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Abstract: Unmanned helicopters (UH) can avoid radar detection by flying at ultra-low altitudes; thus,
they have been widely used in the battlefield. The flight safety of UH is seriously affected by moving
obstacles such as flocks of birds in low airspace. Therefore, an algorithm that can plan a safe path to
UH is urgently needed. Due to the strong randomness of the movement of bird flocks, the existing
path planning algorithms are incompetent for this task. To solve this problem, a state-coded deep
Q-network (SC-DQN) algorithm with symmetric properties is proposed, which can effectively avoid
randomly moving obstacles and plan a safe path for UH. First, a dynamic reward function is designed
to give UH appropriate rewards in real time, so as to improve the sparse reward problem. Then, a
state-coding scheme is proposed, which uses binary Boolean expression to encode the environment
state to compress environment state space. The encoded state is used as the input to the deep learning
network, which is an important improvement to the traditional algorithm. Experimental results show
that the SC-DQN algorithm can help UH avoid the moving obstacles to unknown motion status in
the environment safely and effectively and successfully complete the raid task.

Keywords: path planning; deep reinforcement learning; dynamic reward function; status code

1. Introduction

With the development of science and technology, unmanned and intelligent vehicles
has become a new development trend. Path planning, as an important basis of an un-
manned system, is also one of the key technologies for unmanned helicopters (UH) to
realize intelligence. Because of the characteristics of strong mobility and good flexibility,
UHs can fly at low altitude to avoid radar detection; thus, they are widely utilized to raid
important targets of the battlefield. Compared with other unmanned aerial vehicles, UH
will face a more complicated airspace environment because they need to fly at low airspace
for a long time. Static mountains and sudden bird flocks in low airspace environments can
severely interfere with UH flight. Therefore, it is urgent to seek a path planning algorithm
to ensure the safe flight of UH in dynamic environment.

Path planning in dynamic environments has always been a challenging problem. In
recent years, researchers have made extensive efforts to deal with this problem. A reason-
able anti-collision path planning algorithm with the properties of strong practicability and
high degree of automation for unmanned surface vehicles (USV) or marine autonomous
surface ships (MASS) in dynamic environment situations was proposed in [1]. The au-
thors analysed the types of collisions that may occur, and gave specific countermeasures
according to the requirements of the International Regulations for Preventing Collisions at
Sea (COLREGs), thereby solving the problem of collision avoidance when multiple ships
meet. In [2], an algorithm termed as multiobjective dynamic rapidly exploring random
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(MOD-RRT*) was proposed, which is suitable for robot navigation in unknown dynamic
environment. The authors introduced a path replanning process of the algorithm to deal
with the situation of unknown obstacles to the current path.

The above literature represents two solutions to the path planning problem of dynamic
environments. The first way is to define the collision type and give an avoidance scheme,
which can solve the collision avoidance problem of a dynamic environment. The second
method is to replan the path when encountering unknown obstacles, which can correct the
original path. Although the first method can avoid various obstacles well, the definition of
collision types is usually cumbersome. When the environment state is complex, this method
will bring a huge workload, and it is easy to miss some situations. For the second method,
although path replanning can avoid unknown obstacles, the time cost of replanning is a
problem that has to be considered.

The motion state of the flocks of birds is unknown and highly random in the UH
performing low airspace raid mission model, which requires our path planning algorithm to
have better obstacle avoidance ability. Therefore, our path planning algorithm follows the
design idea of defining collision types and giving avoidance solutions. However, we need
to improve and enhance it for its flaws. Recently, the development of deep reinforcement
learning (DRL) techniques has provided new ideas for solving related problems. DRL does
not require prior knowledge and can independently complete policy updates by interacting
with the environment, and it can complete feature extraction in complex state spaces [3].
Therefore, it is a good way to use DRL to solve related problems.

In this paper, a state-coded deep Q-network (SC-DQN) algorithm is proposed, which is
a complete path planning algorithm that integrates global path planning, obstacle avoidance
and local path correction. This algorithm can autonomously complete the identification of
collision types and give corresponding avoidance strategies. The main contributions of this
paper are as follows:

(1) A goal-guided reward function is designed in combination with environmental
information, which improves the sparse reward problem faced by reinforcement learn-
ing algorithms, effectively improves algorithm learning efficiency, and accelerates algo-
rithm convergence.

(2) A state-encoding scheme is proposed, which utilizes binary Boolean expressions to
encode the environment state space faced by the UH, thereby compressing the environment
state space and improving the state space explosion problem faced by reinforcement
learning algorithms.

(3) The performance of the SC-DQN algorithm is illustrated using simulation ex-
periments. Experiments are based on the UH performing a low airspace raid mission
model. The results present that the SC-DQN algorithm can help UH avoid bird flocks
with unknown motion states in low airspace environments, such that UH can safely and
successfully complete raid missions.

The rest of this paper is structured as follows. The related works are presented in
next section. In Section 3, numerical analysis and modelling of the complex low airspace
environment faced by UH are carried out. Section 4 elaborates the construction of dynamic
reward function, the proposal of the state-coding scheme, and the specific structure of
SC-DQN algorithm. In Section 5, simulation experiments are carried out to verify the
performance of the SC-DQN algorithm, and the experimental results are analysed and
discussed. The conclusions are presented in Section 6.

