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ABSTRACT In this paper, we focus on the study of UAV ground target tracking under obstacle environments

using deep reinforcement learning, and an improved deep deterministic policy gradient(DDPG) algorithm

is presented. A reward function based on line of sight and artificial potential field is constructed to guide

the behavior of UAV to achieve target tracking, and a penalty term of action makes the trajectory smooth.

In order to improve the exploration ability, multiple UAVs, which controlled by the same policy network,

are used to perform tasks in each episode. Taking into account that the history observations have a great

degree of correlation with the policy, long short-term memory networks are used to approximate the state

of environments, which improve the approximation accuracy and the efficiency of data utilization. The

simulation results show that the propose method can make the UAV keep target tracking and obstacle

avoidance effectively.

INDEX TERMS DDPG, deep reinforcement learning, obstacle avoidance, target tracking, UAV.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have the advantages of

safety, low cost and high maneuverability. They are widely

used in military or civil fields such as reconnaissance, strike,

rescue and early warning, etc. One of the typical application

of UAV [1] is target tracking and obstacle avoidance. High

autonomy on-line trajectory planning of UAV for target track-

ing and obstacle avoidance in unknown working environment

arosed great attentions [2]–[4].

With the rapid development of artificial intelligence tech-

nology in recent years, deep reinforcement learning(DRL)

plays an important role in more and more fields for its

excellent environmental awareness and decision control per-

formance [5]. Reinforcement learning can directly map the

environment state to the control signal, which provides a

dynamic planning solution for UAV trajectory planning.

Flight environment is usually local or completely unknown

during on-line path planning. How to react to the dynamic

environment using incomplete information is a key issue

in UAV on-line path planning. Reinforcement learning has

The associate editor coordinating the review of this manuscript and
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advantages of strong robustness, independence on environ-

ment model and prior knowledge, solves the on-line path

planning problem by trial and error [6].

Q-learning [7] is an effective tool in reinforcement learn-

ing, which is widely used and followed by many improved

algorithms such as SARSA [8], double Q-learning [9], and

the first DRL algorithm DQN (Deep Q Network) [10].

There for Q-learning has been applied into UAV path plan-

ning [11]. Zhang et al. [12], uses geometric method to

calculate value matrix containing threat information. In this

method, it combines greedy strategy with Boltzmann strategy

to improve exploration. Yijing et al. [13] proposes an adaptive

random exploration Q-learning method which designs the

learning, escape and action modules of UAV respectively.

Yan et al. [14] initializes Q matrix with environment and

target, and adds the function of avoiding repetitive actions

in the initial stage of training. Most Q-learning path plan-

ning methods are restricted in grid like environments for

Q-learning and its improves can be used only in discrete

space. Policy gradient [15]–[18] and actor-critic [19]–[21]

can be used to deal with path planing problems in continuous

action space. Zhaowei et al. [22] proposes an actor-critic

algorithm based on RBF neural network to achieve
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UAV avoidance. Zhu et al. [23] designs an end-to-end DRL

model to control UAV indoor target searching with images as

input. Deep deterministic policy gradient (DDPG) [27] is a

DRL algorithm which combines DQN with actor-critic and

can be operated in continuous action space. Wang et al. [24]

transforms the UAV path planning problem into a par-

tially observable Markov decision process, builds a recur-

rent deterministic policy gradient framework to navigation

in large-scale and complex environments. You et al. [25]

proposes a DDPG algorithm based on a generative model and

variational Bayesian estimation to search target in cognitive

electronic warfare.

Complex, dynamic and partially observable environments

are major challenges for UAV target tracking [26]. To over-

come these difficulties, we improve DDPG in terms of reward

function and data. A good reward function is an excellent

description of the relationship between environment and mis-

sion objectives, which improves the ability and generaliza-

tion of the algorithm. Considering the impact of dynamic

environment, a reward for DDPG is consisted of line of

sight(LOS) [28], [29] and artificial potential field [30]. The

quality and utilization efficiency of data are the key to the

success of model training [31]. The quality of data is closely

related to the exploration which is limited by the scope of

action. A large scope of actions is beneficial for exploration.

