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This approach has been derived mainly to improve quality and efficiency of global

path planning for a mobile robot with unknown static obstacle avoidance features in

grid-based environment. The quality of the global path in terms of smoothness, path

consistency and safety can affect the autonomous behavior of a robot. In this paper,

the efficiency of Ant Colony Optimization (ACO) algorithm has improved with additional

assistance of A∗ Multi-Directional algorithm. In the first part, A∗ Multi-directional algorithm

starts to search in map and stores the best nodes area between start and destination

with optimal heuristic value and that area of nodes has been chosen for path search

by ACO to avoid blind search at initial iterations. The path obtained in grid-based

environment consist of points in Cartesian coordinates connected through line segments

with sharp bends. Therefore, Markov Decision Process (MDP) trajectory evaluationmodel

is introduced with a novel reward policy to filter and reduce the sharpness in global path

generated in grid environment. With arc-length parameterization, a curvilinear smooth

route has been generated among filtered waypoints and produces consistency and

smoothness in the global path. To achieve a comfort drive and safety for robot, lateral

and longitudinal control has been utilized to form a set of optimal trajectories along the

reference route, as well as, minimizing total cost. The total cost includes curvature, lateral

and longitudinal coordinates constraints. Additionally, for collision detection, at every step

the set of optimal local trajectories have been checked for any unexpected obstacle. The

results have been verified through simulations in MATLAB compared with previous global

path planning algorithms to differentiate the efficiency and quality of derived approach in

different constraint environments.

Keywords: mobile robot, ant colony algorithm, Markov decision process model, motion planning, obstacle

avoidance

INTRODUCTION

For decades, the concept of autonomous driving has become familiar with the public due to its
vast applications in multi-dimensional aspects (Gu et al., 2017). Therefore, ambitious research has
taken place to improve the autonomous behavior of mobile robots. Mobile robots have applications
in different domains such as industry, military, transportation, etc. (Duchoe et al., 2014). In
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industries, autonomous mobile robots are used in logistics
warehousing, flexible manufacturing, and intelligent inspection
are much more efficient than humans and are available at a
relatively lower cost. In mobile robot autonomous behavior is
achieved through perception, decision, and actions (Sarkar et al.,
2018). Perception contains sensor data from the environment,
which has been actuated to low-level control according to
decision ability. The decision stage is known as the motion-
planning stage. Many approaches have been introduced to
improve the motion-planning ability of mobile robots. Motion
planning is a middle stage between perception and actuation
and is responsible for the autonomous behavior of a robot.
Motion planning is mainly categorized into Global Path
Planning (GPP) and Local Path Planning (LPP) according to
problem estimation.

GPP is a key technique for robots to acquire an optimal route
from the initial position to the final destination. Several different
approaches have introduced to acquire an optimal global path.
Most GPP techniques use discrete search optimization and has
applied in the grid-based environment. The path obtained in the
gridmap consists of suboptimal points connected though straight
line segments and, the path contains sharp bends. The bends
present in the global path can cause a jerky behavior in a robot’s
motion and, instant change in velocity and acceleration also
effect on energy consumption of robots. In contrast, a smooth
route can deliver a mobile robot a comfortable and safe drive.
Therefore, the curvilinear global route has considered a suitable
choice for better navigation and used in real-time scenarios.
For example, In Defense Advanced Research Projects Agency
(DARPA) autonomous challenge (2012), a vehicle used the pre-
defined curvilinear route (Chu et al., 2012). The global path
planning techniques including simulated annealing algorithm
(Miao and Tian, 2013), potential function theory (Cetin and
Yilmaz, 2014) has considered as traditional approaches due
to their limited functionalities. The genetic algorithm has
applied to get the global path in Bakdi et al. (2017), but
it shows poor computation ability in complex maps. On the
other hand, Ant Colony Optimization (ACO) (Wang et al.,
2016), genetic algorithm (Huang and Fei, 2018), neural network
(He et al., 2015, 2017), and particle swarm algorithm (Song
et al., 2017) have considered as intelligent approaches. ACO
has considered as one of the popular evolutionary approaches
to solve optimization problems. Due to its advantages, such
as good feedback information, robustness, better-distributed
computing (Akka and Khaber, 2018) and, the ability to be
easily combined with many path-planning approaches, it is
often used to deliver an optimal solution of global path
planning issues.