2. Related Work

The path planning problem has always been a research hotspot in the field of intelligent
control. Path planning usually needs to find the optimal path from (to) the starting position
to the target position on the agent according to certain evaluation criteria (such as the
shortest distance, the least time, etc.) under certain environmental constraints (such as
weather, terrain, etc.) [4].
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According to different ways of obtaining information, path planning algorithms can
be divided into two fields: global path planning algorithms and local path planning
algorithms [5]. Researchers mainly focused on the global path planning algorithm early,
the more representative of which is the heuristic algorithm A* [6]. However, the traditional
A* is designed for a static environment because it needs to perceive the global information
about the environment before path planning. As a result, if the environment information
changes, the previously planned path will be invalid, and replanning the path requires a
long computing time, which is unacceptable in dynamic environments. Although many
scholars have improved the traditional A* algorithm to enable path planning in dynamic
environments [7–10], the time and cost of replanning still limit its application of complex
dynamic environments.

Different from the global path planning algorithm, the local path planning algorithm
can make corresponding decisions based on the perceived local environment information,
so as to find a passable path when the global information is unknown. Therefore, the local
path planning algorithm can solve the dynamic environment planning problem with a
certain extent. At present, a series of representative local path planning algorithms such as
ant colony algorithm, genetic algorithm, particle swarm algorithm and artificial potential
field method have been widely used in various fields [11–14]. However, although the
above-mentioned algorithms have improved the problem of high path correction cost in
a dynamic environment to a certain extent, there are still problems such as difficulty in
ensuring convergence and the existence of local minima.

In recent years, the introduction to machine learning technology into the path plan-
ning problem has become the choice of many scholars, especially reinforcement learning
(RL) technology. Reinforcement learning is a powerful tool used to obtain optimal control
solutions for complex and difficult sequential decision-making problems where only a min-
imal amount of a priori knowledge exists about the system dynamics [15]. The algorithm
promotes the agent to make choices that maximize benefits by introducing reward and
punishment mechanisms, which is similar to human learning; thus, it is also regarded
as one of the key technologies in the era of artificial intelligence [16]. Since RL has the
characteristics of making decisions by interacting with the environment in real time, it has
obvious advantages for local path planning in dynamic environments. In [17], the authors
used the Q-learning algorithm to extract the state of the dynamic environment and then
combined the dynamic window approach algorithm to complete the path planning of the
mobile robot in an unknown environment. The research proved the ability of the Q-learning
algorithm to interact with the dynamic environment. In [18], the authors modelled the
environmental information during the navigation of the ship, set the environmental factors
such as obstacles and restricted areas as reward and punishment information, and used
the Q-learning algorithm to complete the autonomous navigation of the smart ship in the
simulated waterway control. However, with the gradual complexity of environmental
information, RL algorithms will face the problem of state space explosion, resulting in high
operating costs and even difficulty in convergence [19].

Some scholars pointed out that combining deep learning and reinforcement learn-
ing to form deep reinforcement learning (DRL) can effectively improve the state space
explosion problem [20]. With the help of DRL, the problems of path planning in dynamic
environments are further solved. As a kind of deep reinforcement learning technology, the
deep Q-network (DQN) algorithm has been widely used in the field of path planning in
a dynamic environment. In [21], a concise DRL obstacle avoidance algorithm was proposed,
which designed a comprehensive reward function for behaviours such as obstacle avoid-
ance, target approach, speed correction and attitude correction in dynamic environments,
with the deep Q-network (DQN) architecture to overcome the usability issue caused by the
complicated control law in the traditional analytic approach. A deep reinforcement learning
method ANOA based on dueling DQN was proposed in (to) [22], which tailored the design
of state and action spaces and the reward function. Then, the experiments showed that
this algorithm can help unmanned surface vehicle successfully complete autonomy in
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complex ocean environments navigation and obstacle avoidance. In [23], the reinforcement
learning theory with (about) deep Q-network (DQN) was applied for the mobile robot to
learn optimal decisions. The authors designed the reward function of the weight, and used
double DQN (DDQN) and dueling DQN to complete the path planning of the mobile robot
in the unknown dynamic environment. In order to better realize the ship path planning in
the process of navigation, a coastal ship path planning model based on the optimized deep
Q network (DQN) algorithm was proposed in [24]. The authors used the DQN algorithm
to train the environmental state space, and completed the path planning task of coastal
ships given the reward constraints. In [25], a deep reinforcement learning approach for
three-dimensional path planning by utilizing the local information and relative distance
without global information was proposed. The authors proposed an adaptive experience
playback mechanism by constructing two sample memory pools, which improved the
learning efficiency of the algorithm.

In general, the above studies show that applying the DQN algorithm to path planning
problems in dynamic environments has relative advantages. Analysis of the literature
shows that the traditional DQN algorithm usually simply takes the learner’s position
information as the input, which is not effective in identifying the environmental state.
Therefore, we designed a state-encoding scheme to encode the environment state space to
effectively defined collision types. Taking the encoded state as input enables the algorithm
to learn richer environmental information and make optimal decisions.

