
J Intell Robot Syst

DOI 10.1007/s10846-011-9568-2

Path Planning Strategies for UAVS in 3D Environments

Luca De Filippis · Giorgio Guglieri ·

Fulvia Quagliotti

Received: 9 February 2011 / Accepted: 13 April 2011
© Springer Science+Business Media B.V. 2011

Abstract The graph-search algorithms developed

between 60s and 80s were widely used in many

fields, from robotics to video games. The A*

algorithm shall be mentioned between some of

the most important solutions explicitly oriented

to motion-robotics, improving the logic of graph

search with heuristic principles inside the loop.

Nevertheless, one of the most important draw-

backs of the A* algorithm resides in the heading

constraints connected with the grid characteristics.

Different solutions were developed in the last

years to cope with this problem, based on post-

processing algorithms or on improvements of the

graph-search algorithm itself. A very important

one is Theta* that refines the graph search al-

lowing to obtain paths with “any” heading. In

the last two years, the Flight Mechanics Research

Group of Politecnico di Torino studied and im-

plemented different path planning algorithms. A

L. De Filippis (B) · G. Guglieri · F. Quagliotti
Dipartimento di Ingegneria Aeronautica e Spaziale,
Politecnico di Torino, Corso Duca Degli Abruzzi 24,
10129 Turin, Italy
e-mail: luca.defilippis@polito.it

G. Guglieri
e-mail: giorgio.guglieri@polito.it

F. Quagliotti
e-mail: fulvia.quagliotti@polito.it

Matlab based planning tool was developed, col-

lecting four separate approaches: geometric pre-

defined trajectories, manual waypoint definition,

automatic waypoint distribution (i.e. optimizing

camera payload capabilities) and a comprehen-

sive A*-based algorithm used to generate paths,

minimizing risk of collision with orographic ob-

stacles. The tool named PCube exploits Digital

Elevation Maps (DEMs) to assess the risk maps

and it can be used to generate waypoint se-

quences for UAVs autopilots. In order to improve

the A*-based algorithm, the solution is extended

to tri-dimensional environments implementing a

more effective graph search (based on Theta*). In

this paper the application of basic Theta* to tri-

dimensional path planning will be presented. Par-

ticularly, the algorithm is applied to orographic

obstacles and in urban environments, to eval-

uate the solution for different kinds of obsta-

cles. Finally, a comparison with the A* algorithm

will be introduced as a metric of the algorithm

performances.

Keywords Path planning · A* · Theta* ·

UAVs · 3D environments

1 Introduction

Path planning has been one of the most important

elements of mission definition and management of



J Intell Robot Syst

manned flight vehicles and it became crucial after

birth and growth of Unmanned Aerial Vehicles

(UAVs), frequently exploiting autonomous flight

capabilities. Mission tasks, mission constraints and

platform characteristics drive the mission manage-

ment system and path planning is subject to the

same constraints, being part of the loop. As a

matter of fact, the path planning strategy is chosen

to improve computational time and effectiveness

of the system and has to be combined with the

other elements in order to comply with the mis-

sion requirements.

Generally, path planning aims to generate a

real-time trajectory to a target, avoiding obstacles

or collisions (assuming reference flight-conditions

and providing maps of the environment), but also

optimizing a given functional under kinematic

and/or dynamic constraints. Universities, research

centres and industries developed solutions for

different planning requirements: performances

optimization, collision avoidance, real-time plan-

ning or risk minimization. Several algorithms were

developed for robotic systems and ground vehi-

cles. They took hints from research fields like

physics for potential field algorithms [2, 21], math-

ematics for probabilistic approaches [17], or com-

puter science for graph search algorithms [11].

Each family of algorithms was also tailored for

the path planning of UAVs, and future work will

enforce the development of new strategies.

Nevertheless, in order to implement an effec-

tive path planning strategy, a deep analysis of

various contributing elements is needed. Mission

tasks, required payload and surveillance systems

drive the platform choice, but platform character-

istics strongly influence the path. As an example,

quad-rotors kinematics gives hovering capabilities

to these platforms. This feature permits to re-

lax turning constraints on the path (which repre-

sents a crucial problem for fixed-wing vehicles).

