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Abstract: Good path planning technology of mobile robot can not only save a lot of time, but also

reduce the wear and capital investment of mobile robot. Several methodologies have been proposed

and reported in the literature for the path planning of mobile robot. Although these methodologies do

not guarantee an optimal solution, they have been successfully applied in their works. The purpose

of this paper is to review the modeling, optimization criteria and solution algorithms for the

path planning of mobile robot. The survey shows GA (genetic algorithm), PSO (particle swarm

optimization algorithm), APF (artificial potential field), and ACO (ant colony optimization algorithm)

are the most used approaches to solve the path planning of mobile robot. Finally, future research is

discussed which could provide reference for the path planning of mobile robot.
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1. Introduction

Over the past decades, mobile robots have been successfully applied in different areas

such as military, industry and security environments to execute crucial unmanned missions [1].

Path planning [2] is one of the most fundamental problems that have to be resolved before the mobile

robots can navigate and explore autonomously in complex environments. Beginning with mid-1960s,

the path planning has attracted interests from a lot of scholars. The path planning problem can be

described in the following [3]: given a robot and its working environment, the mobile robots searches

for an optimal or suboptimal path from the initial state to the target state according to a certain

performance criteria. Good path planning technology of mobile robot can not only save a lot of time,

but also reduce the wear and capital investment of mobile robot. Because the path planning of mobile

robot has important application value, it has become a hot research topic both at home and abroad.

Generally speaking, the path planning can be divided into two categories: the global path

planning and the local path planning (seen in Figure 1), according to whether all the information of the

environment isaccessible or not. For the global path planning, all the information of the environment is

known to the robot before starting. In contrast, for the local path planning, almost all the information

of the environment is unknown to the robot before starting [4]. The path planning of mobile robot

is retrieved by the database of Engineering Village, where the method of data retrieval is by Title:

path planning & mobile robot & theme, for example, Title: path planning & mobile robot & genetic

algorithm. Then, the results are summarized in Figure 2.

The remainder of the paper is as follows: Sections 2 and 3 provide the review of global path

planning and local path planning, respectively. Section 4 concludes the paper.

Symmetry 2018, 10, 450; doi:10.3390/sym10100450 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-6699-4261
http://dx.doi.org/10.3390/sym10100450
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/10/450?type=check_update&version=1


Symmetry 2018, 10, 450 2 of 17

 
Figure 1. Classification of path planning.
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Figure 2. The number of papers retrieved by the database of Engineering Village.
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2. Review of Global Path Planning

In the process of global path planning of the mobile robot, the following steps should be followed

in the general case. (1) Environmental modeling. The environmental modeling is built according to the

known map information: the actual environment for the mobile robot to perform task is converted to

the map feature information which can storage conveniently. (2) Optimization criteria. (3) Path search

algorithm. The path search algorithm is adopted to find a collision free path between the starting point

and the target point in the state space which must satisfy a set of optimization criteria such as path

length, smoothness, safety degree, etc. The principle of mobile robot global path planning is shown in

Figure 3.

 
Figure 3. The principle of mobile robot global/local path planning.

2.1. Environmental Modeling

Before the mobile robot global path planning, a suitable environmental model will help to

better understand the environmental variables, reduce unnecessary planning and greatly reduce the

number of computations. Common methods of environmental modeling have framework space

approach, free space approach, cell decomposition approach, topological method and probabilistic

roadmap method.

2.1.1. Framework Space Approach

In order to simplify the problem, the mobile robot is usually reduced to a point, the obstacles

around the mobile robot are scaled, the mobile robot can move freely in the obstacle space without

colliding with obstacles and boundary. The framework space approach includes visibility graph,

voronoi graph and tangent graph.

Visibility Graph

A polygon is used to represent an obstacle in the visibility graph (seen in Figure 4) method,

and each endpoint is connected with all of its visible vertices to form a final map. In the range of the

polygon, a vertex is connected to its total adjacent points, so the mobile robot can move along the

polygon edge. Search the set of these lines and select an optimum path from the starting point to the

end point. This method can successfully solve the small size problem in two-dimensional space and

the path is optimal, but its time complexity is O(N2) [5]. However, with the increase of the problem’s

complexity, the efficiency of the visibility graph will be greatly reduced. If the visibility graph is used

to the three-dimensional or a higher dimension space, then it is a NP-hard problem. At the same time,

the mobile robot has a certain size and shape, all paths pass the end of obstacles, so the obtained path

planning is likely to have a collision.
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Figure 4. Visibility graph.

