, an

editorial board member of three international journals, and the

Chair of the IEEE Task Force on Large Scale Global

Optimization.

 17

Jose. A. Lozano (M’04) received the B.S.

degree in mathematics and the B.S. degree

in computer science from the University of

the Basque Country, San Sebastian-

Donostia, Spain, in 1991 and 1992,

respectively, and the Ph.D. degree in

computer science from the University of

the Basque Country in 1998.

Since 2008, he has been a Full Professor with the University

of the Basque Country, where he leads the Intelligent System

Group. He is the co-author of more than 50 ISI journal

publications and the co-editor of the first book published about

estimation of distribution algorithms. His current research

interests include machine learning, pattern analysis,

evolutionary computation, data mining, metaheuristic

algorithms, and real- world applications.

Prof. Lozano is an Associate Editor of the IEEE Transactions

on Evolutionary Computation and a member of the Editorial

Board of Evolutionary Computation, Soft Computing, and

other three journals.

Xianbin Cao (M’08–SM’10) received the

B.S. degree in computer science and the

M.S. degree in information and system

from Anhui University, Hefei, China, in

1990 and 1993, respectively, and the Ph.D.

degree in intelligent information

processing from the University of Science

and Technology of China (USTC), Hefei,

in 1996.

He joined the Department of Computer Science and

Technology, USTC, in 1996 and became an Associate

Professor and a Professor in 1999 and 2005, respectively. He

was the Vice Director of the department and the Artificial

Intelligence Research Center from 2006 to 2009. Since 2005,

he has been the Administrative Director of the Anhui Province

Key Laboratory in Computing and Communication. He is

currently a Professor with the School of Electronic and

Information Engineering, Beihang University,

Beijing, China. He has published more than 100 books, book

chapters, and papers in these areas since 1993. His current

research interests include natural computation, intelligent

transportation systems, and information security.