The type of mission defines the environment for

planning actions, the path constraints (mountains,

hills, valleys, ...) and the required optimization

process. The need for off-line or real-time re-

planning may also substantially revise the path

planning strategy for the selected type of missions.

Finally, the computational performances of the

Remote Control Station (RCS), where the mis-

sion management system is generally running, can

influence the algorithm selection and design, as

time constraints can be a serious operational issue.

Graph search algorithms were developed for

computer science to find the shortest path be-

tween two nodes of connected graphs. They were

designed for computer networks to develop rout-

ing protocols and were applied to path planning

through decomposition of the path in waypoint

sequences. The optimization logic behind these al-

gorithms attains the minimization of the distance

covered by the vehicle, but none of its perfor-

mances or kinematic characteristics is optimized

along the path. After the discretization of the

environment, these algorithms threat each cell of

the mesh as a graph node and search the shortest

path with a “greedy” logic: the path is obtained

step-by-step and only a reduced number of cells

are analysed to define the following steps. As a

matter of fact, these algorithms don’t try to find

the real optimum path but generate a subopti-

mal solution in order to reduce computational

time. The first positive feature of these solvers

is their simplicity, which implies reduced com-

putational time. Hence, these algorithms can be

integrated in complex mission management sys-

tems for multitask platforms or vehicles. The

low computational requirements are strongly con-

nected with the re-planning capabilities. Exploit-

ing graph search algorithms, the path can be up-

dated along the mission, taking into account the

modification or evolution of physical constraints.

Therefore, re-planning gives road to different ap-

plication fields, like the coordination of multiple

agents (formations and even swarms as an ex-

ample). For this kind of application the task of

each agent shall be assigned synchronizing with

the others, in order to cover efficiently the mission

tasks and the surveillance area. The paths can be

reassigned during the mission, according to the

overall coordination, so re-planning must be fast

and effective. As mentioned before, graph search

algorithms generate the path neglecting vehicle’s

characteristics. This approach allows planning of

the path for any moving or flying vehicle, but

doesn’t guarantees match of the path with turn

and climb limitations. This drawback should be

faced using smoothing algorithms to adapt locally

the path to the platform characteristics through

single waypoint reallocation, but more effective



J Intell Robot Syst

solutions where developed introducing the plat-

form characteristics inside the path planning loop.

With the potential field algorithms the envi-

ronment is modelled to generate attractive forces

toward the goal and repulsive ones around the

obstacles. The vehicle motion is forced to follow

the energy minimum respecting some dynamic

constraints connected with the platform charac-

teristics [21]. As a matter of fact these algorithms

give smoothed and flyable paths, avoiding static

and dynamic obstacles according with the field

complexity. In the last 20 years they have been

widely investigated and interesting applications

have been published [12]. Even tough they are a

promising solution for path planning and collision

avoidance their application to the here-presented

problem seemed hard due to their tendency to

local minima on complex environments.

The use of evolutionary algorithms for vehicles

path optimization is another important solution

permitting to apply kinematic constraints to the

path. Using Splines or random threes to model

the trajectory, these algorithms can reallocate the

waypoint sequence to generate optimum solu-

tions under constraints on complex environments

[10, 16]. Being interesting and flexible, the evo-

lutionary algorithms are spreading on different

planning problems, but their solving complexity

is paid with a heavy computational effort [3].

Looking for an algorithm to manage complex en-

vironments and large amount of data on small

RCSs, the choice of graph-search algorithm for

path planning, together with local optimization

algorithm to tailor the path on the platform char-

acteristics looked reasonable. Also, graph search

algorithms are a powerful help for planning of

long-term path, where local kinematic constraints

reduce their penalization increasing the distance

between successive waypoints (as grid spacing of

the solution is at least one order of magnitude

larger than turn or climb radius).

A Matlab based planning tool was developed,

assembling four methods: geometric predefined

trajectories, manual waypoint definition, auto-

matic waypoint distribution (i.e. optimizing opti-

cal payload capabilities) [5] and a comprehensive

A*-based algorithm to generate paths, minimiz-

ing risk of collision with orographic obstacles [4].