Voronoi Graph

The voronoi graph [6] (seen in Figure 5) is the trajectory of points that are equidistant from the

nearest two or more barrier boundaries including the workspace boundary. The set of vertices is

formed from points that are equidistant from three or more barrier boundaries, while the set of edges

is formed from points that are equidistant from exactly two barrier boundaries. The merit of voronoi

graph is of fast calculation speed and the drawback is of more mutational site.

Figure 5. Voronoi graph.

Tangent Graph

In the tangent graph [7,8] (seen in Figure 6), the nodes represent tangent points on barrier

boundaries, and the edges represent conflict-free common tangents of the obstacles or convex boundary

segments between the tangent points. The tangent graph requires O(K2) memory, where K represents

the number of convex segments of the barrier boundaries. The disadvantage is that if the position

error is generated in the control process, the possibility of robot collision obstacles will be very high.

Figure 6. Tangent graph.
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2.1.2. Free Space Approach

Based on the concept of free link, Habib et al. [9] developed a new technique to construct the

obtainable free space between obstacles within the robotic environment in terms of free convex

region. Then, a new graph named MAKLINK is built to provide the generation of a conflict-free

path. The graph is built by use of the midpoints of common free links between free convex region

as the passing points. These points represent nodes, and the connection between the points within

each convex region represent arcs in the graph. Aconflict-free path can be effectively generated

by use of the MAKLINK graph. The complexity of searching for a conflict-free path is drastically

reduced by minimizing the graphic size to be searched about the number of nodes and arcs connecting

them. The advantage of free space approach is that it is more flexible, and easy to maintain the

network diagram. In addition, it can flexibly change the starting point and target point of the robot.

However, in an obstacle-intensive environment, the free space approach may fails and it can’t obtain

the optimal path.

2.1.3. Cell Decomposition Approach

The method decomposes the workspace of the mobile robot into a number of simple regions,

and each region is generally called a cell. These grids form a connected graph and a path is searched

from the initial grid to the target grid. In general, the path is represented by the ordinal number

of the cell. The method is divided into two types: exact cell decomposition and approximate cell

decomposition. The idea of exact cell decomposition is as follows. The free space is divided into n

non-overlapping units. The space after the combination of these n units is exactly the same as the

original free space. In approximate cell decomposition, all of the grids are in a predetermined shape

(e.g., rectangular). The whole environment is divided into a number of larger rectangles, each rectangle

is continuous. If any big rectangle contains obstacles or boundary, then it is divided into 4 small

rectangular, all the larger grid are executed this operation, the operation is repeated until it reaches the

solution boundaries. This structure is called quadtree shown in Figure 7 [10].

Figure 7. Standard quadtree-based approach.
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2.1.4. Topological Method

The topological method is method of reducing dimensions, and the path planning problem in

high dimensional geometry space is transformed into the discriminant problem of connectivity in

low dimension. When the topology network is established, the robot planning path is obtained from

the starting point to the target point. Compared to the cell decomposition approach, this method

only needs less model building time and less storage space, the complexity of the topological method

only depends on the number of obstacles, the topological method can achieve fast path planning.

Topology method is suitable for the environment with obvious characteristics and sparse obstacles;

otherwise, it is difficult to carry out reliable navigation control. Another drawback is that topology

method of environment information is not easy to maintain, when the number of obstacle is increased

or decreased, the network is hard to modify, because the process of establishing the topology network

itself is quite complex [11].

2.1.5. Probabilistic Roadmap Method

Kavraki et al. [12] proposed the probabilistic roadmap method in 1994. Some scholars continued

to research it [13,14]. The main idea of probabilistic roadmap method is as follows. Based on random

sample, an undirected roadmap graph R = (N, E) is built, where N is the nodes of obtained milestones by

random sampling, E is the edge connecting these nodes. Given the starting-point s and finishing-point

f, the probabilistic roadmap method is looking for two nodes s’ and f ’ satisfying s and s’ are directly

connected, f and f ’ are directly connected. A path planning is obtained by searching the edge sequence

which are directly connected to s’ and f ’ in the undirected roadmap graph.

2.2. Optimization Criteria

Generally speaking, there are many factors that must be considered in the optimization criteria

for planning a mobile path. Three commonly used optimization criteria are listed in the following.

2.2.1. Path Length

The path length D [15,16] is defined as

D = ∑
n−1

j=0

√

(xj+1 − xj)
2 + (yj+1 − yj)

2

where, xj and yj are the values of the X coordinate axis and Y coordinate axis of the nodes j, respectively.