Similarly, LPP has applied to localize the robot’s motion along
a global path to avoid unknown obstacles. The predefined global
waypoints have given to the robot in various LPP techniques
and, it has to maintain an offset position on the centerline to
avoid dynamic obstacles. Meanwhile, it plans smooth trajectories
to move forward toward destination. DAPRA international
auto-driving challenge has organized to present many state of
the art technologies to achieve autonomous smooth driving
features. Sampling-based approach as RRT∗ has been used in

path planning (Hwan Jeon et al., 2013). the algorithm used in
Pivtoraiko and Kelly (2005) is a discrete representation of the
planning area with a grid of states (usually a hyper-dimensional
one). Reinforcement learning has been applied in a hierarchical
path planning approach to achieve local planning and navigation
(Zuo et al., 2015). Different approaches have advantages as
well as drawbacks in different complex situations. Such as few
mentioned techniques provide local path planning features and,
few can only work in global path planning.

CONTRIBUTION

The motivation comes from the research work presented in
state-of-art literature to introduce a combined approach for
enhancing the path planning abilities of a mobile robot in
a known and unknown statics constraint environment. The
global trajectory obtained through pre-defined waypoints in
local path planning algorithms like (Walambe et al., 2016; Hu
et al., 2018). This approach delivers global and local trajectory
planning features. For global path planning an improved ACO
version has presented that deliver an optimal trajectory with
efficient computational ability. The ACO has enhanced with
A∗ multi-directional algorithm. In ACO, starting iterations
don’t have pheromone concentration and ants have to move
randomly (blind search) to reach a goal position. This makes it
computationally expensive and time-consuming. Hence, the ant
colony algorithm needs to improve its computational efficiency.
Therefore, A∗ Multi-directional algorithm is introduced to sort
the area of nodes having a high possibility of obtaining an
optimal global path. ACO utilized that information of A∗

multi-directional algorithm as closest area for search and allow
ants to move in that directions. It increases the efficiency of
ACO to deliver global path in complex maps efficiently. The
quality of path has improved using MPD trajectory evaluation
model. ACO gives a sequence of optimal grids and each grid is
represented by its center point and the global path consists of
straight-line segments containing sharp bends formed through
connecting grid points in sequential order. Trajectory evaluation
model filter the path points and arc-length parametrization
bring path consistency and smoothness in final trajectory. To
attain optimal driving behavior, a set of lateral and longitudinal
coordinates has been generated. Lateral coordinates refer to
offset distance d from reference points to navigate, whereas
longitudinal coordinates represent distance covered at each
waypoint in sense of cumulative arc length s, respectively. Both
lateral and longitudinal coordinates are unified to produce a
feasible set of trajectories along the reference path. Each forward
move of the robot on the reference path will generate a set of
trajectories to avoid unexpected obstacles. Every trajectory has
to checked with defined cost constraints that include curvature
limit, speed limit, and obstacle check.

RELATED WORK

In recent years, tremendous research efforts have made for
improving the path planning efficiency of mobile robots in
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both global and local path planning techniques. For global path
planning, ACOhas chosen in this paper because of its advantages.
Although, ACO has drawbacks of slow convergence and
pheromone update. To address this problem, many approaches
have been proposed (Stützle and Hoos, 2000; Zeng et al., 2016;
Zhao et al., 2016). Pheromone rate has been updated after each
successful iteration of ant in ACO to improve the convergence
rate (Zhao et al., 2016). In Zeng et al. (2016) convergence
rate with search ability has been increased through upgrading
pheromone update formula and adaptively varying volatilization
rate. To avoid blind search in Stützle and Hoos (2000) an
initial path has produced and transformed into initial pheromone
distribution in ACO. Geometric method has been introduced to
optimize the global route and also local diffusion of pheromones
has obtained from a force factor defined in artificial potential
field to enhance the ability of obstacle detection (Liu et al.,
2017). In Yen and Cheng (2018), fuzzy logic is combined
with ACO to reduce repetitive learning errors. In Long et al.
(2019), A∗ Heuristic characteristics improved ACO optimization
performance in various complexity maps. In the discrete-search
algorithm, linear interpolation has been performed to bring
smoothness in the global path (Ferguson and Stentz, 2006). In
Zuo et al. (2015), the MDP model has been used with the A∗

