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Abstract: We propose a path planning method to improve the productivity of AOI (automated 
optical inspection) machines in PCB (printed circuit board) assembly lines. The path-planning 
problem is the optimization problem of finding inspection clusters and the visiting sequence of 
cameras to minimize the overall working time. A unified method is newly proposed to 
determine the inspection clusters and visiting sequence simultaneously. We apply a hybrid 
genetic algorithm to solve the highly complicated optimization problem. Comparative 
simulation results are presented to verify the usefulness of the proposed method. 
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1. INTRODUCTION 
 
One important process in electronic manufacturing 

today is PCB (printed circuit board) assembly using 
SMT (surface mount technology). SMT has replaced 
the older through-hole-technology because it can 
dramatically increase the densities of component per 
board. Fig. 1 shows a SMT in-line system for PCB 
assembly. The AOI (automated optical inspection) 
machine is employed in the SMT in-line systems to 
perform a sequence of optical inspections on 
component placement and soldering. Due to the 
growth of image processing technology, they have 
become very popular in PCB assembly lines. Efficient 
operation of the AOI machine is essential for reducing 
product cost and therefore increasing competitiveness. 
In this paper, we propose a method to reduce the 
overall working time of the AOI machine. 

The path-planning problem of the AOI machine is 
to find the optimal path of a camera such that the 
overall working time is minimized. Since the image 
acquisition area of the camera is limited by its FOV 
(field-of-view), all components and soldering pads in 
the PCB should be divided into many clusters. The 
size of each cluster should be within the size of the 

FOV. The camera visits every cluster and acquires an 
image to perform the PCB inspection. The number of 
clusters and the moving path of camera have great 
influence on the total working time. Hence the path-
planning problem is to determine the clusters and 
visiting sequence minimizing the total working time. 
This problem is under the category of the NP-hard 
optimization problem, so it is very difficult to find the 
optimal solution in a reasonable time. In this paper, 
we propose a method to find the near-optimal solution 
of the path-planning problem. 

Most researches on AOI machines have been 
focused on image processing [1-3]. It is very difficult 
to directly apply the typical clustering algorithms 
[4,5] to our problem because our problem is different 
from the typical clustering problem in the viewpoint 
of decision variables and optimization criteria. The 
optimization method for the TSP (traveling salesman 
problem) [6] can be partly applied to our problem, but 
it is necessary to develop a new method to solve the 
whole path-planning problem. 

We can solve the path-planning problem by 
dividing the whole problem into two sub-problems: 
clustering problem and sequencing problem. The 
clustering algorithms are applied to solve the upper 
stage problem, and then the TSP algorithms are 
applied to solve the lower stage problem. This 
hierarchical approach can generate a good solution in 
a short time, but may generate an inefficient solution 
since the clustering and sequencing are not 
independent.  

To improve the efficiency of the solution, we newly 
propose the unified method that solves the clustering 
problem and sequencing problem simultaneously. The 
hybrid genetic algorithm is applied to solve the 
optimization problem. We verify the efficiency and 
usefulness of the proposed method through the 
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comparative simulation using a commercial machine. 
 

2. PATH PLANNING PROBLEM 
 
Fig. 2 shows a typical AOI machine that consists of 

a gantry and a camera. The gantry moves in the y-
direction, and the camera moves along the gantry in 
the x-direction. These x and y-direction movements 
can occur concurrently. Since the FOV (field-of-view) 
of the camera is bounded by its limit, the camera 
travels over the entire board area to acquire overall 
images.  

Fig. 3 depicts inspection windows, FOV and 
camera path of the AOI machine. The inspection 
window is a rectangular area to be inspected by the 
camera, which includes component and soldering pad. 
Several hundreds or thousands of windows are usually 
located in one PCB. The FOV is the maximum image 
area that can be acquired by one shot of the camera. 
The size of the FOV is a constant parameter of the 
camera, which is usually about several tens of 
millimeters. The inspection cluster is a group of 
inspection windows that can be captured by one shot 
of the camera. So the size of the FOV limits that of 
the inspection cluster. The camera starts from a given 
initial position, and visits every cluster to acquire 
image data for all inspection windows. The camera 
path is the sequence of clusters visited by the camera. 