The tool named PCube exploits Digital Elevation

Maps (DEMs) to obtain the risk map. It can be

used to generate waypoint sequences for UAVs in

a format compatible with commercial autopilots.

The A*-based algorithm was improved, applying

the solver to tri-dimensional environments and

then implementing a more effective graph search

solution: the Theta* algorithm. The primary pur-

pose was generating waypoint sequences ready to

be uploaded to commercial autopilots for micro

and mini fixed-wing UAVs, mainly operating in

alpine areas. In this context, the graph search algo-

rithms resulted to be the best solution as they are

able to generate paths on wide sectional graphs

with sustainable computational time. Moreover,

small scale UAVs are often linked with com-

pact and man-portable RCSs. These ground seg-

ments have reduced computational capabilities.

Finally, the distribution of orographic-obstacles is

re-constructed starting from DEMs mapping of

the territory. A discrete domain is obtained and

the interpretation of these maps as graphs results

to be the simplest solution.

From late 50s wide research activity was per-

formed on graph-search algorithms within com-

puter science, trying to support the design of

computer networks. Soon after, the possibility of

their application in robotics resulted evident and

new solutions were developed to implement al-

gorithms tailored for autonomous agents. As a

consequence, research on graph-search methods

brought new solutions and still continues nowa-

days. Therefore, an accurate analysis is required

to understand advantages and drawbacks of each

proposed approach, in order to find possible

application-oriented improvements.

It is well known that a graph is made of

nodes connected with arcs that can be directed

or undirected. In graph search, a cost is con-

nected with the motion along each arc. These

algorithms analyse a given number of nodes sur-

rounding the actual position to evaluate the best

successive step in terms of movement cost. The

Dijkstra algorithm is one of the first greedy al-

gorithms for graph search and permits to find

the minimum path between two nodes of a graph

with positive arc costs [6]. An evolution of the

Dijkstra algorithm is the Bellman-Ford algorithm

[1, 9]; this method finds the minimum path on ori-

ented graphs with positive, but also negative costs.



J Intell Robot Syst

Another important method is the Floyd-Warshall

algorithm [8, 20], that finds the shortest path

on a weighted graph with positive and negative

weights, but it reduces the number of evaluated

nodes compared with the Dijkstra algorithm. The

A* algorithm is one of the most important solvers

developed between 50s and 70s, explicitly ori-

ented to motion-robotics. A* improved the logic

of graph search with heuristic evaluations inside

the loop [11]. Together with the evaluation of the

distance between the current node and the neigh-

bours, it also considers the distance between the

neighbours and the target end node, as balance for

the estimation of the following steps.

The graph-search algorithms developed be-

tween 1960s and 1980s were widely used in many

fields, from robotics to video games, assuming

known deterministic positions of the obstacles on

the map. This was a logic assumption for many

planning problems, but represented a limit when

robots moved in unknown environments. This

problem excited research on algorithms able to

face with map modifications during the path exe-

cution. Particularly, results on sensing robots, able

to detect obstacles along the path, induced re-

search on algorithms used to re-plan the trajectory

with a more effective strategy than static solvers

were able to do. Dynamic re-planning with graph

search algorithms was introduced. D* (Dynamic

A*) was published in 1993 and it represented

the evolution of A* for re-planning [18]. When

changes occur in the nodes of the graph, only the

new costs of the nodes are updated, exploiting the

previous path. D* expands (the expansion of a

node is the analysis of its neighbours to evaluate

the cost of motion from the current node to the

neighbour) less nodes than A* because it has

not to re-plan the whole path through the end.

D* focused was the evolution of D*, published

by the same authors and developed to improve

its characteristics [19]. This algorithm improved

the expansion, reducing the amount of analysed

nodes and the computational time. Then, research

on dynamic re-planning brought to the develop-

ment of Lifelong Planning A* (LPA*) and D*

Lite. They are based on the same principles of

D* and D* focused, but they recall the heuristic

aspect of A* to improve the speed of the search

process [13, 14]. They are very similar and can

be described together. LPA* and D* Lite exploit

an incremental search method to update modified

nodes, recalculating only the start distances (i.e.

distance from the start cell) that have changed or

have not been calculated before. These algorithms

exploit the change of consistency of the path to

replan.