3. Environment Model

Since there are many symbols in this paper, we have added a symbol table for the
convenience of readers. The symbols of the paper and their corresponding meanings are
shown in the Table 1.

Table 1. Symbols and their meanings.

Symbol Meaning Symbol Meaning

ΩX Battlefield environment Ωmovable Passable area

Ωh Helicopter flight area Ωumovable Impassable area

Ωmountain The area of mountain Cum Impassable condition

Ω f lock(t) The area of flock of birds Cm Passable condition

Ωradar The radar coverage area α Learning rate

Ω1 Static environment γ Decay factor

Ω2 Dynamic environment ε Exploration facto

ΩR Safety radius of UH ω
Neural network

parameters

The four elements: UH, radar, stationary mountain, and flock of birds making random
movements in the low airspace range are included in the complex battlefield environment.
In the process of raiding the radar, UH not only needs to avoid being detected by the radar,
but also needs to avoid mountains and bird flocks to ensure its own safety. In this section,
the battlefield environment is numerically analysed and modelled.

3.1. Environmental Overview

The battlefield environment that UH faces when performing raid missions in low
airspace is shown in Figure 1. Ωh, Ωmountain, Ω f lock(t), and Ωradar represent the helicopter
flight area, the area of the static obstacle mountain, the area of the dynamic obstacle flock
of birds, and the radar coverage area, respectively. The complex battlefield environment is
replaced by ΩX , and X = (x, y) represents any position in it. Then, x and y represent the
horizontal position and flight altitude of the UH, respectively.
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Figure 1. Illustration of the complex battlefield environment.

The static environment Ω1 contains the following sets:

Ω1 = Ωh ∪ Ωmountain ∪ Ωradar (1)

where ∪ (·) represents the union operation in the set operation. The dynamic environment
Ω2 contains the following sets:

Ω2 = Ωh ∪ Ωmountain ∪ Ωradar ∪ Ω f lock(t) (2)

where Ω f lock(t) indicates that the location area of the flock will change with time. In
addition, the movement direction of the flock is random, and the dimension of its movement
is consistent with UH. In this article, UH moves with eight degrees of freedom in ΩX and
the specific motion direction is shown in Figure 2.
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The safety radius R of UH is inviolable, and the safety radius R is determined by the
following factors:

ΩR =
{
‖uh(t)−Ω f lock(t)‖ ∪ ‖uh(t)−Ωmountain‖ ∪ ‖uh(t)−Ωradar‖ ≥ R

}
(3)

where uh(t) =
[
uhx(t), uhy(t)

]
represents the current position of UH.

Based on the above information, the passable condition Cm and impassable condition
Cum of UH can be obtained as:

Cm = {Ωmovable| f (Ωh) = 0} (4)



Symmetry 2022, 14, 856 6 of 20

Cum =
{

Ωumovable

∣∣∣ f(Ωmountain, Ω f lock(t), Ωradar = 1
)
= 1

}
(5)

where f (x) represents the judgment function, and 0 and 1 represent movable and completely
immovable, respectively. Ωradar = 1 means detected by radar.

3.2. Parameter Setting

It is assumed that UH needs to raid radar positions 50 km away. Therefore, the length
of the experimental environment is set to 50 km, and the height is set to 1 km. Then, the
radar position Radar(x,y) can be expressed as:

Radar(x,y) = [50 km, 0 km] (6)

The horizontal flight speed
→
vx of UH is 360 km/h, and the vertical flight speed

→
vy is

10 m/s. Then, the UH position uh(t) can be expressed as:

uh(t) =
[
uh(t)x, uh(t)y

]
=
[→
vxt,

→
vyt
]

(7)

Because the horizontal speed and vertical speed of UH are not in the same order of
magnitude, the safety radius R of the UH should also be divided into two dimensions:
horizontal and vertical. The UH safety radius can be set as:

R =

{
Rx = 1 km
Ry = 0.1 km

(8)

The maximum attack distance of UH is 8 km. Assuming that the hit rate of UH in each
attack is 100%. Then, the condition for UH to complete the raid task is that the distance dt
between UH and the radar is less than 8 km:

dt =
∣∣∣uh(t)− Rader(x,y)

∣∣∣ = √(uh(x)(t)− 50)2 +
(

uh(y)(y)− 0
)2
≤ 8 km (9)

The maximum detection range of the radar is 45 km. Due to the influence of ground
reflection clutter and detection angle, it is usually difficult for radar to detect low-flying
targets. It is assumed that the radar detection probability formula is:

i =


0, d > 45 km

1, d ≤ 45 km, h ≥ 1 km
1

1+e(−(20h−7)) , d ≤ 45 km, 0.2 km < h < 1 km
0, h ≤ 0.2 km

(10)

Combining the above information, the probability model of UH flight process detected
by radar can be obtained as shown in Figure 3.