The number of inspection clusters is equal to the 
number of shots by the camera. Hence if we reduce 
the number of clusters, we can reduce the total image 
acquisition time of the AOI machine. The overall 
working time also includes the camera moving time 
between clusters. The total moving time is decided by 
the visiting sequence of the camera. Therefore, 
inspection clusters and visiting sequence should be 
determined to reduce the overall working time. The 
path-planning problem of the AOI machine is to 
determine the inspection clusters and visiting 
sequence of the camera. 

Now we formulate the path-planning problem 
mathematically. Let W  be a set of window indexes 
and C  be a set of cluster indexes as: 

{1, , }W m= L ,    (1) 
{1, , }C n= L ,    (2) 

where n  is the number of clusters, which is a 
variable to be determined. Define the cluster variable 

{0,1}m n
wcz ×∈  as: 

   
otherwise ,0

.cluster  ofmember  a is    windowif ,1





=
cw

wcz  

and define the sequence variable {0,1}n n
ijx ×∈ as: 

   
.otherwise ,0

.cluster  fromdirectly   visitedis cluster   if ,1





=
ij

ijx  

Then the path-planning problem is formulated as the 
following integer- programming problem: 

 

Fig. 1. PCB assembly system and AOI machine. 
 

 

 
Fig. 2. Structure of AOI machine. 
 

 

Fig. 3. Inspection windows, FOV and camera path. 
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In (3), n is the number of clusters related with the 

cluster variable zwc. Tacq is the image acquisition time 
for one cluster, which is assumed to be a constant 
value. And tij is the camera moving time between 
cluster i and cluster j, which depends on the cluster 
variable zwc. Hence the objective function in (3) is the 
overall working time, which is the sum of total image 
acquisition time and total moving time.  

Constraint (4) means that every inspection window 
should be included in an inspection cluster, and 
constraint (5) means that every inspection cluster 
should include at least one inspection window. max

cX  

and min
cX  denote the maximum and the minimum x-

coordinates of cluster c , respectively. Also max
cY  

and min
cY  denote the maximum and the minimum y-

coordinates of cluster c, respectively. Therefore 
constraints (6)-(7) mean that the size of cluster should 
be smaller than the size of the FOV. Constraints (8)-
(9) mean that every cluster should be visited exactly 
once, and constraint (10) prohibits split cycles from 
the camera path. Hence the camera path should be the 
Hamiltonian tour for the traveling salesman problem. 

The path-planning problem is to find the cluster 
variable and the sequence variable such that the 
objective function (3) is minimized subject to the 
constraints in (4)-(10). The formulated problem is a 
nonlinear integer-programming problem with coupled 
variables. It is known to be very hard to obtain the 
global solution for the category of these problems. 
Hence we approach the problem by the local or 
heuristic method to obtain the near-optimal solution in 
a reasonable time. 

 
3. HIERARCHICAL METHOD 

 
To overcome the difficulties of the path-planning 

problem, we divide the overall problem into two sub-

problems hierarchically: clustering problem and 
sequencing problem. The clustering problem is to 
create the minimum number of inspection clusters, 
and the sequencing problem is to find the visiting 
sequence minimizing the total moving time.  

The sequencing problem can be modeled as a 
standard traveling salesman problem (TSP). Therefore 
we can directly apply the well-known TSP algorithms 
[6,7] to the sequencing problem. The start node and 
end node are pre-determined at the wait location of a 
camera. The cost is the moving time, which can be 
calculated by profiles of the x and y gantries.  

The typical clustering problem [4] is to create 
clusters to minimize the sum of distances between 
windows and the center of clusters. The problem does 
not limit the maximum size of clusters. Also, the 
number of clusters is usually fixed as a given 
condition. However, in our clustering problem, the 
maximum size of clusters should be bounded by the 
size of the FOV. Furthermore, the number of clusters 
is not given a condition but a variable to be minimized. 
Therefore it is necessary to modify the typical 
clustering algorithms for our clustering problem.  

 
3.1. Single-link clustering 

The single-link algorithm [4,8] is one of the typical 
clustering algorithms. It initiates from numerous 
initial clusters, and merges them together iteratively 
until the number of clusters reaches a fixed value. 
This algorithm is very simple to be implemented, and 
requires low computational complexity. However, the 
performance of the solution highly depends on the 
distribution of windows because of local improvement. 
To apply the single-link algorithm to our problem, the 
size of the FOV should be considered. The modified 
single-link algorithm is as follows: 
S1. Generate initial clusters by setting each window 

as a cluster.  
S2. For each cluster, find the nearest cluster that can 

be merged together. If the size of the new cluster 
is within the FOV, merge the two clusters. 