But UAV is hard to accomplish actions that if vary too

much due to the dynamics limitation. We add penalty term

of action to the reward function. The action range of UAV

will decrease with the convergence of the algorithm corre-

spondingly. Mean while the exploration can be improved by

exploring starts [32]. Multiple UAVs with different initial

conditions, which controlled by the same model, are used

to perform tasks in each episode. The utilization efficiency

of data can be improved through the networks and input

states [33]. LSTM [34]–[36] is a kind of recurrent neural

networks with sequence data as input. A part of information

of data is transmitted to the next moment in the form of

memory and participates in the training of input-output data

pairs. That is to say, the training results at the current moment

are determined by both the current training data and the

historical training data. In partially observable environments,

the combination of LSTM and historical sequence of obser-

vations can approximate the value network and actor network

better [37]. The improved DDPG algorithm is trained in a vir-

tual simulation environment, and the well-trained algorithm

can be used for online target tracking and obstacle avoidance

in new dynamic environments.

The main contributions of this paper are as follows:

1) ADRLmodel for target tracking and obstacle avoidance

is developed.

2) Critic network and actor network based on LSTM are

designed and well trained.

3) A virtual simulation environment for target tracking

and obstacle avoidance is constructed. The results verify

that the algorithm has satisfactory performance and favorable

generalization.

The structure of this paper is as follows: Section II,

the background is introduced. Including the DDPG algo-

rithm, the ground target tracking environment, the kinetic

models of UAV, observation space and action space.

A new method s presented in Section III with the improve-

ment in learning framework, reward function and networks.

Section IV gives the the network structure, the simulation

parameters and results, and the efficiency of the improved

method is proved. The summary and prospect is given in

Section five.

II. BACKGROUND

In this section we give an introduction to the background

knowledge of DRL ground target tracking and obstacle avoid-

ance, including a DRL algorithm – DDPG and the environ-

ment used for tracking.

A. DDPG

An agent-environment interaction process with time discrete-

ness can be represented as a trajectory:

S0,A0,R1, S1,A1,R2, S2 . . .

where St , At , and Rt represented the state, action, and reward

at step t respectively. If the trajectory satisfies the Markov

property, that is, the values of Rt+1 and St+1 have well

defined discrete probability distributions dependent only on

the preceding state St and action Rt , we can call this inter-

action process as a Markov Decision Process (MDP) [38].

The agent tries to select actions so that the sum of the dis-

counted rewards is maximized over the future. The sum of

the discounted rewards after step t can be defined as the

return Gt whose normal form is:

Gt = Rt + γRt+1 + γ
2Rt+2 + . . . =

+∞
∑

τ=0

γ τRt+τ (1)

where γ ∈ [0, 1] is a parameter, called the discount rate, is

used to determines the current value of future rewards.

A policy is amap from state to action, which determines the

behavior of agents and it is a probability distribution of states

in generally. Deterministic policy gradient algorithm outputs

specific behavior rather than probability. A deterministic

policy π can be defined as a function:

a = π (s; θ ) (2)

where θ refers to the parameters of the function. Our task is to

find a set of parameters θ make π optimum or make Eπ [G0]

maximum, where Eπ [·] denotes the expected value of a ran-

dom variable given that the agent follows policy π . In order

to find the parameters, we defines two functions, the state-

value function vπ (s) and the action-value function qπ (s, a).

vπ (s) represents the value of state s under the policy π , is the

expected return when starting in s and following π thereafter,

which can be expressed by formula:

vπ (st ) = Eπ [Gt |St = st ] (3)
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qπ (s, a) represents the value of taking action a in state s under

a policy π , is the expected return starting from s, taking the

action a, and thereafter following policy π , which can be

expressed by formula:

qπ (st , at ) = Eπ [Gt |St = st ,At = at ]. (4)

The relationship between state and action value function

could be described by Bellman equation [39], and the Bell-

man equation for deterministic policy is defined as:

vπ (s) = qπ (s, a; η) (5)

qπ (s, a) = r(s, a)+ γ
∑

s′

p(s′|s, π(θ ))vπ (s
′) (6)

where η is the parameter of value function. There are two

steps for policy optimization, the first step is value update.

