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Abstract—The goal of adaptive sampling in the ocean is to pre-
dict the types and locations of additional ocean measurements that
would be most useful to collect. Quantitatively, what is most useful
is defined by an objective function and the goal is then to optimize
this objective under the constraints of the available observing net-
work. Examples of objectives are better oceanic understanding, to
improve forecast quality, or to sample regions of high interest. This
work provides a new path-planning scheme for the adaptive sam-
pling problem. We define the path-planning problem in terms of
an optimization framework and propose a method based on mixed
integer linear programming (MILP). The mathematical goal is to
find the vehicle path that maximizes the line integral of the uncer-
tainty of field estimates along this path. Sampling this path can im-
prove the accuracy of the field estimates the most. While achieving
this objective, several constraints must be satisfied and are imple-
mented. They relate to vehicle motion, intervehicle coordination,
communication, collision avoidance, etc. The MILP formulation is
quite powerful to handle different problem constraints and flex-
ible enough to allow easy extensions of the problem. The formu-
lation covers single- and multiple-vehicle cases as well as single-
and multiple-day formulations. The need for a multiple-day for-
mulation arises when the ocean sampling mission is optimized for
several days ahead. We first introduce the details of the formula-
tion, then elaborate on the objective function and constraints, and
finally, present a varied set of examples to illustrate the applica-
bility of the proposed method.
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I. INTRODUCTION

R
EAL-TIME ocean forecasting is a challenging task due

to issues that involve the intermittent nature of the ocean,

the practical inability to make extensive and sustained in situ

measurements, the uncertainties in the initial and boundary

conditions, and the limited information at depth to complement

the satellite measurements. To accurately forecast the evolution

of a complex system as the ocean, one needs to take into ac-

count the possibly large deviations of the solution due to small

initial and boundary uncertainties [1]–[4]. Weather and ocean

forecasts also suffer from intrinsic uncertainties that arise due

to errors in the model formulation and errors in its numerical

solution. Finally, even if one could uniformly sample the ocean,

much of the data corresponding to regions of low dynamical

variability would be redundant while data pertaining to regions

of high dynamical variability would be lacking resolution.

Therefore, to utilize the measuring assets in an optimal way,

one must plan ahead the sampling strategy to be followed.

Our work describes, implements, illustrates, and evaluates new

technical schemes for the optimal planning of the path of ocean

platforms based on mixed integer linear programming (MILP)

and advanced uncertainty estimates for ocean prediction.

Observation networks used for weather and ocean forecasting

can be thought of being composed of a routine and an adaptive

component [5]. The routine component comprises observations

from the fixed observing network, satellite measurements, and

other measurements that are routinely taken. The routine com-

ponent collects the data that is situation independent. An ad-

ditional component can be utilized to collect more data in re-

gions critical to a specific objective. This objective is often a

function of the synoptic oceanic or atmospheric dynamics and

variability. The additional network component thus needs to be

adaptive because the form of the objective can be modified but

also because the fields to be measured are dynamic [6]. For ex-

ample, for adaptive sampling on a daily time scale, the critical

regions to be measured can be expected to vary from day to

day. In the ocean, the adaptive component might involve ships

or (un)manned aircrafts that drop instruments in data-sensitive

regions, autonomous underwater vehicles (AUVs), gliders, etc.

In an ocean estimation problem, measurements can impact both

past and future field estimates as a function of advection, diffu-

sion, and other ocean processes. The adaptive network can then

be continually directed to locations that maximize the expected

improvements in some aspect of the estimation. This problem
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is known as targeting, adaptive observations, or adaptive sam-

pling [7]–[9].

Adaptive sampling can serve several purposes and has dif-

ferent forms. When scarcity of measurement assets exists, the

whole routine component can also be treated as an adaptive net-

work. Adaptive observation schemes have several goals, such

as decreasing the uncertainty, gathering critical information

about the dynamics of the system, increasing the coverage of

the system, etc. An important goal is to increase the accuracy of

the estimates of the states of interest by utilizing the resources

at hand in an optimal manner. The estimates can be as follows:

1) the nowcast fields, e.g., determine the data needed now

to best improve current estimates; 2) the forecast fields, e.g.,

determine the data needed before the target prediction that will

best improve this prediction; or 3) the past fields, e.g., deter-

mine the data that will minimize errors in the initial conditions.

Societal applications of adaptive sampling are given in [10].

A variety of techniques have been employed to determine the

ideal location of extra observations within an adaptive sampling

network. Because the goal is to combine data and models, most

are based on data assimilation approaches [11]. These tech-

niques include singular vector technique [12]–[15], the analysis

sensitivity technique [16], the observations technique [17], the

ensemble transform (ET) technique [3], the Kalman filter tech-

nique [18], the ensemble transform Kalman filter (ETKF) tech-

nique [5], [19], and the nonlinear error subspace statistical esti-

mation (ESSE) technique [7], [20]–[22].

Although all these techniques are very useful in different

ways to distinguish potential regions for extra observations,

they do not intrinsically provide a path for the adaptive plat-

forms. Path planning of the adaptive elements for the network

is often performed based on predesigned tracks as explained,

for example, in [19], [21], and [22]. As the size of the adaptive

network grows, the complexity of the routing problem gets

amplified and the lack of rule-based path-planning schemes can

lead to suboptimal plans.

Although adaptive sampling is now becoming an active

research area, rule-based high-level path planning for oceanic

adaptive sampling has not yet received a lot of attention.