S3. Repeat S2 until there is no more merging. 
 

3.2. ISODATA clustering 
The ISODATA (iterative self-organizing data 

analysis) algorithm [4] is the most popular algorithm 
for the typical clustering problem. This algorithm was 
updated from the K-means algorithm [9], which 
improves the clustering by moving the center (mean) 
of k-clusters. The ISODATA algorithm improves them 
more efficiently through iterative merging or splitting. 
Basically this algorithm is also under the category of 
local improvement method, so the solution depends 
on the initial clusters. The modified ISODATA 
algorithm for our clustering problem is as follows: 
S1. Generate initial clusters by dividing the board into 

rectangular grids. The size of each grid is 
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identical with the FOV.  
S2. Delete the cluster in which there is no window.  
S3. For each cluster, move the center to include more 

windows.  
S4. If some windows are not included in any clusters, 

add new clusters for those windows.  
S5. For each cluster, find the nearest cluster that can 

be merged together. If the size of the new cluster 
is within the FOV, merge the two clusters. 

S6. Repeat S3-S5 until there is no more change on 
clusters. 

 
4. UNIFIED METHOD 

 
The hierarchical methods find the cluster variables 

and the sequence variables at two different stages. 
However, it is desirable to find the solution 
simultaneously because both variables are coupled to 
each other. The proposed method is for the purpose of 
finding the cluster variables and the sequence 
variables simultaneously.  

The genetic algorithms have been widely used for 
complex optimization problems. These algorithms can 
allow the solution to get out of the local problems and 
approach the global problem [10]. However, 
convergence of the solution may take a lot of time, 
which depends on the problem size and parameters. 
Several researches have been announced for the 
typical clustering problems [11,12] and TSP [13,14].  

Fig. 4 shows the flow of the hybrid genetic 
algorithm proposed to solve our path-planning 
problem. To apply the genetic algorithm into our 
problem, we have to newly define the chromosome, 
fitness function, and operators.  

We define the chromosome of the clustering 
problem as:  

The gene, the element of the chromosome, has the 
value of window index ijw W∈  or mark ‘*’, where 

ijw  denotes the j -th window of the i -th cluster and 
‘*’ denotes the end of the cluster. The order of clusters 
in the chromosome is equivalent to the visiting 
sequence of the camera. Therefore, one chromosome 
can represent both the clustering and sequencing 
results.  

 
4.1. Initialization 

Each generation consists of N chromosomes, where 
N is the population size. The initial population is 
generated by random number generation.  

For each gene of a chromosome, window 
index r W∈ is selected at random. If the size of the 
cluster including the selected window is within the 
size of the FOV, the window index is set to the gene. 
Otherwise, another window index is selected 
randomly until the feasible condition is satisfied. If a 
feasible window index is not found, then set mark ‘*’ 
to the gene. This initialization step starts from the first 
bit and moves toward the last bit of the chromosome. 

 
4.2. Fitness evaluation and selection 

Let tk be the working time for the k-th chromosome 
( 1, , ),kV k N= L  and maxt be the maximum value 

for all chromosomes in a generation. We define the 
fitness function fk for the k-th chromosome as: 

max

max
1

( )
( )

k k N

i
i

Nf t t
t t

=

= − ×

−∑
.  (11) 

The fitness will be 0 for the case of a maximum-
time chromosome, and 1 for the case of an average-
time chromosome. The value increases as the working 
time decreases. 

The above fitness function is used at the selection 
stage to perform reproduction of good chromosomes. 
We adopt the remainder stochastic sampling method 
[14] to prevent the stochastic sampling error. 

 
4.3. Crossover operator 

At the crossover stage, two chromosomes (V1, V2) 
are selected randomly with crossover probability. 
Then, the crossover operator changes the selected 
chromosomes to new chromosomes ( 1 'V , 2 'V ) by 
combining the genes of each chromosome as: 
S1. Select a cluster from V1 randomly. 
S2. Search V2 until all windows of the selected cluster 

of V1 are discovered. Then, select the clusters of 
V2 if they include any of the discovered windows. 