In Figure 3, the d-axis is the distance between the UH and the radar position, the
h-axis is the flying height of the UH, and the i-axis is the probability of being detected by
the radar. As can be seen from Figure 3, UH can avoid radar detection by lowering the
flying height. Combined with the probability map, it can be seen that within the range of
the flight height h ∈ (0.2, 0.5), the probability of being detected by the radar is not 100%,
which creates an obstacle for UH to recognize environmental information, and is also one
of the difficulties of this path planning experiment.
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4. Path Planning Scheme in Dynamic Environment

In this section, we briefly describe the development of DRL and the DQN algorithm
and make a series of improvements to the DQN algorithm. First, a goal-oriented dynamic
reward function is designed to overcome the sparse reward problem existing in the tra-
ditional DQN algorithm, which can give appropriate rewards in time according to the
state changes of UH. On this basis, a state-encoding method is designed to encode the
environmental state faced by UH. Finally, with the encoded environment state as input, the
SC-DQN algorithm is proposed.

4.1. Deep Reinforcement Learning

Reinforcement learning is a Markov decision process consisting of a quadruple
(S, A, P, R), where S and A are the state space and action sets, P is the state transition
probability, and R is the reward set. In the current state s, the learner will select the action a
according to the policy π and after executing the action. Then, it will further transfer to the
next state s′ according to the probability p, and at the same time, receive the reward r from
the environment.

The combination of reinforcement learning and neural network has been studied in a
previous work, but the algorithm performance is not good [26]. It was not until the DQN
algorithm was proposed that deep reinforcement learning was greatly developed [27]. The
success of the DQN algorithm is mainly attributed to the introduction of two mechanisms:
experience replay and target network. Since the correlation between the samples is much
larger than that of a simple reinforcement learning problem, experience replay can make
the deep neural network converge to the same step size, which can make the gradient
descent of the algorithm move in the same direction, thereby promoting the algorithm to
converge. At the same time, random sampling of training samples from the experience
pool can improve data utilization, thus effectively solving three problems: overcoming the
correlation of empirical data, reducing the variance of parameter updates, and overcoming
the non-stationary distribution problem [28].

The DQN algorithm uses the Q-Learning algorithm [29] to provide labelled samples to
the neural network and then uses gradient descent to update the neural network parameters
through back propagation. The update method of the Q-Learning algorithm is:

Q(s, a) = Q(s, a) + α

(
r + γmax

a′
Q
(
s′, a′

)
−Q(s, a)

)
(11)

where α ∈ (0, 1] is the learning rate, which is used to control the proportion of future
rewards in the learning process. γ ∈ (0, 1) is the decay factor, which represents the decay
of future rewards. r represents the reward after action a is performed. For formula (11), if
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each state s and action a are visited infinitely, and the decay factor γ takes an appropriate
value, then the Q value will eventually converge to a fixed value. The convergence of
Equation (11) has been proved in [30]. The Q-Learning algorithm needs to generate a Q
table to store the Q value during the running process, and it needs to constantly read and
write the Q value to update the Q table.

The DQN algorithm uses a neural network to fit the update process of the Q-Learning
algorithm. In the DQN algorithms, the state of the learner is used as input, and the Q value
corresponding to each action is used as output, such that the Q value information is stored
in the neural network node, namely:

Q(s, a, ω) ≈ Q(s, a) (12)

where ω represents the neural network parameters.
The loss function for the Q value is defined in terms of mean squared error:

L(ω) = E

[(
r + γmax

a′
Q
(
s′, a′, ω

)
−Q(s, a, ω)

)2
]

(13)

The Q(s, a, ω) in formula (13) is generated by the evaluate network, and Q(s′, a′, ω)
is generated by the target value network. The parameters of the target value network are
exactly the same as the evaluate network. When the algorithm updates a certain number
of steps, the parameters of the evaluate network will be completely copied to the target
network. The target value network can solve the problem of strong data dependence when
a single network is updated, thus effectively promoting the convergence of the algorithm.

The training process uses the stochastic gradient descent algorithm to update the
network parameters ∆ω:

δL(ω)

δω
=

[
r +

(
γmax

a′
Q
(
s′, a′, ω

)
−Q(s, a, ω)

)]
δQ(s, a, ω)

δω
(14)

δQ(s,a,ω)
δω in formula (14) is generated by the neural network calculation. Then, the

DQN algorithm code is shown in Algorithm 1.

Algorithm 1: DQN Algorithm

Initialization: initialize training network parameter ω and target network parameter ω′, ω = ω′.
Iterative process:
Repeat (for each episode)

Initialization state s
Repeat (for each step)

Select action a based on the ε—greedy policy
Perform action a to obtain reward r and next state s′
Store transition (s,a,r,s′) in the experience memory
Sample random mini batch (s,a,r,s′) from the experience memory

yi =

{
rj f or− terminal

rj + γmax
a′

Q(s′, a′, ω) f or non− terminal
Loss function L(ω) is obtained
Updating network parameters
s = s′

End Repeat (s′ is the terminated state)
End Repeat (end of the training)

4.2. Reward Function Design

The setting of the reward function is an important part of the reinforcement learning
algorithm, and a reasonable reward setting can promote the rapid convergence of the
algorithm [31]. However, in the traditional reinforcement learning algorithm, the learner
is rewarded when completing the task, and there is no reward in other states. This kind
of reward can easily lead to the sparse reward problem in the face of complex environ-
ments [32]. In a complex environment, the state space is usually large, and the learner
will face many non-feedback states before completing the task. Since the effective reward
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cannot be obtained in time, the algorithm will be difficult to converge. Aiming at this
problem, this paper designs a goal-guided reward function whose specific expression is
(15), where θ ∈ (0, ∞) is the reward coefficient, and dt and dt+1 are the distances between
the UH and the radar target in the current state and the next state, respectively. D is a
constant greater than the maximum distance between the UH and the target position. The
calculation methods of dt and dt+1 refer to formula (9).