Previous work in environmental path generation includes path

planning for atmospheric networks [19], [14], which can have

quite different considerations than an ocean network including

assets such as AUVs and internal ocean dynamics at mesoscales

that are usually slower than weather scales. In ocean adaptive

sampling, the body of previous work involves low-level path

planning, control, and coordination issues. The commonality

of these approaches is that either waypoints are given a priori

or that simple and local search techniques such as gradient

methods (greedy search) are employed to locate the waypoints

[23], [19]. The use of such local techniques is useful and

promising, but it does not guarantee global optimality. Other

ocean engineering schemes include redundant manipulator

methods for partially decentralized path planning of several

vehicles [24], [25].

Optimal sampling algorithms with similarities to ours have

been used in other scientific and engineering domains, but

often with different objectives, constraints, and types of asset

behavior. Such algorithms and approaches include the selec-

tive traveling salesman problem (STSP), routing problems,

and some particular path-planning problems [26]–[28], [23],

[29], [30]. In STSP, there are nodes with some award points

associated to them. Given a limited travel time, the aim is to

collect as much reward as possible. Unlike the classic traveling

salesman problem (TSP), not all the nodes need to be visited.

Only the most rewarding nodes are to be targeted. In the ocean,

the existence of many geometrical and operational constraints,

and the fact that the terminal location of the vehicle is unknown

at the beginning of the problem, make the path generation

problem remarkably different and more difficult than STSP.

Recent research exists on path planning and coordination issues

of unmanned aerial vehicles (UAVs) [29], [30], which present

a good insight to the use of MILP in path planning. Collecting

rewards along the paths of the vehicles in our case correspond

to taking line integrals along each path. Another difference is

the lack of waypoint information in our case.

In what follows, we first lay out the problem statement

(Section II) and develop and determine the objective function

(Section III). We then formulate a set of motion constraints

(Section IV) and present a solution method for the optimum

generation of the observational paths (Section V). We carry

out a series of examples, with single time cases (Section VI)

and multiple time situations (Section VII). We conclude with

Section VIII.

II. PROBLEM STATEMENT

To carry out adaptive sampling, we first need a field that

ranks and locates the regions of interest. These regions may be

characterized by using the uncertainty predictions on the states

[error variances, probability distribution fields (PDFs), etc.] or

physical features of dynamical interest (eddies, upwelling, jets,

etc.). The former is a vector or a scalar field (continuous in time

and space) provided by the Harvard Ocean Prediction System

(HOPS) and error subspace statistical estimation (ESSE) system

[31]–[33], whereas the latter is a set of subregions that needs to

be selected manually or directly detected using feature extrac-

tion [34], [35] and possibly presented as a Boolean field (e.g.,

discontinuous field). Because information from both sources is

valuable, it is advantageous to combine the two sources of in-

formation. This involves the investigation of an optimal way to

merge two different requirements into a single field [36]. In this

study, it is assumed that such a combined field is given. The

methods developed and implemented are independent of the

type of fields. For the examples provided, the fields used are un-

certainty information on ocean states provided by ESSE/HOPS,

which we refer to as “uncertainty fields.”

The uncertainty field is representative of the location of ob-

servation points to be targeted. For a nowcast, high uncertainty

values correspond to the coordinates that are primarily worth

visiting. The oceanographic assets that are generally available

for sampling include buoys, autonomous surface crafts (ASCs),

AUVs, gliders, and oceanographic ships, which can be utilized

also to deploy the AUVs. In this study, we focus on the path-

planning problem for AUVs, which is sufficiently generic to also

allow the solution of sampling problems with other available

assets.
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Fig. 1. (a) Path construction by segmentation. (b) Representation of a field value at any coordinate as a convex combination of the values of the four neighboring
grid points.

The problem at hand is a constraint-optimization problem.

The objective is to sample the regions of greatest uncertainty.

For a group of assets (AUVs), it can be stated as finding the op-

timal sampling patterns/routes within the specified constraints

(vehicle motion, intervehicle coordination, communication, col-

lision avoidance) such that the total observational gain during

the travel of the assets is maximized. By observational gain

we mean the uncertainty values. The complete picture of the

problem is obtained when multiple time scales are considered.

A standard ocean approach to adaptive sampling has been to

consider the nowcast problem and to construct the observational

waypoints or paths on a day-by-day basis. For planning further

ahead in time, one approach is to treat the optimization problem

in an intertemporal manner. In generating an AUV path over

two days, tomorrow’s starting point is then related to today’s

endpoint. Instead of a myopic approach, coupling the paths be-

longing to consecutive days allows a more farsighted optimality.

This requires, of course, that an estimate of the uncertainties on

the state estimates is available for each day in our targeted time

scale. In general, adaptive sampling paths can be planned for as

far ahead in time as the time for which the fields of interest are

predictable.

If the physical sampling optimized by the present approach

is carried out, the data collected are utilized, either on their own

or are assimilated in ocean models for optimal field estimation.

This is what is being simulated in this paper. In all cases, the data

or the data-driven model estimates can be utilized for scientific

studies and societal applications. We refer, for example, to [4]

and [11].

Inputs to the problem are here chosen to be the uncertainty

fields and the unknowns in the problem are the and coordi-

nates of the paths of each vehicle involved in the problem. The

path of th vehicle is discretized into segments by using

points and assigned variables that stand for and coor-

dinates. Then, with the desired objective function and proper

problem constraints, the optimizer is expected to solve for the

and coordinates for each discrete waypoint. The path is

constructed by connecting consecutively numbered points. The

lower and upper limits on the and values are determined by

the coordinates of the terrain under consideration. This frame-

work is depicted in Fig. 1(a). The starting point of motion that

is supplied as the initial condition to the system is shown by a

white dot. The black dot denotes the terminal point, and the gray

dots show the intermediate points.