2.2.2. Smoothness

The smoothness S [15] is defined as

S = α ·

(

1 −
DAl

N f − 1

)

+ β ·

(

1 −
Smin

N f

)

where, α and β are weighted coefficients, DAl is the number of angle of deflection larger than the

desired variable, Nf is the total number of path segments, Smin is the number of segments with the

smallest number of path segments in the path.

2.2.3. Safety Degree

The safety degree SD [15] is defined as

SD = ∑
n−1

j=1
Cj =

{

0, dj ≥ λ

∑
n−1
j=1 eλ−dj , dj < λ



Symmetry 2018, 10, 450 7 of 17

where, di is the minimal distance between the i-th segment and its nearest obstacle, and λ is the

threshold of the safety degree.

2.3. Path Search Algorithm

Generally speaking, the path search algorithm for the global path planning can beclassified into

two categories: heuristic approach and artificial intelligence algorithm.

2.3.1. Heuristic Approach

Dijkstra Algorithm

The Dijkstra algorithm is proposed by E.W. Dijkstra in 1959 [17]. It is a typical shortest path

algorithm for solving the shortest path problem in a directed graph. Its main feature is that the starting

point is as the center to be extended to the end point.

Each edge of the graph is formed to an ordered element pair by the two vertices. The value of the

edges are described by the weight function. The algorithm maintains two vertex sets named A and B.

The initial set A is empty. Each time a vertex in B is moved to A, and the selected vertex ensures the

sum of all the edge weight from the starting point to the point is minimized. Because the algorithm

needs to traverse more nodes, so the efficiency is not high.

A* Algorithm

Hart et al. [18] proposed A* algorithm in 1968.

The A* algorithm is developed on the basis of the Dijkstra algorithm. Starting from a specific

node, the weighted value of the current child nodes are updated, and the child node which has the

smallest weighted value is used to update the current node until all nodes are traversed. The key of

A* algorithm is to establish the evaluation function f (n), f (n) = g(n) + h(n), where g(n) represents the

actual cost from the initial node to the node n, and h(n) represents the estimated cost of the optimal

path from node n to the target node in the state space. The Euclidean distance between the two nodes

is usually taken as the value of h(n). When the value of g(n) is constant, the value of f (n) is mainly

affected by the value of h(n). When the node is close to the target node, the value of h(n) is small,

the value of f (n) is relatively small. As a result, it guarantees the search for the shortest path always

proceeds in the direction of the target point. The A* algorithm considers the position information of the

mobile robot’s target point and searches along the target point. Compared with the Dijkstra algorithm,

the path search efficiency of the A* algorithm is higher.

D* Algorithm

A* algorithm is mainly used for the global search of the static environment. However, the path

planning of mobile robots in practical application is gradually aware of the environmental information,

and it is dynamic. Stentz [19] proposed D* algorithm in 1994. It is mainly used for robot to explore the

path. The problem space of the D* algorithm is expressed as a series of state, and the states represent

the direction of the robot’s position. The principle of D* algorithm is basically the same as that of D*

algorithm, the cost of arc used to ensure the direction of the search. In addition, some scholars have

researched the D* algorithm such as the field D* algorithm [20] and Theta* algorithm [21,22].

2.3.2. Artificial Intelligence Algorithm

ANN

Path planning is a kind of mapping from the perceptual space to the space of behavior, and the

artificial neural network (ANN) can express the mapping relationship.

The neural network is used to describe the constraints among the environment, and the energy is

defined as the function of the path point. The level of the energy depends on the location of the path
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point, and the robot moves towards the direction of diminished energy. A path with the smallest total

energy is obtained at last. Although this path has no obstacles, it is not the shortest or optimal path.

Martin et al. [23] used ANN to solve the robotic path planning problem and discussed how neural

networks may contribute to increase the performance of robotic path planners. Mulder et al. [24]

constructed an interactive and competitive ANN tosettle the path planning problems. Combined

ANN and Q-learning, Li et al. [25] proposed a hybrid method for solving the robotic path planning.

The results show the hybrid method was better than either of the two methods. Raza et al. [26] used

evolutionary ANN to solve path planning in RoboCup soccer. Contreras-Gonzalez et al. [27] proposed

a back-propagation ANN for solving the path planning. The working environment of the mobile

robot is random and it is difficult to describe by mathematical formula. It is hard to establish a neural

network topology to describe the moving environment. In addition, the complex and large structure

makes the weight setting of the neural network to be difficult.