r =
{

θ(D− dt+1), dt+1 < dt
−θdt+1, dt+1 ≥ dt

(15)

It can be seen from Equation (16) that the reward r will be related to the distance dt+1
between the UH and the target in real time. Whenever the position of the UH changes,
if it is closer to the target, a positive reward can be obtained. Otherwise, there will be
punishment (negative reward). At the same time, when the UH is far away from the target,
the disciplinary effect of the negative reward is stronger, and the UH will quickly approach
the target point of the constraint of the negative reward. As the distance between the UH
and the target decreases, the constraint ability of the negative reward gradually weakens,
and the incentive effect of positive reward increases. UH will explore sub-optimal actions
at the same time when approaching the target point (taking sub-optimal actions will not be
severely punished), so as to effectively seek the optimal path.

Equation (15) is the reward of UH when it satisfies the passable condition Cm. When
UH meets the impassable condition Cum, that is, when the distance between UH and the
obstacle is less than the safety radius R, the reward value is −1000. Then, the system exits
and starts learning again. In addition, when the distance between the UH and the target
radar is less than 8 km, the task can be regarded as completed. At this time, the reward is
1000, and the system will also exit and start learning again.

To sum up, the reward function designed this time can generate dynamic rewards
in real time in combination with environmental information. The dynamics of rewards
are mainly manifested in two aspects. First, the rewards are generated in real-time as the
UH interacts with the environment, which makes the reward no longer sparse. Second,
the numerical value of the reward is not fixed; it will change with the movement of
the learner. This change guides the UH to move in the correct direction, which further
facilitates algorithm convergence. Based on the above analysis, UH can optimize the
search according to the continuously estimated environmental cost information to make
the reward accumulation process smoother. Since the reward situation is related in real
time to the task goal, it is called a goal-directed reward function.

4.3. Status Code

The conventional DQN algorithm takes the learner’s location information as input,
and after repeated interactive learning with the environment, it can learn to take correct
actions at the corresponding location, so as to reach the destination smoothly. This input
method theoretically requires the learner to traverse all the positions to complete the
training. However, in a complex environment, the location space is relatively large; thus,
the learning efficiency of the algorithm is low. Conversely, the training result of this input
method is to enable the learner to make correct decisions at the corresponding position, but
when the environmental state of the corresponding position changes, it is difficult for the
learner to deal with this situation. Therefore, this input method is difficult to perform the
path planning task of UH in complex dynamic environment.

The premise of path planning in the dynamic environment is that learners can accu-
rately identify the current environment state in real time. If the next move may encounter
an obstacle, the learner should accurately identify the location of the obstacle, so as to judge
the current state and make the correct decision to avoid the obstacle. In order for UH to
accurately judge the current environment state in real time, a state encoder is designed to
encode the surrounding environment information detected by UH, thereby changing the
input method of the traditional DQN algorithm.
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As shown in Figure 4, in a grid environment, assuming that the UH can perceive the
surrounding environment information (which is easy to implement for the UH equipped
with various sensors). First, we propose features for the grid adjacent to the current position
of UH, so as to accurately determine the existence of surrounding obstacles. Then, we
encode the adjacent positions, so as to accurately convert the environmental information
into digital codes. In this process, we use 1 or 0 to represent the presence of obstacles or the
absence of obstacles, respectively. This encoding is concise and efficient. Finally, we use
the encoded information as the input of the algorithm. Since the encoded environmental
state is composed of numbers 0 and 1, it can be directly used as the input of the algorithm
without decoding. The algorithm can judge the existence of obstacles in the surrounding
environment by distinguishing between 0 and 1, so as to make the correct decision.
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By the above coding scheme, the traditional input of learner location information is
converted to the input of learner state information. When the algorithm takes the location
information of the learner as the input, it completes the division of the environment state
space based on the location information. As the simulation accuracy improves, the learner’s
location information increases, which means that the environment state space also expands.
This increases the training burden of the algorithm. However, when the algorithm takes the
learner’s state information as input, it completes the division of the environment state space
based on the existence of surrounding obstacles. Since the distribution of surrounding
obstacles is limited and will not increase with the improvement of simulation accuracy, the
environment state space is also limited. Compared with traditional methods, our scheme
can be regarded as compressing the state space, thus effectively reducing the training
burden of the algorithm.