algorithm to achieve a smooth path and improve navigation.
These approaches can improve the efficiency of ACO. However,
the quality of the path obtained in the grid environment doesn’t
match with the dynamic properties of a mobile robot due
to its roughness and sharp bends. In the local path search,
a curvilinear road is formed with cubic spline interpolation
and a set of feasible trajectories has been generated along the
roadside to avoid static obstacles (Chu et al., 2012). In Hu
et al. (2018), curvilinear road shape has been produced from
predefined waypoints and model predictive approach is used
to avoid static and moving obstacles. Similarly, lateral and
longitudinal movements have been introduced within the steer
relative coordinates to achieve optimal motion control (Werling
et al., 2012). The global reference path is derived from the
vision map using the lane-level accurate localization information
via the LiDAR-based localization methods (Hwang et al., 2003;
Li et al., 2017). In Li et al. (2015), conjugate gradient non-
linear optimization and cubic spline curve are used to achieve a
smooth global path from digital map and curvilinear coordinates
framework is used to obtain optimal trajectories. Likewise,
these techniques can efficiently handle local path problem but
do not work well to achieve optimal global path in complex
constraints environment.

REFERENCE PATH GENERATION IN
STATIC CONSTRAINTS ENVIRONMENT

Global Path Planning is used to obtain a global route from
an initial position of the robot to destinations in a static
constraint environment. GPP is an essential technique for a
mobile robot to find a suitable path in various situations. It is
simulated in a grid-based environment with prior knowledge
of static constraints. In this section, the grid model has

presented and the serial number method has used to reduce
complexity. Multi-Directional A∗ algorithm has utilized to get
the initial searching area, that assist the ACO to get final
optimal path. A constraints policy is presented for initial search
of ants in ACO and evaluation function of A∗ algorithm
is utilized to accelerate convergence speed in search strategy
of ant colony algorithm with better heuristic information.
Global search ability has enhanced by MAX_MIN ant system
through updating path pheromone information. Moreover,
the Trajectory evaluation model has introduced to increase
the visibility of the ACO path and filter the corner points
through MDP.

Environment Model
This path planning approach is implemented in a grid-
based environment. The grid method is simple and effective
to create and maintain the grid model. Moreover, the
grid method has strong adaptability for obstacles and also
convenience for computer storage and processing. It divides
the working space into N × N squares. As shown in
Figure 1A, white grids are spaces where robot can move
freely, in contrast black grids represent constraints area.
In order to identify constraint areas, the white grid cell
is represented with 0, and black grid unit is represented
with 1.

The grid model is consisting of a two-dimensional coordinate
system. Each grid is marked according to the serial number
method. In N × N grid map, the starting node is named after
Start and the target node is named after Destination. The position
coordinates (x, y) corresponding to any grid whose grid number
is R is as follow:







x =

{

mod (R,N)− 0.5 if mod (R,N)! = 0
N +mod (R,N)− 0.5 otherwise

y = N + 0.5− ceil( RN )

(1)

The serial numbermethod is applied to reduce the computational
complexity of ACO. The direction of each move from the
grid’s center point to neighbor grids has been simplified
with arithmetic operation. In Figure 1C, α represents the
number of a central grid point and N is the number of
rows and columns of the grid map. n represents all possible
the direction.

A∗ Multi-Directional Algorithm (A∗MDA)
In ACO, ants start to search in the map and after every successful
iteration, a new pheromone has updated in the network that
represents a specific direction toward a goal. After a few
iterations, the ants start to converge their directions according
to a higher pheromone ratio. At starting iterations, the ants
do not have proper guidance through the pheromone ratio.
Therefore, they move in different directions to seek a goal node
and if the map has a large and complex search space then it
consumes more time. A∗ algorithm has been introduced with
multi-direction path search features to assist the ACO. Figure 1B
has shown possible connecting nodes with the center node. Each
node has to be estimated with total cost value (n), which is the
sum of g (n) and h(n). It defines two matrices to list and mark
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FIGURE 1 | (A) Grid model (B) Possible visiting nodes around center node (C) Possible visiting direction for ant.