GA

The genetic algorithm (GA) is proposed by Holland in 1975. In the GA, all the possible solutions of

the problem are encoded to chromosomes, and all the chromosomes form an initial population. Several

basic operations are constructed: crossover, mutation and selection. Initial population is generated,

then the fitness value of each individual is calculated by the objectives. The individuals which are

selected for crossover operation, mutation operation and selection operation are determined by the

fitness value. The flowchart of GA is shown in Figure 8. Min et al. [28] used GA to settle the path

planning for mobile manipulator. Liu et al. [29] presented a GA with two-layer encoding to settle

the path planning. This kind of encoding can improve the expressing ability of codes. The heart

of the two-layer encoding is to decrease the complexity of exploration through the middle-layer

codes. Pehlivanoglu et al. [30] proposed vibrational genetic algorithm for path planning. Xu et al. [31]

presented adaptive GA to solve the path planning of unmanned aerial vehicle. Example simulation

shows that the new algorithm satisfies the requirements in the computation efficiency and the precision

of the solution. Tsai et al. [32] proposed PEGA (parallel elite genetic algorithm) for autonomous robot

navigation. The results show the PEGA is effective. Tuncer et al. [33] proposed an improved GA for

mobile robots’ dynamic path planning. Qu et al. [34] proposed an improved GA with co-evolutionary

strategy to solve the global path planning for multiple mobile robots. The simulations show the

method is efficient. Fei et al. [35] proposed tailored GA for mobile robot’s optimal path planning.

Shorakaei et al. [36] used a parallel GA for unmanned aerial vehicles’ optimal cooperative path

planning. The effectiveness of the method was shown by several simulations. The advantage of GA is

that it is simple, robust, and has strong search capability and high search efficiency. However, it is prone

to premature convergence. When it approaches the optimal solution of the problem, the convergence

speed of the algorithm will decrease. It is usually used in the global path planning.
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Figure 8. The flowchart of GA.

ACO

The ACO (Ant colony optimization algorithm) is proposed by Marco Dorigo in 1992.

The basic principle of the ACO is each ant will release a secretion on the path it walked as a

reference and will also perceive the secretions released by other ants while it is searching for food.

This secretion is usually called pheromone. Under the action of pheromones, the ant colony can

communicate with each other and choose paths. When the pheromone on a path is more than other

paths, the ant colony will spontaneously move to this path, and release more secretions during the

movement, so that the concentration of the pheromone becomes higher to attract the latter ants which

forms a mechanism of positive feedback. After a period of time, the concentration of pheromone on

the shorter path is getting higher and higher, then the ants that choose it are gradually increasing,

while the pheromones on other paths are gradually reduced until there is no. Finally the whole ant

colony is concentrated in the optimal path. The process of ant foraging is similar to the path planning

of robots. As long as there are enough ants in the nest, these ants will find the shortest path from

the nest to the food to avoid obstacles. The principle of ant colony searching for food is shown in

Figure 9. Wen et al. [37] modified ACO to optimize the global path. When only the pheromone was

used to search the optimum path, the ACO converges easily. Wang et al. [38] used ACO to research on

global path planning. Simulation results show the ACO algorithm is suitable for global path planning.

Zhu et al. [39] proposed an improved ACO for the path planning of mobile robot. The results show the

algorithm can not only increase the performance of path planning, but also the algorithm is effective.

Zhao et al. [40] improved ACO to solve path planning of mobile robot. Simulation results show the

improved algorithm converges quickly even in complex environment. Gao et al. [41] proposed an

improved ACO for mobile robot’s three-dimensional path planning. The results show that it was an

effective approach. You et al. [42] proposed a chaotic ant colony system to solve the path planning of

mobile robot. Simulation results show that the approach is not only more effective than the traditional
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ant colony system, but also improves the global search capabilities. The ACO has not only the global

search ability of the population, but also has synergy between individuals. It can find a better path,

even if the complete information of the environment is not known. However, in the early stage of

the algorithm, the convergence speed is slow and it takes a lot of computation time. It is prone

to prematurity.

 
Figure 9. The principle of ant colony searching for food (ant colony searching for food from (a) to (d)).

PSO

Inspired by the regularity of the bird cluster activity, Eberhart and Kennedy proposed the PSO

(particle swarm optimization) algorithm in 1995. It starts from a random solution. It finds the optimal

solution through iteration. It evaluates the quality of the solution through fitness value, and it finds

the global optimal by comparing the currently searched optimal value at last. This algorithm is used

to solve the robotic path planning with the advantages of easy implementation, high precision and

fast convergence. Zhang et al. [43] presented an improved PSO for a mobile robot’s path planning.