Combined with the battlefield environment, it can be seen from Figure 2 that UH
moves with eight degrees of freedom in the environment. Assuming that obstacles may be
encountered in all eight directions, there will be 28 situations. It can be encoded by Boolean
value (true is represented by 1 and false is represented by 0):

SUH = [s7, s6, s5, s4, s3, s2, s1, s0], si ∈ [0, 1] (16)

In formula (16), si and the action directions of UH are corresponding, where si = 0
means that there is no obstacle in this direction to pass, and si = 1 means that there is an
obstacle in this direction that is impassable. Using the encoded SUH as the algorithm input,
the UH after training can make correct decisions according to the current environment state,
so as to complete the obstacle avoidance task, and can complete the local path correction
when the position of the obstacle changes.
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4.4. State-Coded Deep Q-Network

Combined with the idea of the above reward function and the state-coding scheme,
the design of the UH path planning algorithm in the dynamic environment is completed.
The algorithm model is shown in Figure 5.
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It can be seen from Figure 5 that when the algorithm is executed, the state information
of the surrounding environment of the learner is extracted, and then the surrounding
environment state is sequentially encoded by the state encoder; then, the encoded s is used
as the input. After the algorithm outputs the Q values of different actions, the action a
with the largest Q value is selected according to the ε-greedy strategy and is executed.
Then, the environment state changes and the next state s′ is obtained. At this time, the
environment rewards r for action a according to the reward function, and the complete
quaternary information group (s, a, r, s′) is obtained. The quaternary information group
will be stored in the experience pool. After the experience pool stores a certain scale of
data, it will be randomly sampled for learning. In the process of sampling learning, the
current state s of the learner will be used as the input of Evaluate Net to obtain the actual
value Q(s, a; ω), and the next state s′ of the learner will be used as the input of Target Net to
obtain the estimated value Q(s′, a′; ω). Next, Q(s, a; ω), Q(s′, a′; ω) and reward r are used
as the input of the loss function to obtain the mean square error, and the stochastic gradient
descent method is used to update the Evaluate Net, thus as the action selection strategy of
the SC-DQN algorithm is optimized. The input state s is encoded in combination with the
motion direction of the UH; thus, the input and output of the network are dimensionally
consistent. Therefore, the deep learning network used by the SC-DQN algorithm has
symmetric properties, which makes the network structure more stable.

5. Simulation Experiment

Scenario 1, Scenario 2 and Scenario 3 are used to verify the performance of the SC-DQN
algorithm. In Scenario 1, the flock of birds in Figure 1 does not exist, and the impassable
areas in the environment are the radar coverage area and the location of the mountains.
Then, the passable condition of UH is Equation (4), and the impassable condition is:

Cum = {Ωunmovable| f (Ωmountain, Ωradar = 1) = 1} (17)

The position of the mountain in Scenario 1 is mountain(x,y) = [20, 0], and the height
of the mountain relative to the ground is 0.15 km. Compared to Scenario 1, the position



Symmetry 2022, 14, 856 12 of 20

of the mountains is changed in Scenario 2. The position of the mountain was adjusted to
mountain(x,y) = [30, 0], which is used to verify the path correction ability of the algorithm.

In Scenario 3, a flock of birds is introduced into the environment. The horizontal
movement speed of the flock is 36 km/h, and the vertical movement speed is 1 m/s because
the movement of the flock of birds is relatively random, and it is usually accustomed to
moving in a low airspace range. Therefore, we limit the movement range of the flock of
birds to a low airspace range with an altitude of no higher than 0.2 km. The flock of birds
will appear at the beginning of the mission, the location is random, and the movement
direction of the flock at any time is also random.

In order to ensure the validity of the experiment, all experiments must be carried
out in the same environment. This experimental environment code is written in Python
language based on the PyCharm platform, and the neural network is built with the help of
the Tensorflow-2.6.0 toolkits. All experiments were performed on the same computer with
twelve Intel(R) Core (TM) i7-8700 CPU @ 3.20 GHz processors and one NVIDIA GeForce
GT 430 GPU, and the RAM is 16 GB.

5.1. Algorithm Parameter Selection

The learning rate α and batch size are two important parameters in the SC-DQN
algorithm. In order to select suitable parameters, we compared the convergence of the
SC-DQN algorithm under different values. The experiment was carried out in Scenario 1.
During the experiment, if UH completes the raid task, it will obtain one point; if not, it
will not score. We take the score of UH’s last 100 tasks as an indicator to measure the
performance of the algorithm. During the experiment, every time UH completes the task
or fails the task, the system will exit and restart the training, which represents the end
of an episode. The experimental results are shown in Figures 6 and 7. The results in
Figure 6 are obtained by averaging the data of 10 independent experiments, which reduces
experimental error.
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Figure 6 shows score of the proposed SC-DQN algorithm with different learning rates,
in which the learning rates are 0.001, 0.005, 0.01, 0.05 and 0.1. As we can see, the learning
rate affects the value of the score during the training of our algorithm. The reason is that
the learning rate represents the learning step length of realizing the convergence of the
algorithm. The higher the learning rate, the more the learning effect is preserved, and the
training is faster, but it is easy to miss the global optimum of the learning process, which
causes oscillation. Then, the smaller the learning rate, the slower the training. According to
our experimental results, the learning rate 0.05 has the best performance in our simulation
scenario. Its learning speed is acceptable, and it can quickly lead to the convergence of
the algorithm.

Figure 7 shows the learning loss of the proposed SC-DQN algorithm with different
batch size, in which the batch size values are 8, 16, 32 and 64, respectively. As we can see,
the batch size affects the value of the loss with the increase in learning episodes. The batch
size affects the efficiency of sampling when the algorithm performs experience replay. If
the batch size is small, it will bring a large variance, which will slow down the convergence
of the SC-DQN algorithm. Meanwhile, if the batch size is too large, it might lead to the
convergence of the algorithm to the local optimal solution point. Therefore, the batch
size should take a suitable and appropriate value. According to our experimental results,
the batch size should be set as 32. In addition, it can be seen that the learning loss after
training has dropped to a small value and remains stable. This proves that our algorithm
can achieve convergence in Scenario 1.