Use temporal difference Learning to update the value func-

tions, in each step:

y = Rt+1 + γ qπ (St+1,At+1; η)) (7)

and the parameter η can be updated by:

η← η + α[y− qπ (St ,At ; η)]∇ηqπ (St ,At ; η) (8)

The second step is policy improvement. Taking the gradi-

ent of Bellman equation and calculating its expectations

about St , we have the recurrence formula:

E[∇vπ (θ )(St )] = E[∇π (S; θ )[∇aq(S, a)]a=π (St ;θ )]

+ γE[∇vπ (θ)(St+1)] (9)

According to the formula (3) we have

∇Eπ [G0] = E[∇vπ (S0)] (10)

Using (9) and (10), we calculate the policy gradient:

∇Eπ [G0] =

+∞
∑

t=0

E[γ t∇π (S; θ )[∇aq(S, a)]a=π (St ;θ )] (11)

In each time step, we update parameters θ according to:

θ ← θ + βγ t∇θπ (St ; θ )[∇aq(St , a; η)]a=π (St ;θ ). (12)

The principle of DDPG is the same as that of the deterministic

policy gradient. The main difference is that the technology

of experience replay and target network are used in DDPG

whose detailes are given in algorithm 1.

B. ENVIRONMENTS

The target tracking and obstacle avoidance environment can

be illustrated in FIGURE 1. The location of the target changes

in the environment with time steps. The distance and direction

of target can be obtained by UAV. Sensors are equipped

in the front of the UAV which can measure the distance

of obstacles in the range of dmax ahead. Obstacles can be

shaped as arbitrary polygons or circles. When the distance

received by the sensor less than a certain threshold, it means

that the UAV collision with obstacles and the task fails.

Algorithm 1Deep Deterministic Policy Graidient Algorithm

1: Initialize policy network π (s) and value network q(s, a)

with parameters θ and η;

Initialize target policy network π ′(s) and target value

network q′(s, a) with parameters θ ′← θ and η′← η;

Initialize the learning rate of target network ε, batch size

N , replay memory R;

2: Take action action according to the state at = π (st );

3: Executes the action at , receives the reward rt+1, acquire

new state st+1;

4: Save {st , at , rt+1, st+1} to the memory;

5: Sample a batch size of N datas {(si, ai, ri+1, si+1)}
N
i=1

from memory randomly;

6: Update the policy network and value network:

yi = ri+1 + γ q(si+1, π(si+1; θ
′); η′)

η ← η + α
1

N

∑

i

[yi − q(si, ai; η)]∇ηq(si, ai; η)

θ ← θ + β
1

N

∑

i

∇θπ (hi; θ )[∇aq(hi, a; η)]a=π (hi;θ )

7: Update the target networks

η′ ← εη + (1− ε)η′

θ ′ ← εθc + (1− ε)θ ′

8: Back to step 2 untill to the maximum number of training.

FIGURE 1. Target tracking and obstacle avoidance environment. d0
denotes the distance between UAV and target; d1 ∼ d9 represent the
distances returned by the distance sensors; χ denotes the orientation of
target; ψ denotes the orientation of the UAV velocity.

When the distance between UAV and target is less than a cer-

tain threshold, it means the tracking task is being performed.

We use matplotlib - python to build a complete envi-

ronment model. The whole environment is confined to a

two-dimensional plane space of 500 meters in length and

width with boundaries around it. Several stationary polygons

are randomly placed in the boundaries as obstacles, and target

at rest or in uniform motion. More informations about the

environments are shown in Section IV.
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C. OBSERVATION AND ACTION SPACE

The observationswe can get from the environment include the

position and velocity of UAVs, the distance and direction of

target, obstacle distance in directions of the sensors. Consid-

ering the dynamic environment and generalization, we aban-

don the position of UAV, retain the speed v and direction ψ .