A* evaluates iteratively the moving cost from

the current cell to one of its neighbours through

a defined cost function. This function (F) is ob-

tained summing up two terms:

• H proportional to the heuristic-estimate dis-

tance from the evaluated cell to the goal.
• G proportional to the distance from the cur-

rent cell to the evaluated one.

The G-value is 0 for the starting cell and it in-

creases while the algorithm expands successive

cells (i.e. at each step the algorithm sum to the

moving cost from the starting cell to the current

one, the distance from the current cell to one of

its neighbours).

To enforce convergence the H-value has to be

admissible and the H-function has to be monotone

or consistent. In other words, at each step the H-

value of a cell has not to overestimate the eval-

uated distance from the goal and H has to vary

along the path in such a way that:

H (N) ≤ H (C) + G

where:

H(N) heuristic distance from the evaluated cell

to the goal;

H(C) heuristic distance from the current cell to

the goal;

G distance from the current cell to the eval-

uated one.

When nodes are updated, their G-values can

change. The algorithm records the G-value of the

preceding nodes (the predecessors) and the value

of the updated nodes (the new nodes), comparing

them to verify consistency. The change in consis-

tency of the path drives the algorithm search.

Dynamic algorithms allowed new applications

of graph search methods to path planning of ro-

botic systems. More recently, other drawbacks



J Intell Robot Syst

and possible improvements were discovered. Par-

ticularly, one of the most important drawbacks

of the A* algorithm resides on the heading con-

straints connected with the grid characteristics.

The graph obtained from a surface map is a mesh

of eight-connected nodes with undirected arcs.

Moving from the current node of the graph to the

next means to move the vehicle from a position to

another one. Considering two nodes of the graph

and connecting them with a straight line (i.e. there

aren’t obstacles between them), if the slope of the

line a is different from

a �= n ·
π

4
0 ≤ n ≤ +∞ n ∈ N

it is found that the A* algorithm is not able to

find the real shortest path between the nodes

(the straight line itself). A* generates solutions

strongly suboptimal because of this limit, which

comes out in any application to path planning.

Suboptimal solutions are paths with continuous

heading changes and useless vehicle steering (in-

creasing control losses) that require some kind

of post processing to become feasible. Different

approaches were developed to cope with this

problem, based on post-processing algorithms or

on improvements of the graph-search algorithm

itself. Very important examples are Field D* [7]

and Theta* [15]. These algorithms refined the

graph search obtaining generalized paths with

“any” heading.

To exploit Field D*, the map must be meshed

with cells of given geometry and the algorithm

propagates information along the edges of the

cells. Field D* evaluates neighbours of the current

cell like D*, but it also considers any path from

the cell to any point along the perimeter of the

neighbour. A functional defines the point on the

perimeter characterizing the shortest path. With

this method a wider range of headings can be

achieved and shortest paths are obtained. It is

known that graph search algorithms choose per

steps from a node to the next. Defining parent the

previous node, just left to arrive at the current

position, and neighbours the nodes evaluated for

the successive step, Theta* evaluates the distance

from the parent to one of the neighbours for the

current cell so that the shortest path is obtained.

When the algorithm expands the search, it eval-

uates two types of paths: from the current node

to the neighbour (like in A*) and from the parent

of the current node to the neighbour. As a con-

clusion, paths obtained by the Theta* solver are

smoother and shorter than those generated by A*.

Apparently, Theta* is the most promising so-

lution for the path planning of fixed-wing UAVs,

used for ground monitoring and surveillance. As

a matter of fact, other graph search algorithms

were not considered due to their primitive con-

cepts and considering that the computational

performances of current digital computers have

overcome many implementation issues. Dynamic

algorithms do not match the present application,

being addressed for ground robots equipped with

sensing and embedded re-planning capabilities.

Furthermore, the application of these algorithms

for static path planning is less effective than us-

ing an advanced static solver [15]. Considering

long-range flights over highlands and alpine ar-

eas, it is assumed that we do not need real-time

re-planning, as the map is invariable during the

mission. Furthermore, using DEMs as a basis to

evaluate orographic obstacles, implies that build-

ing the graph with nodes instead of cells is easier

and therefore Theta* becomes the best approach

to the solution.