III. OBJECTIVE FUNCTION

In a 2-D discrete scenario for a single vehicle, our objective

function can be written as

(1)

where stands for the 2-D array that represents the uncertainty

field and and represent the and coordinates of the

th point on the path. In the single-vehicle case, and happen

to be vectors of length . The starting point coordinates of the

vehicle, which are represented by and , are inputs to

the problem. The remaining elements of the and vectors are

unknowns we are trying to solve for. When we solve for and ,

it means we determine the and coordinates of the vehicle’s

waypoints.

In general, the uncertainty fields we are dealing with are nei-

ther convex nor concave functions. This characteristic requires

the use of piecewise curve fitting to properly represent the field.

In our approach, we chose to use linear piecewise curve fitting.

In an optimization formulation framework, this can be achieved

by the use of special ordered set (SOS) of type 2. An SOS2

is a set of continuous or integer variables among which only

two variables can be nonzero. Also, it is required that the two

nonzero variables must have adjacent indices. Using SOS2 func-

tionality, it is possible to approximate a nonconvex, nonconcave

2-D nonlinear function such as the objective function shown in

(1). This concept was first introduced by Beale and Tomlin [37]

and has been developed by Williams [38]. We refer the reader

to [38] for a detailed discussion of the topic.

Let denote the values of the function on the

computational 2-D grid (the grid spacing does not need to be

equidistant). Any given function can be approxi-

mated by the following:

is SOS2 (2)

is SOS2 (3)
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where and are arrays that correspond to unknown weights

at the integer and coordinates over which function

is defined. and are arrays of integers that define

the range of the and coordinates of the given , respec-

tively. Their elements are equated to the corresponding index

. They are used to weave the grid region

under consideration. When we define to be SOS2,

it means that, in the output set, only two adjacent element can

be nonzero. We also define

(4)

(5)

where is a weight matrix, stands for the weight at a

specific integer point coordinate and is a function of and ,

and , and are all unknown variables in the formula-

tion. These “auxiliary” variables are dependent on the targeted

values and will be determined accordingly. Equations (4)

and (5) establish the conservation of weight along each row and

column. Then, we introduce the requirements

(6)

(7)

Equations (6) and (7) enforce convexity. For a noninteger

coordinate, this condition guarantees that the corresponding

value will be a convex combination of that of two or four neigh-

boring integer coordinates.

For example, for the field presented in Fig. 1(b), contains

the values of and contains the values .

The first SOS2 condition states that the multiplication of with

will create a set of numbers such that at most two elements

in the set can be nonzero and they must be adjacent. If one cal-

culates , this condition ensures that only the elements

corresponding to and in the set should turn out to

be nonzero. A similar argument is true for the coordinate. As a

result, at most four elements in both directions might come out

to be nonzero and the values of corresponding to these four

coordinates will be used to approximate the value of at

a noninteger coordinate.

Then, , and can be calculated using

(8)

(9)

(10)

In conjunction with the other constraints added, the optimal

values of and and the resulting value of function will be

fixed to satisfy the given objective function.

The above discussion lays out the foundation for representing

the nonlinear field and the above formulation is good for finding

the value at a single coordinate. In our problem, however,

the path is segmented by points and the above formulation

should be carried out at each path point. In the case of multiple

vehicles, every path point belonging to each vehicle needs to

be accounted for. For these extensions to the multiple-vehicle

and multicoordinate case, one simply adds additional indices to

the notation introduced above. The reader can refer to [39] for

further details.

The objective is to maximize the summation of line integrals

of the uncertainty values along the path of each vehicle in the

fleet. The objective function can be written as

(11)

where is the total number of vehicles in the fleet and is

the total number of path points belonging to the th vehicle. In

all of the above equations, subscripts and stand to denote

the th path point of th vehicle. (which is composed of the

discretized values of the function on the compu-

tational 2-D grid) stands for the uncertainty field data, which is

the input to our problem.

IV. MOTION CONSTRAINTS

For the vehicles to move in a desired manner, some con-

straints that shape the vehicle navigation are needed: primary

motion, anticurling, vicinity, communications, and obstacle

avoidance constraints.

A. Primary Motion Constraints

When the vehicle is at a particular path point except the ter-

minal point, it needs to move to the next path point. A constraint

is thus needed to thrust the vehicle to the next path point. Refer-

ring to Fig. 2(a), if the vehicle is at the point numbered “1,” it

can only move to one of the eight adjacent points labeled “Y.”

Explained motion can be achieved by the following set of

constraints:

• and

(12)

(13)

(14)

(15)

• and

(16)

• , and

(17)

The , and in (12)–(17) are auxiliary binary

variables needed to model the propulsive motion constraint. If

is set to 1 and is set to 0, then the coordinate of the

next path point will be one unit greater than that of the current

one and similarly for the coordinate. If they are both set to

zero, it means that the coordinate should not change, which is
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Fig. 2. (a) Allowable set of path points by taking into account the spatial anticurling constraints between the candidate point and the point that precedes it by
one. Node numbered “1” represents current path points in the path, nodes labeled “Y” show the allowable path point locations, and nodes labeled “N” show the
unallowable path point locations for the path points under consideration. (b) Allowable set of path points by taking into account the spatial anticurling constraints
between the candidate point and the point that precedes it by two. Nodes numbered “1” and “2” represent current path points in the path, nodes labeled “Y” show
the allowable path point locations, and nodes labeled “N” show the unallowable path point locations for the path points under consideration.

an allowable possibility. Another scenario that will keep the

coordinate fixed is when both and are set to 1. This is a

degenerate case and it must be avoided. To ensure both and

will not be set to 1 at the same time, (13) is introduced. A

similar argument follows for the coordinate; see (14) and (15).