We use the relative azimuth [χ, d0] to indicate the relationship

between UAV and target. We use the distance measured by

sensors indicates the relationship between UAV and obsta-

cles. The observation space: o = [ψ, χ, d0, d1, d2, . . . , dn],

where n indicates the number of sensors, ψ, χ ∈ [−π, π],

d0 ∈ [0,+∞], d1 ∼ dn ∈ [0, dmax].

UAV can be regarded as a point when planning the tra-

jectory in large scale environments, its three-dimensional

continuous-time motion model is given as follows:
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(13)

where [x,y,z] is the coordinates of UAV in three-dimensional

space. [v,ψ , γ ] indicate the speed, yaw angular, pitch angu-

lar, respectively.[uψ̇ , uγ̇ , uv̇] is the control command. For

simplify, we limit the trajectory planning problem into a

two-dimensional continuous state environment and set the

velocity to a constant value. The simplified dynamic discrete

mode1 in time is presented as follows:




x(t + 1)

y(t + 1)

ψ(t + 1)



 =





x(t)+ vcosψ(t + 1)

y(t)+ vsinψ(t + 1)

ψ(t)+ a(t)



 (14)

The task for target tracking is to drive the UAV reach the

target position in the shortest time and keeps it within bounds

without colliding with any obstacles.

The action a refers to the variation of ψ , while the

the control quantity of true UAVs usually expressed as

acceleration [40]. In order to guarantee that the action can

be followed, the mechanical system between acceleration

and action is considered in subsequent part. In the hori-

zontal direction, the force on a moving UAV satisifices the

relationship:

F =
mV 2

ρ
(15)

and the normal acceleration a′ is shown as:

a′ =
F

m
=
V 2

ρ
. (16)

where ρ is the curvature radius of the path, which can be

shown in FIGURE 2. AB and BC have the same length which

equals the distance traveled by UAV within half sampling

period. According to the geometric relation, we have the

curvature radius as:

ρ = 0.5V1tcot
a

2
(17)

FIGURE 2. Action and curvature radius. a denotes the action; ρ represent
the curvature radius; the broken line ABC denotes the generated
trajectory in one sampling period; the arc AC denotes the real trajectory
in one sampling period.

where 1t is the sampling time-interval. Thus we have the

relationship between acceleration and action:

a′ =
2Vtan a

2

1t
≈

Va

1t
. (18)

The relationship can be used to determine the range of action,

or it can be used to check whether the selected action range is

reasonable. If the acceleration range is covered by the mobil-

ity of real UAV, the generated trajectories can be followed

by UAV.

III. PROPOSED METHOD

We improve the DDPG in framework, reward function and

networks in this section.

A. LEARNING FRAMEWORK

DRL framework for UAV target tracking and obstacle avoid-

ance includes three modules:

1) Environment description module. The function of this

module is to sense target informations, describe the threats

faced by UAVs and extract relevant features.

2) DRL Control module. DRL control is the corner of

the framework, which receives the environment description

signal, estimates the state value of environment and modifies

the control policy continuously.

3) UAV module. UAV adjusts the attitude and position

by means of the control signal, then affects the received

environment description.

Compared with traditional DRL, our framework which is

shown in FIGURE 3 is different in two aspects. The first

is that feature extraction functions are placed in the DRL

control module, the feature extraction network and the actor

network can be trained simultaneously. The second is that

multiple UAVs with the same policy interact with environ-

ments, which is helpful for UAVs to discover more unknown

environments. The exploration ability and convergence speed

are improved simultaneously. Due to the improvement in

exploration, the problem of local optimization has been also

alleviated.
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FIGURE 3. The improved DRL framework for UAV target tracking. Feature
extraction module connected with Actor-Critic modules directly, which is
convenient for joint training. Multi-UAVs explore environments
cooperatively, which speed up the convergence and alleviate the local
optimization.