visited node named as Open_ list and Closed_list. Open_list is
marked with visited nodes and Closed_list contains the record of
obstacles and previously selected nodes to avoid repetition. The
next node selection is based on the lowest cost value of f (n). It
continues to search, until the destination node arrives. To retrieve
the best nodes, the location of each parent node is stored into
ParentX and ParentY. This algorithm provides multi-goals on
short distances between start and actual destination. Meanwhile,
the best nodes selected by A∗ Multi-Directional algorithm are
not enough to complete a global path individually. Therefore,
ACO has been utilized to fulfill the missing nodes and complete
a global path. Figure 2A shows that the multi-goals generated
by A∗MDA and Figure 2B shows the final trajectory. Table 1
provides algorithm flow:

f (n) = g (n)+ h(n) (2)

Improved ACO With Initial Constraints
Policy
ACO has been applied to achieve optimal global path from an
initial position to destination in a grid-based environment. A∗

Multi-directional algorithm provides the direction guideline to
ACO. The ants in traditional ACO have to search all possible
grids and every next grid is decided by the roulette wheel
method and repeated until the target point is obtained. It
was computationally expensive. According to the grid-based
environment obstacle grid represented with 1 and free grid
represent with 0. In absence of any constraints, Ant α can move
in 8 directions from the center grid as shown in Figure 1C. In
the situation of obstacle detection, the remaining direction grids
can be chosen using heuristic information. Initial constraints
policy defines a cost for eliminating a specific direction grid,
which does not maintain offset distance with obstacle grids.
Improved A∗ heuristic characteristics are used to improve
efficiency. To improve premature convergence and phenomenon

update strategyMAX_MIN, the ant system has been utilized. The
improvements are given as below:

Initial Constraint Policy
Initial constraints policy is used in case of obstacle detection.
When ant α found an obstacle, it has to turn toward remaining
directions. Initial constraint policy limits the ant to consider
those grids which do not maintain offset distance with obstacle
grid. With regards to serial number system, an ant α has 8
neighbor grids directions presented inTable 2. Constraints policy
is formed based on obstacle grid location and neighbor grids. In
Table 3, on every obstacle direction constraint policy eliminates
following grids to maintain offset distance in the final global path.

Heuristic Information and Path Strategy Information
In ACO, poor pheromone distribution at initial steps of ant
search causes slow convergence and increase search time. The
direction information and path strategy of ACO has been
improved with A∗ algorithm characteristics to avoid blind search
at initial steps of ant (Duchoe et al., 2014). The estimated function
of A∗ has been used to enhance directional information expressed
as Equation (2). g (n) represents distance from source grid to
current grid and h(n) represents distance from current grid to
destination grid, respectively.

In order to achieve reduced number of sharp bending in
global path, a bending reducing operator has been derived
in Equation (3) and included in heuristic search information
of ACO. cost(bend) is bending reducing operator. Number
of moves from previous node to next node represented with
turn and theta contains the angle formed among previous
node and next node with respect to current node. ϕ and ψ
represents cost of transforming turning times and angle into grid
length, respectively.

cost
(

bend
)

= ϕ∗turn+ ψ∗thita

ηij (t) =
Q2

f (n)+ cost(bend)
(3)
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FIGURE 2 | Shows the steps for global path optimizing. (A) A* MDA search for ACO. (B) Final trajectory with arc-length parameterization. (C) MDP model has been

applied between two points. (D) Evaluation of mid-point according to cost policy. (E) The bad point has removed from the path after evaluation.

MAX_MIN Ant System (MMAS)
MAX_MIN system has been used in Stützle and Hoos (2000)
to enhance pheromone strategy in ACO. Pheromone is updated
after each iteration in conventional ACO, with MMAS the
optimum route pheromone has been updated to the pheromone
trial exclusively presented in Equation (4). Q1,Q2 are coefficient
and each contains constant value less than one. Lbest contains cost
value for present shortest route. Cals(l) and Turns(l) represents
sum of bending angles changed in path and sum of turns for
optimal route. Similarly,ω1 andω2 are considered as weights and
defined according to robot’s structure (Wu et al., 2011).

τij (t + 1) = (1− ρ) τij (t)+1τ
best
ij

1τ kij (t) =
Q1

Lbest
+

Q3

ω1Cals
(

l
)

+ ω2Turns(l)
(4)

In conventional ACO, an ant during search may fall into local
optima and mislead the search process. In this context, MMAS

pheromone trials has been bounded to upper limits and lower
limits

[

τmin,τmax,

]

as:







τmin, τ ≤ τmin

τ , τmin < τ ≤ τmax

τmax, τ > τmax

(5)

The above procedure aims to optimize the performance of ACO.