To avoid the vehicle get stuck at the same and coordinates,

(16) is included.

B. Anticurling/Winding Constraints

When a point in the map is visited and measurements are

made, not only the uncertainty value at the particular point but

also the uncertainty value at the neighboring points is decreased,

due to correlations among ocean values. Therefore, there ex-

ists an area of influence for a measurement. If the vehicle curls

around the same area too much, it will be visiting points whose

uncertainty values are already decreased by previous measure-

ments. This results in inefficient consumption of range. To in-

troduce correlations along the vehicle paths, we relate the coor-

dinates of a path point to these of the path point preceding it by

two path points, to the coordinates of the path point preceding it

by three path points, and so on up to the desired point depending

on a given range value. The parameters in this approach can ad-

just the straightness/curvature of the path, as desired.

The first set of constraints that will be imposed to straighten

the path involves the relative location of the and coordinates

of a path point with respect to the and coordinates of the path

point that precedes it by two. These constraints can be described

as follows:

• and

(18)

In this formulation, is a design parameter and the choice

of should be made on a case-by-case basis. In our partic-

ular ocean simulation, we have chosen as two grid points,

which physically corresponds to 3 km. This is a good choice

for the numerical resolution, field correlations, and asset ranges

we deal with in this simulation. Fig. 2(b) depicts some allow-

able move scenarios. Blue dots numbered as “1” and “2” are

the two preceding path points. The nodes labeled “N” show the

unallowable moves. The nodes labeled “Y” show the allowable

locations for the next path points. These choices of allowable

path points are generated by aggregately taking into account the

previous propulsive constraints.

However, (18) is a nonlinear constraint and must be trans-

formed into a linear one to be used in an MILP. This transfor-

mation will be done in two steps. First, the absolute value con-

straint can be eliminated by the following transformation:

• and

or

or

or

(19)

Equation (19) is a disjunctive constraint and is not a suitable

kind of constraint for an MILP formulation. Constraints in an

MILP formulation must be conjunctive. It is possible to trans-

form a disjunctive constraint into a conjunctive one by using

auxiliary binary variables and “Big-M” constants [40]. Such

transformation yields the following:

• and

and

and

and

(20)
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Fig. 3. (a) Allowable set of path points by taking into account the spatial anticurling constraints between the candidate point and the point that precedes it by two.
Nodes numbered “1,” “2,” and “3” represent current path points in the path, nodes labeled “Y” show the allowable path point locations, and the nodes labeled “N”
show the unallowable path point locations for the path points under consideration. (b) Approximation of a circle by a square.

and

(21)

(22)

In the above formulation, is a number safely bigger than

any of the numbers that may appear on any side of the inequal-

ities.

As a variation of the same theme, the second set of constraints

that will be imposed to straighten the path involves the relative

location of the and coordinates of a path point with respect

to the and coordinates of the path point that precedes it by

two. These constraints can be written as follows:

• and

(23)

For our simulation, we choose to be 2.5 grid units, which

physically corresponds to 3.7 km. Fig. 3(a) shows some allow-

able move scenarios. As before, the constraint presented by (23)

is combined with the other motion constraints: the allowable

moves presented in Fig. 3(a) are a result of the collective restric-

tions on the navigation of the vehicle. The dots numbered as 1,

2, and 3 are the three preceding path points. Equation (23) can

be transformed into an MILP formulation as explained above.

The reader can see [39] for further details.

This approach can be extended to include the relation be-

tween more path points in a row to avoid curling that depends

on the range of the vehicle and the features of a given field. The

values of and can be estimated from the value of allowed

minimum curvature. A good rule of thumb would be to choose

and such that their average be equal to the allowed min-

imum curvature.

C. Vicinity Constraints for Multiple-Vehicle Case

In the case in which there exist multiple vehicles navigating

to different regions of the mission zone, first and foremost, col-

lisions between vehicles must be avoided. In any case, as dis-

cussed for the curling constraint, it is also disadvantageous for

two vehicles to navigate too close to each other, even if they

do not run the risk of colliding. In the case of multiple peaks

in the uncertainty field and available vehicles starting their mo-

tion close to the stronger peak, the vicinity constraints can help

vehicles get separated. Antivicinity constraint can thus, as a re-

sult, lead to the visits of some weaker peaks further away, which

would not be visited otherwise.

To achieve this, for every pair of vehicles and , every pair

of path points must be a safe distance apart from each other. Let

the safety distances in and directions be denoted by

and , respectively. The vicinity constraints then can be

constructed as follows:

• and

(24)

Utilizing the transformations to handle the absolute value and

the conjunctive constraints as elucidated in Section IV-B, (24)

can be expanded into an MILP formulation. The reader can refer

to [39] for further details. Again, and are de-

sign parameters and can be varied depending on the field fea-

tures, number of vehicles, and vehicle range.

D. Coordination Issues Related to Communication With AUV

There exist few different scenarios related to the communi-

cation issues and they are discussed below: AUV-ship, AUV-

shore, and AUV-network communications [41]–[43].