S3. Search V1 until all windows of the selected cluster 
of V2 are discovered. Then, select the clusters of 
V1 if they include any of the discovered windows. 

S4. Repeat S2-S3 until the selected windows of both 

Initialization 

Fitness Evaluation 

Stop?

Initialization 

Fitness Evaluation 

Initialization 

Fitness Evaluation 

Initialization

 
 
Fig. 4. Flow of hybrid genetic algorithm. 
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chromosomes are exactly the same.  
S5. Exchange the selected clusters between V1 and V2, 

and make new chromosomes 1 'V  and 2 'V . 
For example, assume that two chromosomes are 

selected as: 
 

1V  = 
 

2V  = 
 

In S1, we randomly select an initial cluster from 1V  
as: 
 

V1 =  
 
In S2, clusters are selected from V2 as: 
 
V2 = 
 
In S3, clusters are selected from V1 again as: 
 
V1 =  
 
Since the selected windows of both chromosomes are 
exactly the same, we go to S5. In S5, the new 
chromosomes are generated as: 
 

'1V  = 
 

'2V  = 
 
4.4. Mutation operator 

In the mutation stage, one chromosome V1 is 
selected randomly with mutation probability. Then, 
the mutation operator changes the selected 
chromosome to new chromosome 1 'V  by random 
alteration of genes. 

The proposed mutation operator is as follows:  
S1. Select a cluster from V1 randomly.  
S2. Check whether the windows of the selected 

cluster can be moved to other clusters. If possible, 
move them to the feasible clusters and make a 
new chromosome 1 'V . 

In S2, the size of the cluster is checked before 
moving the window since the size of the cluster 
should be bounded by the FOV. For example, assume 
that a chromosome is selected as:  
 

1V  = 
 
In S1, we randomly select a cluster from V1 as:  
 

1V  = 
 
In S2, all selected windows 13, 9, 6, 2 are checked to 
move. If only two windows 6, 2 can be moved, we 
move them to the feasible clusters as: 
 

'1V  = 

4.5. Sequence operator 
The sequence operator generates new cluster 

sequences of the chromosomes whose genes are 
changed by crossover operator or mutation operator. 
This operator is also an unary operator for the 
chromosome. 

In the sequence operator, a sequence array is used 
as auxiliary data. The element of the sequence array is 
the cluster, and the index of the sequence array 
denotes the visiting sequence of the cluster. 

The proposed sequence operator is as follows: 
S1. Set the first cluster of V1 as a current cluster, and 

add it to a sequence array. 
S2. Find the nearest cluster from the current cluster, 

where the cluster should not be an element of the 
sequence queue. Set the nearest cluster as a 
current cluster, and add it to the sequence array. 

S3. Repeat S2-S3 until all clusters are included in the 
sequence array.  

S4. Select a pair of clusters from the sequence array, 
and exchange the sequence if the total moving 
time is reduced.  

S5. Repeat S4 until all pairs of clusters are selected 
from the sequence array. 

S6. Make a new chromosome 1 'V  by reassignment 
of clusters according to the order of the sequence 
array.  

Assume that crossover operator or mutation 
operator has changed the following chromosome. 
 

1V  = 
(Cluster1)  (Cluster2) (Cluster3)   (Cluster4)     (Cluster5) 

 
The sequence array is generated by S1-S3 as:  

(Cluster 1) (Cluster 4) (Cluster 2) (Cluster 5) (Cluster 3) 

And the sequence array is modified by S4-S5 as: 

(Cluster 5) (Cluster 3) (Cluster 4) (Cluster 1) (Cluster 2) 

By S6, a new chromosome is generated from the 
sequence array as: 
 

'1V  = 
 

While the crossover operator and mutation operator 
change both clusters and sequence, the sequence 
operator changes sequence only. An initial sequence is 
generated by the nearest neighbour search at S1-S3, 
and the sequence is improved by 2-opt heuristics [7] 
at S4-S5. This method is one of the typical local 
search methods for TSP. The other TSP methods such 
as 3-opt heuristics or Lin-Kernighan heuristic can also 
be applied to the sequence operator, but which may 
result in the lower convergence speed.  