Markov Decision Process (MDP) Model
With Novel Reward Policy
MDP consists of state-action transition model, which takes
sequence of optimal path grids and evaluate every grid with
respect to defined reward policy. Each optimal path grid is
referred to as state and possible action has been taken based
on reward policy. Reward policy is designed in order to check
every middle point and its direction with respect to first two
neighbor grids. Global route achieved through the Improved Ant
colony algorithm. ACO is applied in a grid-based environment
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TABLE 1 | A* Multi-directional algorithm.

Procedure: A*MDA

Initialization: Start(S), Goal(E), MAP, Open_list, Closed_list, PerentX_list,

PerentY_list

// Setting up matrices Q representing neighbors to be investigated

// Add the start node

put the start Node on the Open_list (it’s f
(

S
)

equals to h(s))

// Loop until you find the goal node

While the current node is equal to goal node

//Initializing current node with min f (n) value and opening first node

if f (n) equals to infinity

// Open_list is empty or goal not found

Break; // path not found

end if

for Current node equals to goal node

Break; // Retrieve the path

end for

// visit the Q neighbors and calculate f (n) for each

for Q do

Using Equation (2) calculate f (n)

// save visited nodes x, y values in PerentX_list and PerentY_list.

end for

end While

While // Retrieve the path,

Currentnode_X = ParentX(Current node);

Currentnode_Y = PerentY(Current node);

If current node is equal to goal node

// Output = {Start, goaln, goaln+1, goaln+2,…goalt}

end if

end while

TABLE 2 | Arithmetic equations for direction.

Direction Arithmetic operation

n1 α – (N+1)

n2 α – N

n3 α – (N−1)

n4 α – 1

n5 α + 1

n6 α + (N−1)

n7 α + N

n8 α + (N + 1)

TABLE 3 | Initial constraints policy for ant.

Obstacle direction Eliminating grids

n2 n1 & n3

n4 n1 & n6

n7 n6 & n8

n5 n3 & n8

to achieve a sequence of optimal grids points in the (x, y)
coordinates. These center points are known as path candidates.
The global route produced by path candidates consists of straight
suboptimal line segments that contain sharp bending and the
result is a rough path shown in Figure 2C. To deal with the
non-holonomic properties of robot, this path is not feasible to

maintain a smooth and safe drive. To achieve path consistency
and smoothness a novel evaluation function is introduced. This
evaluation function examines path point sequence and remove
bad path candidates according to the given cost policy. The
evaluation technique follows the given steps:

Linear Interpolation
To increase the visibility of global path extra points has generated
through Linear interpolation. Linear interpolation has a broad
area of applications (Zheng et al., 2012). In Chapra (2012),
interpolating function f (x) is used to generate new point between
every two global path points. In Equation (6) (x0, y0) and (x1, y1)
are two consecutive global path points. To compute new points
in a straight line, the equation of straight slope is used. In
Figure 2C LI is used to generate a midpoint between every two
path candidates showed by dot line.

f (x) = y =
y1 − y2

x1 − x0
(x− x0)+ y0 (6)

Cost Policy
This paper introduces a new cost policy to filter the path obtained
in grid environment. Path has considered of pointsm.

mi = m1,m2,m3,m4, . . .ml and l = total number of points

In order to achieve efficient computation results a novel cost
policy is formed to evaluate grid points. The main objective of
this evaluation function is to remove path points, which do not
satisfy the cost policy. This cost policy is mainly consisting of
following steps:

1 The Mid-Point Evaluation method has introduced to analyze
the direction of each point among sequence. The evaluation
path point has denoted by mi. mi − 1 and mi + 1 are the first
and second neighbor, respectively. Figure 2D shows the path
points obtained using ACO present the sharp corners. Cost
policy will perform midpoint evaluation on each grid point to
recognize its direction to neighbors.

2 The path points have been passed through MDP evaluation
model presented in Table 4. The cost has set 0 and that point
will eliminate from path if the midpoint value of first two
neighbors is equal to centered point as shown in cost policy
Table 5. In Figure 2E the m point doesn’t satisfy the cost policy
and allotted 0 value, hence deleted from path.