1) Coordination With a Ship and Ship Shadowing: The na-

ture of our adaptive sampling problem can still often utilize a

ship to move with the AUV fleet, so as to facilitate at-sea launch

and retrieval of AUVs as well as fast transit and AUV battery

recharge. In general, the AUV can communicate with the ship

for data transmission. Inclusion of a ship in the adaptive network

enables to visit locations far from the shore stations and perform

broad area coverage problems [23]. The ship AUV coordina-

tion issue adds another dimension to the problem. The ship and

the AUVs in the fleet that are linked to the ship must navigate

in harmony to finish the mission successfully. When the mode

of communication is brought into consideration, there emerge

two main cases to consider. The first one is communication via

acoustical means and the second is radio communication or di-

rect link.
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Acoustical Communication: For an acoustical link to work

[44], [45] during the mission, the AUV must stay near the ship.

In addition, when its charge is consumed, it must either return

to the ship or park at a surface location that is close enough to

be picked up by a boat dispatched from the ship. To impose this

characteristic to the AUV motion, we need to add some extra

constraints. The endpoint of the AUV can either be specified to

be the coordinate of the ship, or stay in the same vicinity of the

vehicle as the rest of the path points, or it can be dictated that

although it does not need to be the same as the ship coordinates

(meaning returned to the ship) it should be closer to the ship than

the rest of the path points. Also, to synchronize the motion of

the ship and the AUV fleet, the path of the ship must be known.

Once the ship path is known (ship path can be determined using

ideas and methods similar to the ones presented in this paper),

it can be segmented into as many path points as the AUV. Then,

the time domain dependence is unique between identically in-

dexed ship and AUV path points. The th path point of the ship

then corresponds to the location of the ship when the AUV visits

its th path point. If all AUVs in the fleet have the same number

of path points, then a single segmentation is enough. If they do

not have the same number of path points, then the ship path seg-

mentation must be performed for every AUV. Assuming that the

terminal path point of the AUV stays within the same distance

to the ship as the other path points, these ideas can be put into

MILP formulation as follows:

• and

(25)

where and stand for and coordi-

nates of the th path point of the ship path segmentation

for th vehicle. and are the

constants that are used to define region of vicinity for a

ship. The region of coverage can be thought of as a circle

centered at the coordinate of the ship. Equation (25) ap-

proximates this circular region by a square for the sake of

simplicity of formulation. This is shown in Fig. 3(b).

A more complex alternative to define this region is to ap-

proximate a circle by the biggest polygon that will fit inside

the circle and write down the equations of lines that construct

the polygon with edges as a function of coordinates of the

th path point of th vehicle. The constraint set is formed by

adding inequalities either of type or of type

, depending on the equation under consid-

eration. This imposes the confinement of the point inside

the hexagon. As explained before, (25) can again be transformed

into an MILP. The reader can refer to [39] for further details.

a) Another issue that arises in ship AUV coordination is the

collision avoidance between the AUVs and the ship. This

condition can be met by introducing a minimum safety

distance between the ship and the AUVs that must be ob-

served during sampling. Extending the previous idea, this

condition can be formulated as follows:

• and

(26)

The above equation can be transformed into an MILP for-

mulation as explained above. The reader can refer to [39]

for further details.

b) To handle the cases where the terminal path must be in

a tighter vicinity of the vehicle or the AUV must return

to the ship, the constraints that account for terminal path

point must be specially treated. If an AUV is to return to

the ship, we can have the extra constraint

(27)

c) Or if the terminal path point needs to lie in a tighter

vicinity than the other path points for the ease of picking

up, then we need to add the following constraints:

•

(28)

where and stand

for the tighter bounds in the vicinity of terminal path

points to the ship. The above equation can be trans-

formed into an MILP formulation as explained above.

The reader can refer to [39] for further details.

Radio and Direct Communications: As aforementioned, the

two other alternatives for communication are the radio link and

the direct communication. If the preferred way of communica-

tion is opted to be wireless communication (radio), the AUV

needs to be in some vicinity of the ship at the end of its mo-

tion to communicate with the ship. In that case, only (29) needs

to apply. If direct connection is the selected communication

method, the AUV needs to board the ship at the end of the mis-

sion, in which case, only (27) needs to be applied.

2) Communication With a Shore Station: In the case of shore

station, the end path point coordinates of the vehicles need to ei-

ther lie near the station location to establish radio communica-

tion or they must match with the coordinates of the shore station

if they are required to return to it. If the vehicles need to lie in

a proximity of the shore station to be picked up by a boat, we

need to introduce the following constraints:

•

(29)
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Fig. 4. Illustration of an Autonomous Ocean Sampling Network (AOSN) [47], [48].

where and stand for the and coordi-

nates of the shore station. Or, if the vehicle needs to return

to the shore station, one can impose

(30)

3) Communication With an AOSN: The communication with

buoys comes into play in the context of an Autonomous Ocean

Sampling Network (AOSN),1 [46]. AOSN research is still very

active. The main goal is to realize a completely autonomous net-

work that efficiently collects data from the ocean. The network

consist of AUVs, buoys, shore stations, acoustic modems, satel-

lite and radio links, and any other potential autonomous vehi-

cles such as gliders. In one scenario, the shore station makes the

mission plan and sends it to the buoys via a radio link. Buoys

establish an acoustical communication link with AUVs and up-

load the individual path plans to the AUVs. The AUVs navigate

in accordance to the uploaded plan and make necessary mea-

surements. When the mission is over, the collected data is trans-

mitted to one of the buoys from which data is sent to the shore

station using the wireless connection. Also, buoys not only act

as an intermediate data logger but also as docking stations where

AUVs can be recharged and continue their mission without the

need to be carried to shore or to a ship. Fig. 4 illustrates an

AOSN.