The crossover operator and mutation operator 
guarantee the diversity of search, but the sequence 
operator helps the fast convergence by local 
improvement. The hybrid genetic algorithm is the 

1 3 * 4 5 10 11 15 * 13 * 16 18 7 8 2 14 * 6 9 12 17 *

1 3 4 6 10 * 18 7 *8 2 14 * 9 * 13 16 * 5 11 12 15 17 *

1 3 * 4 5 10 11 15 * 13 * 16 18 7 8 2 14 * 6 9 12 17 *

1 3 4 6 10 * 18 7 0 8 2 14 * 9 * 13 16 * 5 11 12 15 17 *

1 3 * 4 5 10 11 15 * 13 * 16 18 7 8 2 14 * 6 9 12 17 *

1 3 * 4 5 10 11 15 * 18 7 * 8 2 14 * 13 16 * 6 9 12 17 *

1 3 4 6 10 * 13 * 16 18 7 8 2 14 * 9 * 5 11 12 15 17 *

3 * 4 17 11 15 * 13 9 6 2 * 16 8 7 1 5 14 * 10 12 *

3 * 4 17 11 15 * 13 9 6 2 * 16 8 7 1 5 14 * 10 12 *

3 6 * 4 17 11 15 * 13 9 * 16 8 7 1 5 14 * 10 12 2 *

3 6 * 4 17 11 15 * 13 9 * 16 8 7 1 5 14 * 10 12 2 *

1012 2 * 13 9 * 16 8 7 1 5 14 * 3 6 * 4 7 1115 *
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genetic algorithm that adopts the local search to 
overcome the problem of convergence speed. 

 
5. SIMULATION 

 
We used a commercial AOI machine (AI-400, 

Samsung Techwin Co. LTD) [15] for simulation. The 
size of the FOV was 16(mm)×12(mm), and the image 
acquisition time for one FOV was 0.25 (sec). The 
maximum speed and acceleration of the X and Y 
gantries were 700 (mm/sec) and 0.2 (mm/sec2), 
respectively. All PCBs used in the simulation were 
commercial boards with different number of windows. 
Table 1 shows the number of windows and size of test 
PCBs used in our simulation.  

We implemented the proposed algorithms using 
C++ programming language under MS-Windows XP, 
and installed them to the off-line programming 
software of the commercial machine. The population 
size for the genetic algorithm was set at 100. The 
crossover probability and mutation probability were 
set at 0.3 and 0.2, respectively. These parameters were 
determined by experimental case study. As increasing 
the population size, the calculation time was increased 
but the optimization performance was improved. 

Fig. 5 presents convergence graphs of the proposed 
genetic algorithm. According to variations of 
crossover probability and mutation probability, the 
best working time in each generation was changed as 
in Fig. 5(a) and Fig. 5(b). The parameters of the 
genetic algorithm were selected such that the best 
working time converged to its minimum value in a 
short generation.  

Fig. 6 indicates the results of path planning 
obtained from different methods. Fig. 6(a) shows a 
test PCB with 144 inspection widows. Fig. 6(b)-(d) 
show inspection clusters and camera paths generated 
by different path-planning methods. Fig. 6(b) was 
obtained from the hierarchical method with single-link 
clustering (method 1). Fig. 6(c) was obtained from the 
hierarchical method with the ISODATA clustering 
(method 2). Fig. 6(d) was obtained from the unified 
method using the hybrid genetic algorithm (method 3). 
Method 2 is the commercial path-planning version of 

AI-400. Both the number of clusters and distance of 
the camera path were reduced by method 3, which 
resulted in the reduction of the overall working time 
of the AOI machine. 

Fig. 7 shows the results of path planning for two 
PCBs with different distribution of inspection 
windows. Both PCBs have the same number of 
inspection windows and the same board size while 
they have different distributions of inspection 
windows. Fig. 7(a) and Fig. 7(b) indicate the clusters 
and sequences generated for PCBs with scattered 
inspection windows and concentrated inspection 
windows, respectively. As the inspection windows are 
scattered, the number of clusters is increased to cover 
all inspection windows and the overall working time 
of the AOI is also increased. This simulation shows 
that the overall working time of the AOI depends on 
the distribution of inspection windows as well as on 
the number of inspection windows. 

Table 2 presents comparative results of path 
planning results for the test PCBs in Table 1. The 
working time is the sum of total image acquisition 
time and total moving time of the camera. This table 
shows that the working time strictly depends on the 
number of clusters, so that clustering is more 
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Fig. 5. Convergence graphs for GA parameters. 
 