B. REWARD FUNCTION

Reinforcement learning uses reward to estimate the expected

return and gets the optimal strategy. The setting of reward

function is closely related to the quality of training results.

A simpler method is to set sparse rewards based on results,

that is to say, each episode only gives positive or negative

rewards according to whether the mission can be fulfilled or

not. This method has the advantage of strong applicability

and can be used in various environmental models, while

the disadvantage is that the convergence speed is slow for

the update of network only at the end of each episode, and

the algorithm is easy to get stuck at locally optimal value for

random exploration.

In order to improve the efficiency and practicability, a non-

sparse reward is designed to guide UAV tracking and obsta-

cle avoidance in the special application environment, which

consists of LOS reward, distance reward, terminal reward and

action penalty. LOS is the line between UAV and target, and

the LOS reward is designed as:

rLOS = λ(
π

2
− |χ − ψ |) (19)

where λ is a positive constant, |χ − ψ | is the LOS angle in

velocity coordinate system. The smaller the LOS angle is,

the faster UAV approach to the target. Once the LOS larger

than π
2
, UAV will fly away from the target. The physical

significance of rLOS is that no matter where the UAV is, it can

get a higher reward as long as flies towards the target. rLOS is

the most important reward to guide the UAV fly to the target.

The obstacle reward is designed as:

robstacle = σ {[

n
∑

i=1

(
1

di
−

1

dmax
)cos

iπ

n− 1
]2

+ [

n
∑

i=1

(
1

di
−

1

dmax
)sin

iπ

n− 1
]2} (20)

where σ is a negative constant. The reward is transformed

from artificial potential field, which represents the overlap

value of obstacle repulsive fields in sensor directions.

The terminal reward relate to the success of the mission,

which is designed as:

rterminal =











−k if di ≤ dmin1, i ∈ [1, n]

k if d0 ≤ dmin2

0 else

(21)

where k is a positive constant and dmin1 is the threshold of

obstacle avoidance, dmin2 is the threshold of target tracking.

rterminal is a sparse reward whose physical significance is

that no matter what the direction of the UAV is, it can get

a higher reward as long as its distance from the target is less

than a threshold, and it will get a higher penalty as long as

its distance from the obstacles is less than another threshold.

If any of these two conditions are triggered, the UAV will be

re-initialized. The main function of rterminal is to guide UAV

avoid obstacles and hover around the target.

In order to make trajectories smoother, an action penalty

is given as:

raction = α|1a| (22)

where α is a negtive constant, 1a indicates the change of

actions in adjacent time.

To summarize, we give the final reward function:

r = rLOS + robstacle + rterminal + raction (23)

In previous studies, the sparse reward rterminal is a common

reward function. However, we found that the model trained

by rterminal has a high probability to fall into local optimum.

The UAV controlled by the local optimum model only con-

sider the obstacle avoidance while ignoring the target. The

local optimization problem has been alleviated when using

multi-UAVs to explore environment cooperatively, while the

training results are still unstable. In our study, we design the

reward rLOS , UAVs will head to the target to get more rewards.

The application of rLOS reduces the meaningless patrols and

circling, improves the training successful ratio greatly, and

alleviate the local optimization problem further.

C. ACTOR RECURRENT CRITIC

The tasks for ground target tracking are performed in dynamic

and partially observable environments where the observations

are quite different from the states. We receive the observation

and corresponding action at a certain time, but the rewardmay

comes later, which can be illustrated by the function:

r(ot , at ) =

T
∑

i=1

κ t−T+it r ′(ot−T+i, at−T+i) (24)

where r(ot , at ) indicates the reward received in time step t ,

and r ′(ot−T+i, at−T+i) indicates the reward produced in time

step t − T + i. Define κ t−T+it r ′(ot−T+i, at−T+i) as a part

of reward which is produced in time step t − T + i while

received in time step t , where κ t−T+it > 0 is a discount factor

and
∑T

i κ
t−T+i
t = 1. For the function (20), we have the

conclusion that the reward we detected in each time step is a
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function about history observations which can be represented

as a trajectory:

O0,A0,O1,A1,O2, . . . , St

In order to speed up the computation, we set a maximum

history length T , use the historical observations from t−T to

t to train the network in each time t . For the actions could get

from the adjacent observations, it can be omitted. We have

the history as:

ht = ot−T , ot−t+1, . . . , ot (25)

DDPG updates the value network with the detected reward

in each step, so the value network can be seen as a function

about ht . We have already known in equation (3) that value

function is a function about state, so that we can simulate

the state by history. Recurrent networks could synthesize the

historical observations, have a better representation of states.

LSTM is a kind of excellent recurrent neural networks, which

consists of keep gate, write gate and read gate, it has a great

ability of controlling historical information to participates in

training. Using the LSTM network to simulate the state from

observation history, We have the state as:

st = f (ht ;ω) (26)

where f (·) is determined by the LSTM network, ω represents

the parameters of LSTM.

There are two kinds of networks in DDPG. Actor network

is used to adjust the parameters of policy, determine the best

action in a specific state. Critic network is used to evaluate the

value of current action. We improve the framework of DDPG

and name the new structure as ARC(Actor - Recurrent - Critic

Network). The main structure of the ARC network is shown

in FIGURE 4. The actor network and the critic network are

consisted of Dense network, which computes the continuous

actions and value functions respectively. LSTM and actor

combine together to make up the policy network, the value

network is consisted of LSTM and critic. Policy and value

networks share the same structure and parameters of LSTM.

The policy is defined as:

a = π (ht ;ω, θ) (27)

where θ represents the parameters of actor network. The

value is defined as:

q = Q(ht , at ;ω, η) (28)

where η represents the parameters of critic network. In each

time step, we update parameters according to (29)-(32).

y = rt+1 + γQ(ht+1, at+1) (29)

η ← η + α[y− Q(Ht ,At )]∇ηQ(ht , at ;ω, η) (30)

ω ← ω + α[y− Q(ht , at )]∇ωQ(ht , at ;ω, η) (31)

θ ← θ + β∇θπ (ht ;ω, θ)[∇aq(ht , a;ω, η)]a=π (ht ;ω,θ ) (32)

Algorithm 2 provides the overall steps of our ARC algorithm.

FIGURE 4. Actor - Recurrent - Critic(ARC) networks architecture. The LSTM
network simulate the state; The actor network selects actions; The critic
network applies to estimate state-action values.

FIGURE 5. Policy and value networks of ARC. The number of trainable
params of policy network is 47,241, and the number of trainable params
of value network is 47,441. These two networks share the same LSTM
structure and parameters.

IV. EXPERIMENTS

In this section, simulation experiment is carried out based on

TensorFlow2.0 - python, the network and hyper parameters

required by the experiment are given, and the experimental

results are analyzed.

A. EXPERIMENTAL SETTINGS

There are two kinds of network structures in DDPG – the

value and the policy, which are shown in FIGURE 5. The

VOLUME 8, 2020 29069
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FIGURE 6. Simulation results of ARC. The x-axis represent the number of episodes, and the y-axis represent the steps,
reward and average reward in each episode respectively. Approach the target or colliding with an obstacle indicates
the end of an episode, and each episode have the most time steps 500.

Algorithm 2 Actor - Recurrent - Critic Algorithm

1: Initialize policy network π (h) and value network q(h, a)

with parameters ω, θ and η;

Initialize target policy network π ′(h) and target value

network q′(h, a) with parameters ω′ ← ω, θ ′ ← θ and

η′← η;

Initialize the learning rate of target network ε, batch size

N , maximum history length T , replay memory R;

2: Take action action according to the historical observation

at = π (ht );

3: Executes the action at , receives the reward rt+1, acquire

new observation ot+1;

4: Update the history ht+1 = ot−T+1, ot−t+2, . . . , ot+1 and

save {ht , at , rt+1, ht+1} to the memory;