Arc-Length Parametrization With Cubic Spline
In order to achieve optimal route from initial position to
destination, several different approaches have used arc-length
parameterization technique in predefined global waypoints to
generate a reference road path. In grid-based environment,
the obtained global path doesn’t contain path consistency and
robot is unable to localize itself precisely on derived route.
This is considered as a drawback for solving path planning
problem in grid-based environment. Therefore, the arc-length
parameterization is applied to get curvilinear smooth route
from refined path points. Figure 2B shows the smoothness and
consistency in path generated with equally spaced points having

Frontiers in Neurorobotics | www.frontiersin.org 6 July 2020 | Volume 14 | Article 44

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Ali et al. Mobile Robot Path Planning

FIGURE 3 | Local Trajectories from lateral and longitudinal movements.

TABLE 4 | MDP state-action Model.

State {m| m ǫ set of optimal path points }

Action (remove m from path, Keep m in path)

Reward 0 is for removed m and 1 is for kept m

TABLE 5 | Novel reward policy.

If direction of first neighbor grids with m Annotation Reward

Midpoint(mi − 1&&mi + 1) 6=

mi where i is number of path point

mi is a

bending point

Assign 0

else 1

arc length (s) along global route defined thorough Equation (7)
(Wang et al., 2002). The kr curvature of each point present in
optimal reference line has been derived through (8).

xs = ax (s)
3 + bx (s)

2 + cx (s)+ dx

ys = ay(s)
3 + by(s)

2 + cy(s)+ dy (7)

kr =
xs

′ys
′′ − xs

′′ys
′

√

(xs′ + ys′)
3

(8)

ax, bx, cx, ay, by, cy, dx, dy has considered as coefficient. xs
′, xs

′′,
ys
′, ys

′′ are first and second derivatives of xs, ys coordinates.

UNEXPECTED CONSTRAINTS AVOIDANCE
AND TRAJECTORY PLANNING

After obtaining an optimal reference global route, robot starts
to move toward destination. Meanwhile, it has to avoid
the unexpected constraints and also has to maintain its
position on reference trajectory. To obtain optimal behavior
in unknown obstacle environments, curvilinear coordinates
framework approached human like driving behavior. In human

like behavior, distance covered along road and offset to its
center is taken into consideration. With this regard, Barfoot
and Clark (2004) and Hu et al. (2018) curvilinear road path
derived though cubic interpolation between predefined global
waypoint. In Li et al. (2015), curvilinear path is adopted from
digital map and B-spline curve used to bring smoothness in
center line. This paper introduced an efficient approach to
derive curvilinear reference route autonomously in complex grid
maps using Improved ACO with MDP model and arc length
parameterization. To define robot motion on global reference
line, lateral and longitudinal coordinates generated and unified
to produce set optimal trajectories.

Formation of Lateral and Longitudinal
Coordinates
The obtained global route consists of smoothly distributed
waypoints produced through arc-length parameterization. To
maintain its position on reference route and avoid obstacles,
robot has to move along offset of center line and offset
distance represented with d. Arc-length s is taken as parameter
to localize the position of robot at each waypoint on global
route. Both s and d has been considered as lateral and
longitudinal coordinates. For each forward move on reference
route, a set of lateral and longitudinal coordinates are generated
separately and unified to form a set of trajectories as shown in
Figure 3. Time parameterization is used in producing lateral and
longitudinal coordinates. In Werling et al. (2010), Quantic and
quartic polynomial coefficient are derived to calculate a set of
longitudinal and lateral trajectories with different final times and
different final states (relative to the reference line). At initial
ε0 and final εt states lateral and longitudinal movements are
considered as:

ε0 = [ε0, ε̇0, ε̈0] , εt = [εt , ε̇t , ε̈t] (9)

Furthermore, it can be minimized through considering square of
jerk Jt with defined time integral from t0 to t1.

Jt (ε (t)) : =

∫ t1

t0

...
ε 2(τ )dτ (10)

cost of trajectory C in constraint free environment is based
upon sum of individual cost of lateral (Cd) and longitudinal (Cs)
components, respectively.

C = kjJt + ktg (T)+ kph(εt) (11)

T is referred as time interval of transforming state ε0 to εt and g
and h has been assumed arbitrary functions with parameters kj, kt
and kp. At first, lateral coordinates have been generated to specify
the vehicle steering direction and to maintain offset distance
parallel to center line. Initial lateral position of robot is d0, ḋ0, and
d̈0 refers to initial lateral velocity and acceleration, respectively. In
set of final trajectories, lateral movements have been unified with
longitudinal movements. In this content, Quantic polynomial
(Rathgeber et al., 2015) has been used to get smooth lateral
deviations suitable to longitudinal terminal manifolds in different
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TABLE 6 | Simulation results.