Even though a few large scale projects on AOSN have oc-

curred or are underway, a complete and efficient physical im-

plementation of a truly autonomous AOSN has not yet been

realized. For example, a missing component has been a fully

automated and sustained path planning. Nonetheless, we can

still offer a formulation hinging around an extended function-

ality of buoys as docking stations in addition to being a node in

the communication network. If we consider a single-day mis-

sion, we can introduce the condition that the AUV must return

to the closest buoy at the end of the day and if we assume that

we have buoys whose coordinates are represented by the ar-

rays and , we can write the following:

1http://www.mbari.org/aosn/default.htm

1)

(31)

(32)

(33)

Variables are auxiliary variables that help to choose one

of the buoy coordinates as the endpoint coordinate of AUVs.

Equation (32) guarantees that only one buoy coordinate will be

assigned to a specific AUV. Also, depending on the docking

capabilities of a buoy, we can impose the constraint that at most

one AUV can park at a given buoy. This can be formulated as

(34)

Other constraints related to the communication with buoys

or some other constraint that cannot be foreseen at this time

without an actual implementation of an AOSN might need to be

added. Given the flexibility and strength of the suggested for-

mulation framework, other requirements that could emerge de-

pending on the specific implementation of an AOSN can easily

be added to the formulation.

E. Obstacle Avoidance

In the case of existence of obstacles in the region of interest,

the task of collision prevention with obstacles could be man-

aged in two alternative ways. One option is to introduce in-

equalities that will remove the regions where obstacles lie from

the feasible coordinate set of the vehicle navigation. Another,

simpler approach is to set the uncertainty values within the re-

gions occupied by the obstacles to a very large negative number.

Those points will not be included in the solution because their
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Fig. 5. (a) Results for the single-vehicle case. Starting coordinates and range: � � 15 km, � � 12 km, range � 30 km, total reward � 1489 C. (b) Solution
times for a single vehicle with starting position at � � 15 km and � � 12 km.

inclusion will have negative contribution to the objective func-

tion. For other approaches on obstacle avoidance, we refer to

[49]–[52].

V. METHODOLOGY AND SOFTWARE SELECTION

FOR THE MILP SOLUTION

Our choice of implementation platform is the XPress-MP op-

timization package from “Dash Optimization.”2 It has an MILP

solver that uses brand and bound algorithm. It is suitable for

solving our path-planning problem.

For optimum performance and ease of development, the ideal

is to use a high-level modeling language that is compatible with

the solver. Such modeling languages are especially made for op-

timization problems and are equipped with powerful tools to im-

plement optimization problems faster. A modeling language of-

fered by Dash Optimization is Mosel. Implementing the mathe-

matical program in Mosel is straightforward, requiring minimal

translation from the canonical form shown in (2)–(34). Also,

Mosel is capable of easily implementing the SOS2 constraints.

VI. RESULTS FOR SINGLE-DAY CASE

Our methodology and software have been tried on a wide va-

riety of different scenarios with multiple types of fleet sizes,

ranges, starting points, and constraints. The ocean fields that

have been used are the temperature forecast uncertainty maps in

Monterey Bay during August-September 2003 [22], [53], [54],

as calculated by HOPS and ESSE systems (see Section II). In

the examples that follow, most examples shown are for Au-

gust 27, 2003, and they utilize uncertainty averages from the

upper (0–40 m) ocean layers, focusing on the largest uncertain-

ties in the ocean surface mixed layer and ocean thermocline dy-

namics. Depending on the objective, velocity or salinity fields

2http://www.dashoptimization.com

(or even a weighted average of all fields) can also be used with

our software.

In all of the following graphs, gray dots indicate the starting

point of the motion and white dots indicate the final point on

the path. One important parameter in the problem formulation

that controls the range for a given vehicle is the number of path

points “ .” It is not directly equal to the range because diag-

onal moves are allowed. Its value must be chosen based on the

allowable range for each AUV on a given day. Once the problem

is solved with the initial selection for “ ,” depending on the

length of the generated path, some iterations might be necessary.

A. Results for Single-Vehicle Case

In this section, we look at an example where we have a single

vehicle. Fig. 5(a) presents the path generated for a vehicle, given

the starting coordinates and number of path points as the input

along with the uncertainty field. As it can be seen on Fig. 5(a),

the generated path successfully covers the regions of high un-

certainty. To illustrate the solution time as a function of range,

the same problem is solved for different path ranges. The result

is presented in Fig. 5(b), which reveals that the solution time

increases exponentially as a function of vehicle range. This be-

havior is expected because the formulation is a binary integer

program and binary integer programs are known to be NP hard.

B. Results for Multiple-Vehicle Case

Often, multiple vehicles are available, which enables more

thorough data collection in the region. It also brings some co-

ordination issues such as avoiding vehicle collision and intelli-

gent coordination of vehicles to cover as much critical regions as

possible. The collision avoidance and coordination issues were

handled by the introduction of (24). Fig. 6(a)–(c) shows paths

generated for a two-vehicle case scenario as the vehicle path is

gradually increased. As it can be observed from these figures,
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Fig. 6. (a) Results for the two-vehicle case. Starting coordinates and ranges: � � 15 km, � � 22.5 km, range � 15 km; � � 45 km, � � 15 km, range
� 14 km, total reward� 972 C. (b) Results for the two-vehicle case. Starting coordinates and ranges: � � 15 km, � � 22.5 km, range � 16.5 km; � �

45 km, � � 15 km, range � 18 km, total reward� 1273 C. (c) Results for the two-vehicle case. Starting coordinates and ranges: � � 15 km, � � 22.5 km,
range � 22.5 km; � � 45 km and � � 15 km, range � 24 km, total reward � 1879 C. (d) Solution times for two vehicles with starting positions � �

15 km, � � 22.5 km; � � 45 km, � �15 km.

the high-uncertainty regions are efficiently covered. The solu-

tion times are presented in Fig. 6(d), which again increases ex-

ponentially as a function of path points.