5: Sample a batch size of N datas {(hi, ai, ri+1, hi+1)}
N
i=1

from memory randomly;

6: Update the policy network and value network:

yi = ri+1 + γ q(hi+1, π(hi+1;ω
′, θ ′);ω′, η′)

η ← η + α
1

N

∑

i

[yi − q(hi, ai;ω, η)]∇ηq(hi, ai;ω, η)

ω ← ω + α
1

N

∑

i

[yi − q(hi, ai;ω, η)]∇ωq(hi, ai;ω, η)

θ ← θ + β
1

N

∑

i

∇θπ (hi;ω, θ)[∇aq(hi, a;ω, η)]a=π (hi;ω,θ )

7: Update the target networks

η′ ← εη + (1− ε)η′

ω ← εω + (1− ε)ω′

θ ′ ← εθc + (1− ε)θ ′

8: Back to step 2 untill to the maximum number of training.

layer of LSTM is used to extract feature informations from

history observations, those two networks share the same

LSTM and update it synchronously. In our environments,

the speed is set to V = 3m/s, the action range of UAVs set

as [−π/20, π/20] and the sampling time-interval 1t = 1s.

According to equation(18), we have the normal acceleration

a′ with small range [−0.47, 0.47]m/s2 which makes the gen-

erated trajectories easier to follow. The observations of UAV

are normalized to [0,1] and the action signal is normalized to

[−1,1]. The reward is instantiated as: λ = 1, σ = 0.1, k =

100, α = 0.01. The maximum history length is set to 5. The

capacity of memory is set to 4000. The batch size is set to 32.

RMSprop optimizer [41] is employed to learn the network

parameters with a learning rate of 10−3. The discount factor

is γ = 0.9 and the soft target update rate is ε = 0.01.

The exploration noise is set to Var(−0.2, 0.2). The number of

train episodes is n= 300, the maximum steps in each episode

is m = 500.

B. SIMULATION AND PERFORMANCE ANALYSIS

In this subsection, the training process is given. We observe

the number of steps and rewards in each episode, statistic and

analysis their changes from the initial to the convergence.

FIGURE 6 shows the simulation results, where (a) represents

the number of training steps in each episode. In the first

40 episodes, the training steps of UAV are less than 100,

which indicates the termination condition is triggered, i.e.

the UAV will collision with obstacles. Then the number of

training steps began to increase, creep up to 100, or even

arrive at 500, which indicates that the UAV learned how to

avoid obstacles. After about 70th episode, the number of

training steps began to decrease and stable between 100 and

200 finally, which indicates that the UAV learned better pol-

icy and could approach the target successfully.

The purpose of DRL is to improve the cumulative reward

through continuous learning, so as to obtain the maximum

cumulative reward. Therefore, the higher the reward is,

the better the traning effect is. The cumulative reward of each

episode is shown in FIGURE 6 (b). By comparison, we find

that the trend of cumulative reward is consistent with the

obtained analysis results. The average reward for each step

in each episode reflects the effect of the training process.

As shown in FIGURE 6 (c), the average reward increase
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FIGURE 7. Simulation results of DDPG. The x-axis represent the number of episodes, and the y-axis represent the
steps, reward and average reward in each episode respectively. Approach the target or colliding with an obstacle
indicates the end of an episode, and each episode have the most time steps 500.

FIGURE 8. Some examples of the simulated complete environments. Obstacles in different types of environments
are distinguished from shapes, sizes and numbers.

gradually. After about 100th episode, the average reward

reaches the top and stays stable. Due to the exploration noise

and random initial state, UAV collides with obstacles in a

small number of episodes results in low average reward.

In order to prove the reliability of the improved method

further, traditional DDPG with the same reward function and

hyper parameters is used for comparison, and the results are

shown in FIGURE 7. The simulation shows that the number

of training steps began to convergence after about 130th

episode, which is slower than the improved method. Due to

inadequate exploration, there are large fluctuations in the last

20 episodes and the reward drops considerably. It can be

found that both the stability and the convergence speed are

enhanced significantly in the proposed method.