In addition to the learning rate α and batch size, there are influences from other
parameters in the experiment: The larger the decay factor γ, the more attention is paid to
past experience, and the smaller the value, the more attention is paid to current returns. If
the exploration factor ε is too large, the algorithm will tend to maximize the current profit
and lose the motivation of exploration; thus, it may miss the bigger profit in the future.
There are too few hidden layers and neurons in the hidden layer to fit the data well, and
too many to learn effectively. Based on the above experimental results and past experience,
the final parameters are set as follows: the learning rate α is 0.05, the decay factor γ is 0.9,
and the exploration factor ε is 0.9. The input layer and output layer of the neural network
are both eight neurons, and the hidden layer is two identical fully connected networks,
with 16 neurons set in each layer. The experience pool size is 1600, and the batch size is 32.
Since the traditional sparse reward method is difficult to converge on the context of this
experiment, the two algorithms both adopt the dynamic reward function designed in this
paper as the reward method during the experiment. Our proposed algorithm only improves
the input method of the traditional algorithm, which does not change the convergence
process of the original algorithm. Therefore, it is reasonable for both algorithms to choose
the same parameter settings for comparative experiments.
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5.2. Global Path Planning and Obstacle Avoidance in Static Environment

Figure 8 shows the path length of the DQN algorithm and SC-DQN algorithm with
training episodes in Scenario 1, in which both algorithms eventually converge. As we
can see, the SC-DQN algorithm converges faster than the DQN algorithm, and the path
length is shorter than the DQN algorithm. The path lengths after the convergence of the
two algorithms are still not stable enough. The reason is that the existence of the exploration
factor ε makes UH not always choose the optimal strategy, which leads to the appearance
of oscillation.
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Using the trained algorithm to conduct a path planning test in scenario 1, Figure 9
is obtained. It can be seen from Figure 9 that both algorithms can plan a safe path in
Scenario 1 and successfully avoid the mountains in the environment. By comparing
Figure 9a,b, it can be seen that the path planned by the DQN algorithm is not smooth
enough. Figures 10 and 11 show the path length and path smoothness for DQN and
SC-DQN. In order to make the obtained path length more accurate, we averaged the
results of 10 experiments to obtain Figure 10. The error generated during data processing is
calculated by the standard deviation formula:

Sstandard
2 =

∑N
i=1
(
Xi − X

)2

N
(18)
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Figure 9. Path planning test in Scenario 1: (a) path planned by the DQN algorithm; (b) path planned
by the SC-DQN algorithm.
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Figure 10. Comparison of path length obtained for DQN and SC-DQN in Scenario 1. The interval of
each bar denotes the standard deviation of the path length.
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Figure 11. Comparison of path smoothness obtained for DQN and SC-DQN in Scenario 1.

As we can see, the path planned by the SC-DQN algorithm is shorter and smoother
than the path planned by the DQN algorithm. In order to verify the ability of the algorithm
to correct the path, the trained network for the path planning test was used in Scenario 2
and obtain Figure 12.
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Figure 12 shows the path planning test results in Scenario 2. It can be seen from the
figure that when the position of the mountain is changed, the DQN algorithm still flies
according to the original planned path and fails to avoid the mountain, while the SC-DQN
algorithm successfully corrected the local paths and avoided the mountain.

5.3. Local Path Correction and Obstacle Avoidance in Dynamic Environment

The two algorithms are retrained in Scenario 3, and the algorithm scores are shown in
Figure 13. As we can see, the SC-DQN algorithm can still converge smoothly after training
in Scenario 3, but the DQN algorithm is difficult to converge.
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To further verify the performance of the SC-DQN algorithm, we conducted a large
number of paths planning test experiments in Scenario 3. In Scenario 3, since the initial
positions and movement directions of the flock of birds were randomly generated, it is
unrealistic to show all the test results. Therefore, we only selected the experimental results
of four representative special encounter scenarios for display and analysis, as shown in
Figure 14. The blue line in the figure represents the complete flight path of the UH, while
the purple line only represents the movement trajectory of the moment when the flock
encounters the UH.

In Figure 14a, the movement state of the flock is from position 1 to position 2. When UH
encounters a flock of birds at position 1, it immediately converts the movement direction a0
to a1. However, the birds still interfere with the flight of UH after moving from position 1
to position 2. Therefore, UH performs path correction again. UH converts the movement
direction from a0 to a7, thus successfully avoiding the flock of birds.

In Figure 14b, the movement state of the flock of birds is from position 3 to position 4.
When the UH encounters a flock of birds at position 3, it changes the original movement
direction a1 but switches to the movement direction a2. After the flock of birds moves
from position 3 to position 4 to give way to the travel path, UH continues to move in the
direction of a0.