Common map Tunnel map Through map Baffle map

Algorithm 1 2 3 1 2 3 1 2 3 1 2 3

Number of sharp bends 10 10 0 12 10 0 – 13 0 – 10 0

Average path length 29.45 29.38 29.23 38.48 38.12 37.99 – 51.84 52 41.48 41.89

Number of iterations 33 12 9 35 16 10 – 40 11 – 16 10

Time of reference trajectory generation (sec) 7.26 4.89 1.49 20.62 17.97 1.601 – 88.20 1.778 10.98 1.39

Number of unknown obstacles – – 2 – – 2 – – 5 – – 5

Time taken by robot to respond unknown constraints (millisec) – – 60 – – 60 – – 60 – – 60

*Algorithm.

1-described in Zhao et al. (2016).

2-described in Long et al. (2019).

3-Derived approach in this paper.

FIGURE 4 | The simulation results on 20 × 20 and 200 × 200 workspace in a common map. (A) Differentiates the quality of the global path (B) Convergence graph

of iteration vs. path length. (C) Differentiates robot trajectory with respect to a reference frame of the curvilinear path under the unknown obstacle. (D) Shows a close

look at obstacle avoidance and robot trajectory vs. obstacle.
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modes of operations. ḋ0 and d̈0 has taken 0 in starting, as the
robot has to move parallel with center line.

D0 =
[

d0, ḋ0, d̈0,T
]

= [d0, 0, 0,T] (12)

Longitudinal coordinates have been utilized to localize the robot
on reference line. At each forward move on global route, offset
distance from centered waypoint to robot position is considered
as d. Waypoint robot covers arc length s and estimate st position
in time interval T paired with set of lateral movement using
quartic polynomials (Guan et al., 2005). Initial longitudinal state
of robot is S0 = [S0, Ṡ0, S̈0] and time t. After T interval it estimates
terminal state St =

[

Ṡt , S̈t
]

and time changes to tt . Longitudinal
trajectory generation can be achieved efficiently with quartic
polynomials through varying the1ṡ0 and T.

[ṡt , s̈t ,T]0t = [[ṡd +1ṡ0] , 0,T] (13)

In case of moving robot with constant velocity ṡd it requires to a
constant velocity instead of defining position to define its motion
along reference path. The functional cost can be minimized
through quartic coefficient.

Cd = kjJt
(

d (t)
)

+ kt (T)+ kdh(dt) (14)

Cs = kjJt (s (t))+ kt(T)+ ks[ṡt + ṡd]
2 (15)

In order to achieve a unified pair of trajectories on reference
path, each lateral and longitudinal set has been passed through
initial check. And trajectories coupled with unsuitable lateral
and longitudinal accelerations has been removed based on the
values of d̈ and s̈. The final cost of each optimal trajectory has
been minimized through summing individual costs Cd and Cs

(Werling et al., 2010). Similarly, every trajectory has been verified
with respect to its cost value and minimum jerk Jt .

The final cost of each optimal trajectory has been
minimized through summing individual costs Cd and Cs.

FIGURE 5 | The simulation results on 20 × 20 and 200 × 200 workspace in the baffle map. (A) Differentiates the quality of the global path (B) Convergence graph of

iteration vs. path length. (C) Differentiates robot trajectory with respect to a reference frame of the curvilinear path under the unknown obstacle. (D) Shows a close

look at obstacle avoidance and robot trajectory vs. obstacle.
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In constraints avoidance scenario, a safety distance has
defined to keep away collision. Every trajectory has been
checked with respect to its cost value. With this regard, the
heading θ(t), curvature κ(t), velocity v (t) , and acceleration
a(t) has been taken in consideration to give underlying
control of actuators. Therefore, curvilinear coordinates
have been transformed to Cartesian coordinates as in
Werling et al. (2012).