C. EXPERIMENT RESULT

This subsection shows the effect of target tracking by trajec-

tories and the normalized distance between UAV and target.

FIGURE 8 shows the trajectories in different environments,

and FIGURE 9 shows their normalized tracking distance

correspondingly.

Environment 1 shows the tracking results for station-

ary target in a barrier-free environment. At first the UAV

approaches the target quickly, and then circles around the

target to keep continuously tracking and observingwithin the

range of maneuverability. Environment 2 shows the tracking

results for stationary target in the case of simple obstacle

interference. UAV can avoid the obstacle successfully and

approach the target quickly. In the final phase, UAV also
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FIGURE 9. Some examples of the simulated complete environments. Obstacles in different types of environments
are distinguished from shapes, sizes and numbers.

flights around the target. Environment 3 shows the tracking

results for stationary target in a environment with complex

obstacles. Due to the dynamic constraints and interference

of obstacles, the UAV cannot fly around the target. However,

we can find that, the UAV can still complete the task of

continuous observation and tracking by keeping a certain

distance from the target on the premise of guaranteeing its

own safety.

Environment 4-6 shows the tracking results for moving

target. The moving speed is set to be 0.8m/s which is less than

the speed of UAV. Therefore, the UAV has the ability to fuifil

the tracking task under the correct guidance. Environment

4 shows the tracking results in a barrier-free environment. The

results show that after approaches the target, the UAV always

hovers within a certain range of the target and can observe

and track the target stably. Environment 5 shows the tracking

results for moving targets in a environment with a simple

obstacle. The UAV approaches the target quickly and keeps

tracking in the initial stage.When the obstacle is encountered,

after a short adjustment to ensure flight safety, UAV flies to

the target again and maintain tracking. Environment 6 shows

the tracking results for the moving target in the environment

with complex obstacles. Due to the density of obstacles and

the constraint of flying ability, the UAV cannot maintain a

stable observation distance to the target, but it can still fly to

the target on the premise of avoiding obstacles.

In order to prove the effectiveness and practicability fur-

ther. Two environments shown in FIGURE 10 are selected

to repeat the experiment. The target is set to stationary in

the center, and the initial state of UAV is random in each

FIGURE 10. Environments used for repeat the experiment. Environments
with stationary target in the center. Obstacles in different types of
environments are distinguished from shapes, sizes and numbers.

episode. For target tracking problem in the environment 7

which has sparse obstacles in it, compared with the traditional

DDPG algorithm, the success rate of the improved algorithm

is increased from 70.0% to 91.8%. For target tracking prob-

lem in the environment 8 which has dense obstacles in it,

the success rate is increased from 13.6% to 67.5%.

V. CONCLUSION AND PROSPECT

In this paper, we improve the DDPG algorithm make it more

suitable for UAV target tracking. The simulation results show

that the training process is more stable and the convergence

is faster. In the verification process, we observe that the UAV

could generate the collision free trajectory for target tracking.

Besides, the failure rate decreases significantly compared

with traditional DDPG.

Despite the better results, there are still areas for improve-

ment. The following scheme is proposed for future work.
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1) State space. The visual based DRL method can extract

the obstacle information directly from the depth images col-

lected by the camera, but it can’t detect the target position

information. One solution is that the relative position infor-

mation of the target is calculated and fused with the images.

Then the expanded high-level image information can be used

as the input of DRL.

2) Reward function. The design of reward function is

crucial to the training effect of DRL. In order to obtain

satisfactory results, we have compared more than 10 kinds of

reward functions. More effective method for reward function

definition will be the focus of the follow-up research.

3)Combination with rule-basedmethods. Although the tar-

get tracking method based on DRL can ensure convergence,

it lacks security and practicability. The rule-based path plan-

ning algorithms are usually more stable and effective. There-

fore, the combination of DRL with rule-based methods will be

a promising research direction, which can not only deal with

complex and changeable environment, but also enhance the

stability and efficiency.
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