In this paper the application of a basic ver-

sion of Theta* to tri-dimensional path planning

is presented. The algorithm is applied both to

orographic obstacles and to urban environments,

in order to evaluate its responsiveness to different

kinds of obstacles. Finally, comparison with the

A* algorithm is presented to outline the advan-

tages of this solution method for path planning in

tri-dimensional environments.

2 Algorithm Description

2.1 Modelling of the Tri-Dimensional

Environment

Two subroutines were developed to elabo-

rate maps and to produce flight paths in tri-

dimensional environments, either for orographic

obstacles or for urban environments.



J Intell Robot Syst

The first subroutine exploits a DEM map to

define the altitude of each node (mesh) and an im-

age to present the area view to the user. As a mat-

ter of fact, two types of maps are loaded: the first

is a geo-referenced graphic representation of the

environment (Fig. 1) and the second is the DEM

map of the same area. The two maps are matched

to obtain the tri-dimensional representation and

to build the mesh of the graph (Fig. 1). Start and

target nodes can be assigned using contours on the

geotiff (Fig. 1) or they can be given in external

input text-files.

DEM maps are text-files listing latitude, longi-

tude and elevation of a given number of points

composing the map. These points are matched

with pixels of the geotiff image, setting the width

and height of the map equal to the number of

horizontal and vertical points. The elevation of

each point on the map (being equally spaced in

the horizontal and vertical direction according to

the map resolution) is also included in the DEM

digital formats. We define the environment matrix

as the search graph. This graph is a tri-dimensional

matrix with a number of columns and rows equal

to the width and height of the DEM file. Hence,

columns and rows of the environment matrix are

related with longitude and latitude (x and y axes).

The third dimension (z axis) of the environment-

matrix is defined according to the altitude of the

area, the flight level limitations and the vertical

rates (climbing speed). These are the only air-

craft characteristics included in the path-planning

algorithm.

Vertical and horizontal spacing are fixed by

the resolution of DEM files and they define the

minimum distance between successive nodes. This

is considered the minimum distance covered by

the aircraft moving from a node to the next with

constant airspeed. Resolution along the third di-

mension is assigned according to the nominal ver-

tical speed of the vehicle:
⎧

⎪

⎨

⎪

⎩

�h = �x · tan γ

γ = arcsin

(

RC

V

)

where:

�h altitude spacing,

�x = �y horizontal and vertical spacing,

a

b

c 

Fig. 1 a Graphic representation of the environment.
b DEM tri-dimensional representation. c Contour graph

γ climb angle,

RC rate of climb,

V flight speed.



J Intell Robot Syst

Using the rate of climb to assign the spacing along

the third dimension of the environment matrix

guarantees the feasibility of climbs and fixes the

altitude resolution (i.e. the number of cells along

the altitude above the ground level):

N3 =
hmax − hmin

�h

where:

N3 number of cells along the third dimension

of the environment matrix.

hmax maximum DEM altitude,

hmin minimum DEM altitude,

For a given row and column of the matrix

(latitude and longitude of a given position), values

along the third dimensions are different from zero

below the altitude given in the DEM file and

they are equal to zero from this altitude to the

upper flight limit. To reduce the computational

requirements, the user may define or restrict the

altitude range of the environment matrix. With

this option, the lower limit is fixed to the minimum

between the altitude of the start and the target

node, while the upper limit is fixed summing

a margin to the maximum altitude between the

same nodes.

A simple graphical user interface was designed

for the urban environments, able to define the size

Fig. 2 a Urban
environments GUI.
b Urban environments
tri-dimensional
representation

a 

b



J Intell Robot Syst

of the map and to draw the obstacles interactively.

The obstacles are represented as parallelepipeds

or cubes and the interface is used to assign their

dimensions and position on the map (Fig. 2).

Once the obstacles are drawn on the map the

sequence used to generate the environment ma-

trix is the same, but the lower altitude limit is set to

zero and the upper limit is defined with a margin

added up to the altitude of the larger obstacle.