In Figure 14c, the movement state of the flock of birds is from position 5 to position 6.
When UH encounters a flock of birds at position 5, it converts the original movement
direction a7 to direction a0 to avoid the flock. After the flock of birds moves from position 3
to position 4, it still interferes with the UH’s movement in the movement direction a7.
Thus, the UH continues to move forward in the movement direction a0 and moves in the
movement direction a7 only after flying to the safe area.

In Figure 14d, the movement state of the flock of birds is from position 7 to position 8.
When the UH encounters a flock of birds at position 7 in the process of descending,
in order to avoid the flock, the UH converts the original movement direction a6 to the
movement direction a7. The flock of birds moves from position 3 to position 4 without
further disturbing the UH; thus, the UH continues to move forward using the movement
direction a0.
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5.4. Analysis and Discussion

Through the simulation experiments in Sections 4.2 and 4.3, the proposed SC-DQN
algorithm is tested in static and dynamic environments, respectively. The experimental
scheme fully takes into account the various emergencies that the UH may encounter during
the mission. The experimental results show that the SC-DQN algorithm can complete
the global path planning, obstacle avoidance and local path correction tasks of UH in a
complex dynamic environment, and can handle various emergencies, including the sudden
appearance of bird flocks with uncertain motion states.

In Section 5.2, a comparative analysis of Figures 9 and 12 is carried out. Although
the traditional DQN algorithm can help UH to complete the path planning and obstacle
avoidance tasks in a static environment, it cannot correct the path in time when the position
of the obstacle changes because the UH trained by the DQN algorithm makes decisions
by identifying the location information about the environment. Once the environmental
information changes, the decision of the corresponding location should also change, but
the UH trained by the DQN algorithm does not effective identify these changes. Different
from the DQN algorithm, the SC-DQN algorithm directly uses the environmental state as
input for learning. Although the position of the obstacle has changed, the state that UH
faces when encountering an obstacle will not change. Therefore, the trained UH by the
SC-DQN algorithm is still able to accurately identify changes in the environmental state,
thereby making corrections to the planned path. In addition, it can be seen from Figures 10
and 11 that the path planned by the DQN algorithm is not smooth enough, and there is a
certain degree of oscillation, which is unfavourable for the UH flight. We know that there
are suboptimal strategies in different positions in the environment to a certain extent. For
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the DQN algorithm, it takes a huge cost to explore the optimal strategy for each position.
However, the environmental state faced is relatively limited for the SC-DQN algorithm,
such that the optimal strategy in the corresponding state can be explored more quickly.
Therefore, after the same degree of training, the path planned by the SC-DQN algorithm
is smoother.

In Section 5.3, due to the introduction of a flock of birds with random movements
in the environment, the environmental state at the same location is changing, which is
unacceptable for the DQN algorithm. Therefore, the DQN algorithm is difficult to converge
in this dynamic environment. For the SC-DQN algorithm, the movement of the flock of
birds does not affect the UH’s recognition of the environmental state; thus, the SC-DQN
algorithm can still converge smoothly. It can be seen from Figure 14 that when encountering
a flock of birds in different scenarios, the UH trained by the SC-DQN algorithm can correct
the path in time to avoid the flock of birds. This shows that that SC-DQN algorithm can
handle the avoidance problem of dynamic obstacles well, which proves the security of
the algorithm.

In addition, during the experiment, both the DQN algorithm and the SC-DQN al-
gorithm adopt the goal-guided dynamic reward function designed in Section 3.2 as the
reward rule. Through many experimental tests, this reward method can give the correct
reward feedback to the algorithm in time, guide the UH to quickly approach the target, ef-
fectively overcome the sparse reward problem existing in traditional reinforcement learning
algorithms, and promote algorithm convergence.

6. Conclusions

In this paper, a path planning algorithm that can help UH to perform flight missions
in complex low airspace environments is proposed. The numerical analysis of the UH
low airspace flight environment is carried out, and the mathematical modelling of the low
airspace environment is completed. In order to improve the sparse reward problem faced
by reinforcement learning, a goal-guided dynamic reward function that conforms to the
characteristics of the environment is designed to facilitate the algorithm to converge quickly
in a large state space. At the same time, the environment state faced by UH is encoded by
binary Boolean expression, and the SC-DQN algorithm is proposed. The simulation results
show that the SC-DQN can help UH safely and effectively avoid various obstacles in a
complex low airspace environment and successfully complete the raid task. In brief, the
proposed SC-DQN algorithm is a complete path planning algorithm that integrates global
path planning, obstacle avoidance and local path correction. Our coding scheme requires
accurate extraction of environmental information to determine the location of obstacles,
which is easy in simulation experiments but is not easy in practical applications. Extracting
environmental features requires a large number of sensors to work together, which is a
challenging task. Therefore, our algorithm may encounter some difficulties when applied
in real-time.

In future works, further enrichment of the input information of deep reinforcement
learning algorithms can be considered. More environmental information input can prompt
the algorithm to make more favourable decisions for the learner. Using the intention recog-
nition mechanism [33] to determine the intent of moving obstacles is a potential research
hotspot. Incorporating intent recognition results into algorithmic input can help algorithms
make better coping decisions. Conversely, accurately identifying and judging the status of
obstacles is also a problem worthy of attention, which can make the state-encoding process
much simpler. Therefore, the use of graph classifiers [34] to identify obstacles is another
potential research hotspot.
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