 
Table 1. Test PCBs. 

PCB Id No. of 
windows 

PCB size 
X(mm) x Y(mm) 

1 1136 240 x 210 
2 1350 240 x 210 
3 1578 182 x 284 
4 1623 182 x 284 
5 1881 282 x 205 
6 2049 282 x 205 
7 2441 256 x 245 
8 3029 256 x 245 
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important than sequencing in the sense of time 
optimization. The performance of method 3 is the best 
among all methods. Table 3 indicates the 
improvement ratio of method 3 with respect to the 
other methods. It verifies that the proposed method 3 
can improve the performance by about 6 ~ 10%.  

Table 4 compares the computational time of each 
method. The algorithms were run at the Pentium-IV 
3GHz computer. The computational time of method 3 
is relatively longer than that of other methods. Since 
the path planning is performed at an offline computer, 
long calculation time can be allowed if it generates 
better performance. 

 
(a) PCB with scattered inspection windows. 

(clusters: 87, working time: 30.1 sec ) 
 

 
(b) PCB with concentrated inspection windows. 

(clusters: 39, working time: 19.6 sec) 
 

Fig. 7. Example of path planning for PCBs with 
different window distributions(PCB size: 
244(mm) x 216(mm), inspection windows: 
1000). 

 
Table 2. Path-planning results: working time. 

Method 1 Method 2 Method 3 
PCB
Id. No. of 

clusters

Working 
time
(sec)

No. of 
clusters 

Working 
time 
(sec) 

No. of 
clusters

Working
time 
(sec) 

1 82 30.7 79 29.8 75 27.6 

2 85 33.2 81 31.6 77 29.8 

3 100 37.0 94 35.2 91 33.5 

4 106 38.8 99 37.1 96 34.7 

5 114 43.0 110 41.1 104 38.5 

6 123 45.3 116 44.2 111 41.1 

7 156 57.0 145 54.5 140 50.9 

8 173 64.6 165 61.7 163 58.6 
Method 1: Hierarchical method using single-link clustering 
Method 2: Hierarchical method using ISODATA clustering 
Method 3: Unified method 

 
(a) Inspection windows. 

 

 
(b) Hierarchical method using single-link clustering.

 

 
(c) Hierarchical method using ISOSATA clustering.

 

 
(d) Unified method. 

 
Fig. 6. Examples of path planning by different 

methods. 
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6. CONCLUSIONS 
 
In this paper, we proposed a path-planning method 

for AOI machines. We defined the path-planning 
problem and formulated it mathematically. By 
mathematical formulation, we verified that the 
problem is a nonlinear integer-programming problem 
with two coupled variables. To obtain the better 
solution, we tried to find the two decision variables 
concurrently. The hybrid genetic algorithm was 
applied to overcome the problem of local 
improvement and convergence speed. The 
chromosome, fitness function and operators were 
newly defined to solve our problem by genetic 
algorithm. 

The simulation results show that the proposed 
algorithm can be implemented and installed 
successfully to practical machines. Also, it can 
contribute to improve the productivity of the machine 
by reducing the number of clusters and the camera 
moving time. The optimization performance of the 
proposed method was relatively higher than the other 
methods. The AOI machines have become more 
popular in the PCB assembly systems, so our results 
will be useful for increasing the productivity of 
electronic manufacturing systems. 
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Table 3. Path-planning results: improvement by 
Method 3. 

PCB Id. W.r.t. Method 1 (%) W.r.t. Method 2 (%)
1 10.10 7.38 
2 10.24 5.70 
3 9.46 4.83 
4 10.57 6.47 
5 10.47 6.33 
6 9.27 7.01 
7 10.70 6.61 
8 9.29 5.02 

Ave. 10.01 6.17 
 
Table 4. Path-planning results: computational time. 

PCB Id. Method 1 
(sec) 

Method 2 
(sec) 

Method 3
(sec) 

1 4.5 6.7 22.2 
2 5.3 9.6 33.8 
3 6.2 12.9 48.6 
4 6.6 14.5 57.0 
5 7.5 18.6 79.3 
6 9.8 23.8 95.7 
7 15.8 33.4 158.8 
8 25.6 49.6 220.8 
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