Simulation results show the method is effective. Based on multi objective PSO, Gong et al. [44]

proposed a global path planning method. The effectiveness of the algorithm is verified by simulation.

An improved chaos PSO was proposed to solve the path planning for unmanned aerial vehicle [45].

The results show the proposed algorithm was superior to the traditional PSO, especially in the

three-dimensional environment. A fitness-scaling adaptive Chaotic PSO approach was presented to

solve the path planning of UCAVs [46]. Based on PSO, Liu et al. [47] introduced some key technologies

for path planning in radiation environment. The probability and effectiveness of the method is verified

by the experiment. Yusof et al. [48] proposed a predetermined waypoints method. The results show

the approach is promising. The algorithm is fast and efficient, but it is easy to fall into local optimum.

SA

The idea of simulated annealing (SA) algorithm was proposed by N. Metropolis et al. in 1953. It is

a stochastic optimization algorithm based on the iterative solution strategy of Monte-Carlo. The SA

starts from a certain higher initial temperature, and with the continuous decrease of temperature
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parameters, it randomly finds the global optimal solution of the objective function in the solution space

combined with the feature of probability jump.

Martinez-Alfaro et al. [49] used SA to obtain an optimal conflict-free path for mobile robots or

AGV in two-dimensional and three-dimensional environment. Vougioukas et al. [50] proposed an

accelerated SA algorithm to resolve the path planning. Miao et al. [51] proposed a SA approach to

obtain the optimal or near-optimal path quickly for a mobile robot in dynamic environments with

static and dynamic obstacles. The effectiveness of the proposed approach was demonstrated. Chiu [52]

used the SA to solve the path planning problem for mobile robots. The results show the method is

effective. Hui et al. [53] developed an enhanced SA approach to solve the dynamic robot path planning.

Behnck et al. [54] developed a modified SA algorithm to solve the path planning for SUAVs. The results

show the modified SA is able to calculate paths matching POI and UAV types with an execution time.

The algorithm has slow convergence speed, long execution time, and the performance relies on the

initial value.

3. Review of Local Path Planning

The contents of environmental modeling and optimization criteria refer to the previous section of

review of global path planning.

The path search algorithm for the local path planning can be divided into five categories:

artificial potential field method, behavior decomposition method, cased-based Learning method,

rolling windows algorithm, and artificial intelligence algorithm.

3.1. Artificial Potential Field

The idea of artificial potential field (APF) comes from the concept of potential field in physics,

which regards the movement of objects as the result of two kinds of forces. The robot in the planning

space is subjected to the gravitational force from the target point and repulsed by the obstacle. Under

the action of the two forces, the robot moves toward the target point in the resultant force, and during

the movement process it can effectively avoid the obstacles in the planning space and reach the target

safely. The scheme of artificial potential field is shown in Figure 10.

Figure 10. The scheme of artificial potential field.

Vadakkepat et al. [55] proposed a new approach called evolutionary APF (EAPF) for path planning

of the real-time robot. The robustness and efficiency are verified by simulation. Min GP et al. [56]

presented a virtual obstacle concept base on the APF to study the path planning of mobile robot.

The results show the method is feasible and of small complexity. Cao et al. [57] proposed a modified

APF approach for the path planning of mobile robot in a dynamic environment. Computer simulation
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and experiment demonstrated the effectiveness of the dynamic path-planning scheme. In order to

solve the problems that path planning trapped in local minimum, Zhang et al. [58] proposed the

evolutionary APF method. The feasibility and effectivity are verified by simulation. Zhou et al. [59]

proposed an adaptive APF method for the path planning of robot obstacle avoidance. The results show

the method can avoid falling into the local optimal solution. The merits of APF: (1) it is easy to operate

and realize; (2) it can get a more secure path; (3) it needs a little map information and does not need a

lot of computing in the planning process; (4) it can get a smoother trajectory. However, the APF ha

some shortcomings, such as: (1) it is prone to shock before the obstacles; (2) if there is an obstacle near

the target, the robot moves toward the target point, the smaller the distance between the robot and the

target point, the greater the repulsion which will lead such a result the robot fail to reach the target

point; (3) the path planning will trap into a locally optimal solution in some areas, etc.