SIMULATION RESULTS

Path length has been considered a key element in the
optimization of the global path planning problem. With the
shortest and path smoothness, the robot consumes less amount of
fuel to perform the task in minimum time. This paper improves
both features to achieve an optimal trajectory. To verify the
efficiency of the combined approach, simulations have been
performed inMATLAB on different complexmaps and robot size

has assumed smaller than grid resolution. In first section, optimal
global path has been shown and compared with previous versions
of ACO in sense of path consistency, smoothness and safety.
In second part, the results presented under both pre-defined
and unknown static constraint environments along with details
have been given in Table 6. In Figure 4, the algorithm has been
applied on common map with static constraint environment in
20 × 20 workspace and compared with Long et al. (2019) and
Zhao et al. (2016). The figure shows that the obtained path has
consistency in order to localize the robot along global route, as
well as, the graph in Figure 4B verifies the efficiency of algorithm
in reducing No. of iterations along with shortest distance
considering safety and comfort. In Figure 4C, reference global
path is represented through red dotted line and blue dotted line
representing robot’s trajectory under placement of unexpected
static obstacles.

In Figure 5, the baffle map has been selected to optimize
the global path with a static constraints environment in the
workspace. This approach gives an optimal path in baffle

FIGURE 6 | The simulation results on 30 × 30 and 300 × 300 workspace in the tunnel map. (A) Differentiates the quality of the global path (B) Convergence graph of

iteration vs. path length. (C) Differentiates robot trajectory with respect to a reference frame of the curvilinear path under the unknown obstacle. (D) Shows a close

look at obstacle avoidance and robot trajectory vs. obstacle.
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FIGURE 7 | The simulation results on 40 × 40 and 400 × 400 workspace in through map. (A) Differentiates the quality of the global path (B) Convergence graph of

iteration vs. path length. (C) Differentiates robot trajectory with respect to a reference frame of the curvilinear path under the unknown obstacle. (D) Shows a close

look at obstacle avoidance and robot trajectory vs. obstacle.

map with smoothness and enhanced path visibility, that assists
the robot to localize and navigate efficiently, rather than
(Long et al., 2019). In Figure 5B Vertical axis represents
path length and the horizontal axis represents the number
of iterations, respectively. Figure 5A differentiate the quality
of path and Figure 5B shows that the number of iterations
is lower than (Long et al., 2019) and, the computation
time of this approach has also reduced compared with
previous versions.

In Figure 6, algorithm has been applied on tunnel map. In
Figure 6A Global route has shown to differentiate the results
and Figure 6B further confirms efficiency of this approach
with respect to finding optimal global path in 30 × 30
tunnel map. In order to deal with static and dynamic path
planning, a 300 × 300 workspace is created. In Figure 6C,
reference path is shown with red dotted line and robot

trajectory along reference path has been presented with blue
dotted line and Figure 6D gives a close view of obstacle
avoiding trajectory.

Similarly, Figure 7 demonstrate the efficiency of this derived
approach in 40×40 search space to solve static and dynamic path
planning problems in grid-based environment. The obtained
path in Figure 7A has been compared with Long et al. (2019)
and the quality of derived path founds suitable to robot motion.
The workspace has been increased to 400 × 400 in order to
optimal trajectory in known and unexpected static constraints
environment. In Figure 7C, robot’s trajectory has been
represented with blue dotted line and reference path represented
with red dotted line. It indicates that robot follows reference route
at unconstraint situation, and at some places robot’s trajectory
differs from reference route to avoid obstacle appearing ahead
of it.
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CONCLUSION AND FUTURE WORK

This paper introduces a combined approach for a mobile robot
to deal with path planning problems in static and dynamic
constraints environment and will be applied on mobile robot
in real world environment. In the first part, global reference
route is obtained through A∗ Multi-directional algorithm and
improved ACO. MDP model based on novel reward policy has
been introduced to evaluate the global path points generated in
grid-based environment. Arc-length parametrization generates a
curvilinear global route among obtained waypoints. In order to
deal the environment with dynamic constraints, a set of lateral
and longitudinal coordinates have been generated to maintain
a suitable offset distance from global reference path and to
produce a set of trajectories along global route. In addition,
a cost policy is defined to choose the constraints-free smooth
trajectory. In this way, an optimal approach is derived to deal
with the complexity of different maps considering safety, path
consistency and smoothness of trajectories compared to other
grid-based approaches in complex-constraints environment.
The simulations have been performed in MATLAB to verify
its efficiency.

Although, the ability and functionalities of this approach in
GPP and LPP can be extended further to cover verity of mobile
robot applications and to avoid dynamic moving obstacles.
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