C. Sensitivity to the Number of Vehicles

The aim of this section is to show the sensitivity of the solu-

tion time to the number of vehicles involved in the path-planning

task. We start with one vehicle and at each step introduce an-

other vehicle until we reach five vehicles. Of course, each time a

vehicle is added, a new global MILP optimization is carried out

for all vehicles present. The paths of all vehicles are optimized

at once. The results are presented in Fig. 7(a)–(e). The solution

times are presented in Fig. 7(f). There is a sudden increase as

the number of vehicles increases. This behavior is in agreement

with the exponential complexity of the problem. Note that in

this illustration of the sensitivity to the number of vehicles, the

starting points of vehicles are selected far apart from each other

deliberately so that the addition of another vehicle does not af-

fect the previous solution by much. This peculiar behavior al-

lows more direct comparisons with previous illustrations.

D. Results With Ship Shadowing

As explained earlier, during a mission, AUVs are generally

accompanied by a ship. The AUVs are dropped from the ship

for their mission and dock to, or are collected by, the ship at the

end. To handle this situation, extra constraints are added to the

formulation. The constraints to be used depend on the type of

communication (see Section 4-D).

Fig. 8(a)–(b) shows two cases where the preferred mode of

communication is chosen to be acoustical. Equations (25) and
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Fig. 7. (a) Results for the single-vehicle case. Starting coordinates: � � 7.5 km, � � 8 km, range � 15 km. (b) Results for the two-vehicle case. Starting
coordinates: � � 7.5 km, � � 8 km, range � 15 km and � � 55.5 km, � � 10.5 km, range � 13 km. (c) Results for the three-vehicle case. Starting
coordinates: � � 7.5 km, � � 8 km, range � 15 km and � � 55.5 km, � � 10.5 km, range � 13 km, and � � 24 km, � � 3 km, range � 13.5 km.
(d) Results for the four-vehicle case. Starting coordinates: � � 7.5 km, � � 8 km, range � 15 km; � � 55.5 km, � �10.5 km, range � 13 km; � �

24 km, � � � km, range � 13.5 km; � � 15 km, � �15 km, range � 13 km. (e) Results for the five-vehicle case. Starting coordinates: � � 7.5 km, � �

8 km, range � 15 km; � � 55.5 km, � � 10.5 km, range � 13 km; � � 24 km, � � 3 km, range � 13.5 km; � � 15 km, � � 15 km, range �

13 km; � � 30 km, � � 30 km, range � 13 km. (f) Solution times as a function of number of vehicles in the fleet.

(26) are utilized in our formulation. The first case, where the de-

fined proximity is set to 15 km takes 9 s to solve. When the prox-

imity value is decreased to 9, the solution time also decreases

to 5.25 s. The improvement is expected because tightening the

constraint also shrinks the search space, resulting in strides in

the solution time.

Another possible scenario is when the communication is

via direct link in which case the AUVs do not need to stay

near the ship throughout their mission, but must either park

in some proximity of the ship or return to the ship at the

end of their travel. This time, equations (27)–(29) are used.

Fig. 8(c) and (d) presents the examples of the latter and former

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 23, 2009 at 11:22 from IEEE Xplore.  Restrictions apply.



YILMAZ et al.: PATH PLANNING OF AUVs FOR ADAPTIVE SAMPLING USING MILP 533

Fig. 8. (a) Results for two vehicles shadowed by a ship for the case where AUVs must be in 15-km vicinity of the ship. Ship path is shown with dotted line.
Starting coordinates: � � 15 km, � � 18 km, range � 19 km; � � 25.5 km, � � 18 km, range � 18 km. (b) Results for two vehicles shadowed by a
ship for the case where AUVs must be in 9-km vicinity of the ship. Ship path is shown with dotted line. Starting coordinates: � � 15 km, � � 18 km, range
� 19 km; � � 25.5 km, � � 18 km, range � 18 km. (c) Results for two vehicles shadowed by a ship for the case where the end path points of AUVs must

be in 3-km vicinity of the ship. Ship path is shown with dotted line. Starting coordinates: � � 15 km, � � 18 km, range � 19 km; � � 25.5 km, � �

18 km, range � 18 km. (d) Results for two vehicles shadowed by a ship for the case where the AUVs must return to the ship. Ship path is shown with dotted
line. Starting coordinates: � � 15 km, � � 18 km, range � 19 km; � � 25.5 km, � � 18 km, range � 18 km.

cases, respectively. The region of proximity is defined to be

3 km for Fig. 8(c). The solution time is 2.3 s. For the case where

AUVs need to return to the ship, the solution time is 2.14 s.