3.2. Behavior Decomposition Method

Behavior decomposition method is a new trend in the path planning of mobile robot. Briefly

speaking, it is to break down the navigation problem into a number of relatively independent

navigation unit: behavioral primitives, such as collision avoidance, tracking, target guidance,

etc. These behavior units are complete motion control unit with sensors and actuators, and have

corresponding navigation. These behavior units coordinate with each other to complete the overall

navigation tasks. Whitbrook et al. [60] integrated an idiotypic artificial immune system network

with a reinforcement-learning-based control system for behavior planning control in robot navigation.

Huq et al. [61] proposed a new approach combined fuzzy context dependent behavior modulation and

motor schema. The results show it can obtain a conflict-free goal. Fernandez-Leon et al. [62] study the

behaviors of scaling up in evolutive robotics. The results show it is efficient. Combined the improved

beam curvature method (BCM) and the prediction model of collision, Shi et al. [63] presented a new

method of local obstacle avoidance. The results show it can avoid moving obstacles in the dynamic

environments. Toibero et al. [64] presented a switching control approach for the parking problem of

non-holonomic mobile robot. The results show it is feasible.

3.3. Cased-Based Learning Method

Mobile robot needs to establish a proper case database before path planning. When the mobile

robot encounters a new problem, it will search the information from the established case database.

Based on the search results, it will compare and analyze to find a solution that is most similar to the new

problem. Marefat et al. [65] developed a process planning system. The efficiency and the effectiveness

of the approach is verified by experiment. Experience knowledge is accumulated from training

and match practice, and is mainly used to match, as most knowledge is derived from experience.

The way and formula are discussed and they succeed in applying to robotics soccer [66]. Case-based

learning method was applied to the motion planning where volleyball robot’s initial state was partially

changed [67]. An intelligent typical case-based reasoning to path planning was put forward [68].

Combined with the knowledge about the road network, typical cases were defined and used to solve

the problem. The experimental result showed that this path-planning algorithm can reduce the search

space, speed up the progress of searching and satisfy people’s preferences of running on the road they

are familiar with.

3.4. Rolling Windows Algorithm

The mobile robot path planning based on the rolling window method uses the local environment

information obtained by the mobile robot to establish a “window”, and the path planning is realized

by recursively calculating the “window” with its own surrounding information. At each step of

the rolling calculation, sub-targets are obtained by heuristic method, then the obtained sub-targets

are implemented real-time planning in the current rolling window. With the moving of the rolling

window, the sub-targets are updated by the obtained information until the planning task is completed.
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Combined rolling path planning and bug algorithm, Zhong et al. [69] presented a new approach to

solve the path planning of mobile robot. The approach has environmental adaptability and good

capability of obstacle avoidance by simulation. Combining the advantages of least-squares policy

iteration (LSPI) and path planning based on rolling windows, a novel reactive navigation method

based on LSPI, and rolling windows was presented [70]. The effectiveness and the adaptiveness are

verified by simulation and experiment. Based on the dynamic window approach (DWA) for robot

navigation, Chou et al. [71] proposed an approach named DWA*. The results show this approach

has high performance by simulation and experiment. Because the local environment information

of the mobile robot is measured in real time and is online planned in a rolling manner, it has good

collision avoidance capability. However, the method may be trapped in a local optimization, it does

not guarantee the obtained path is the optimal solution.

3.5. Artificial Intelligence Algorithm

The contents of artificial intelligence algorithm refers to the previous section of review of global

path planning.

4. Conclusions

The path planning problem is an important research field of the mobile robot which has aroused

the interest of many researchers both at home and abroad. Good path planning technology of mobile

robot can not only save a lot of time, but also reduce the wear and capital investment of mobile

robot. Different methodologies have been reviewed in this paper. The results shows GA, PSO, APF,

and ACO are the most used four approaches to solve the path planning of mobile robot. Finally, future

research is discussed which could provide reference for the path planning of mobile robot. Future

research should include: (1) Each method can be suitable for different applications. As yet, there is no

universal algorithm or method that can solve all above cases. The new path planning method should

be researched, such as artificial immune algorithm [72], artificial bee colony [73,74], etc. Especially two

or more algorithms are combined to improve the quality and efficiency of the solution. (2) Multi-sensor

information should be inosculated into the path planning. Multi-sensor information fusion technology

can overcome uncertainty and information incompleteness of the single sensor. It can more accurately

and comprehensively understand and describe the environment and the measured object. (3) The

task assignment, communication cooperation and path planning of multi-robot should be researched.

(4) Path planning of mobile robots in high dimensional environment should be researched. (5) Air

robot and underwater robot should be researched. (6) The combination of the robot bottom control

and path planning algorithm should be researched.
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