VII. TIME-PROGRESSIVE PATH PLANNING

Up until this point, the sampling task have been assumed to

take place in a single day without any pertinence to previous or

following days. This is a perfectly fine scenario in rapid assess-

ment in oceanography and it has been very successful for mul-

tiple uses at sea [7], [20]–[22], [55], [55]. However, a more so-

phisticated situation emerges when the sampling task has to be

carried out over multiple days. In such time-evolving situations,

the regions of high uncertainty are moving and transforming in

shape as time progresses [4], [32] and the adaptive sampling

fleet must adapt to the dynamic uncertainty field. In such sce-

narios, it is necessary to have some information exchange and

coordination between the paths of the vehicles that are expected

to be realized on consecutive days, so as to satisfy path opti-

mality over both space and time.

A time dimension is introduced both for the primary and

auxiliary variables as follows. A new index is added to every

variable to represent the day they belong to. The new objective

function is then a summation of rewards from all days under

consideration. A key point in establishing the link between con-

secutive days and introducing time-progressive features is to de-

fine the relation between the end path point of vehicles on one

day with the starting point on the following day. One option is

to introduce the constraint that the starting point of the vehicle

for a consecutive mission day should lie within a vicinity of the

endpoint of the previous day. Another option is to impose the
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constraint that on consecutive mission days the vehicles should

start their mission exactly at the end location of the previous

day. This latter constraint can be defined as follows:

• and

(35)

(36)

where stands for the total number of mission days.

To further exemplify the inclusion of time dimension, the ob-

jective function can be written as follows:

• Maximize

(37)

The reader is referred to [39] for the full formulation of the

time-progressive case.

Assuming that AUVs have enough total range to complete

sampling over the defined duration without any need to dock to

get recharged and they continue their mission at the endpoint of

the previous day, an example problem is solved whose results

are presented in Fig. 9. This example also reveals capabilities of

the proposed formulation to find time global optimal solutions.

The number of path points chosen for both vehicles on both days

is eight, which leads to a range of 15 km per day. If we assume

the absence of any information link between the uncertainty data

for day 1 and day 2, looking at Fig. 9(a), on day 1, the second

vehicle, which starts its motion at 45 km and 30 km,

would have needed to be close to the small peak located around

40 km and 35 km. With the two-day information

available, vehicle 2 moves on day 1 such as shown in Fig. 9(a).

Because there is a constrained connection between day 1 and

day 2, vehicle 2 compromises on the total amount of rewards

it can collect on day 1 and heads towards the high-uncertainty

region that is predicted to form on day 2 around 35 km and

10 km. Over the two days, this enables the maximization

of total reward.

The above discussion can be easily extended to a 3-D case by

simply adding an index for the coordinate to most of the vari-

ables involved in the formulation. This adds some new formula-

tion variables related to the additional coordinate and modifies

the right-hand sides of some of the inequalities.

VIII. CONCLUSION AND DISCUSSIONS

In this paper, we have addressed the problem of path planning

of AUVs for adaptive sampling. We introduced an MILP-based

formulation, which is capable of handling multiple-vehicle and

multiple-day cases. Using MILP formulation techniques, it is

possible to successfully model all the constraints needed for dif-

ferent problem scenarios. The strength of the MILP formulation

makes future problem formulation extensions and modifications

possible. This point was exemplified within the AOSN concept

[46].

We first developed the details of our optimization formu-

lation, including the objective function and a wide range of

constraints. Once formulated, we implemented and solved the

problem using the XPress-MP optimization suit from “Dash

Optimization.” We preferred to use the native optimization for-

mulation environment from Dash Optimization called Mosel to

Fig. 9. (a) Results for the first day of a time-progressive case example. Starting
coordinates: � � 15 km, � � 22.5 km, range � 15 km; � � 45 km, � �

30 km, range � 15 km. (b) Results for the second day of a time-progressive
case example. Starting coordinates: � � 25.5 km, � � 12 km, range �

13.5 km; � � 37.5 km, � � 19.5 km, range � 12 km.

manage the formulation task. However, the formulation can be

easily implemented with other optimization solver platforms.

Using our new approach, we demonstrated a set of results for a

wide range of scenarios using realistic ocean uncertainty fields.

The effects of variations on the type of constraints, number of

vehicles, and time dependence were studied and diverse sensi-

tivity studies were carried out. In all cases, the results show that

the method is capable of generating desired solutions within al-

lotted time limits.

The problem we study is an NP hard problem. Therefore,

as the problem size increases, the solution time increases ex-

ponentially. For the sizes, we considered that the solution time

was short, especially in comparison to the time required to com-

pute forecast ocean fields and their uncertainties. Our path-plan-

ning results were obtained on Pentium 4, 2.8-GHz computer

with 1 GB of RAM. For larger problems, faster machines and
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grid/parallel computing are two options. The XPress-MP opti-

mization suit we used already supports the parallel computing.

There remain many directions for future research. For ex-

ample, the correlation between the measurement performed at

one location and the immediate and future changes of uncer-

tainty values around that location as a result of the collected

data can be taken into account [22]. In future work, we are plan-

ning to establish the link between a measurement performed at

a generated path point and its effect on the uncertainty field or

fields involved in the problem, including ESSE technique into

our optimization framework. Another line of research is the uti-

lization of XML schemes [56] that control the parameters of

our path-planning schemes and couple the optimization with the

ocean modeling and data assimilation schemes.

The framework we supplied can also be extended to be uti-

lized at low-level path planning where linearized vehicle dy-

namics and some waypoint information coming from high-level

programming can be combined to smooth the path in an optimal

manner. Another avenue of further research is the use of alter-

native solution techniques that can quickly generate suboptimal

integer solutions and can warm-start the branch and bound al-

gorithms. Candidate techniques include genetic algorithms and

development of heuristics.
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