The model of urban obstacles is very simple, but

it is useful to test the algorithm with maps repro-

ducing the characteristics typical of these cluttered

environments.

2.2 Theta* and the Minimum Path Search

The description of the Theta* algorithm is pre-

sented in Ref. [15], but it is useful to outline the

adaptation of the algorithm to path planning of a

fixed-wing UAV in a tri-dimensional environment.

The choice of Basic Theta* (first release later

updated with following versions) is due to the

results published by the authors [15] comparing

various algorithms and giving estimates for the

computational load, number of heading changes

and path length. Another factor is also the struc-

ture of the graph, made of nodes instead of cells.

This feature makes the use of the successive ver-

sions of the algorithm more complicated, being

mainly addressed for cell-structured graphs.

The first subroutine that needs to be described

is called mask. This subroutine was designed to

choose the neighbours of a node being expanded.

If we consider a cube of 26 nodes around the

New nodes 

Unfeasible nodes 

Obstacles 

Nodes on the closed list

Nodes on the open list

Current node 

Fig. 3 First strategy for LOS verification

1 

2 

3 

4 

5 

6 

1 2 3 4 5 6
Neighbour 

Parent 

∆r

Fig. 4 First strategy for LOS verification

current one (Fig. 3), mask shall avoid unfeasible

nodes (i.e. nodes out of the mesh limits or nodes

requiring unfeasible trajectories), nodes includ-

ing obstacles and nodes included into the closed

list.

For the sake of clarity it’s useful to recall the

definition of open and close lists in graph search

algorithms. The open list collects the nodes ex-

panded along the graph search. At each step the

algorithm evaluates the nodes surrounding the

current one putting them into the open list and

sorting the list with respect to the cost-function

Neighbour 

Parent

X

Y

Fig. 5 Second strategy for LOS verification



J Intell Robot Syst

Fig. 6 Geometric ambiguity between nodes

value. The first element of the sorted list is moved

in the closed list. This list contains the best neigh-

bour of the node expanded at each step. These

nodes are removed from the open list and never

evaluated again and the path is build with nodes

coming from this list.

Theta* calls mask for each expanded node

along the path search. Therefore, its runtime

strongly influences the overall computational

time. First implementations used a tri-dimensional

matrix, the OPCL matrix, to assign the status of

each node (i.e. to record if one node was inside

the open or the closed list) and the evaluation of

the nodes listed in the closed list was not included

in mask (i.e. avoiding to load the OPCL matrix).

Mask was used only to avoid unfeasible nodes

Table 1 Convergence
tests for different gain
factors

Test α β Processing time [s] α/β

001 0.01 0.01 No convergence 1.0

002 0.01 0.05 No convergence 5.0

003 0.001 0.005 No convergence 5.0

004 0.01 0.07 No convergence 7.0

005 0.001 0.007 No convergence 7.0

006 0.01 0.08 No convergence 8.0

007 0.001 0.008 No convergence 8.0

008 0.01 0.09 13.0 9.0

009 0.001 0.009 11.4 9.0

010 0.01 0.10 4.2 10.0

011 0.001 0.01 4.1 10.0

012 0.01 0.11 4.4 11.0

013 0.001 0.011 3.7 11.0

014 0.01 0.15 0.68 15.0

015 0.001 0.015 0.66 15.0

016 0.0001 0.001 4.00 10.0

017 0.00001 0.0001 4.04 10.0

018 0.100 1 3.18 10.0

020 0.100 1 4.03 10.0

021 1.000 10 2.01 10.0

024 1.000 10 4.17 10.0

025 0.100 1 1.49 10.0

029 0.100 1 2.37 10.0

030 0.100 1 2.72 10.0

032 0.010 0.10 6.1 10.0

032 0.010 0.30 6.94 30.0

033 0.010 0.40 6.88 40.0

034 0.005 0.20 7.07 40.0

035 0.002 0.08 7.1 40.0

036 0.021 1.00 No convergence 50.0

045 0.030 1.50 No convergence 50.0

049 0.040 2.40 No convergence 60.0

052 0.050 3.00 No convergence 60.0



J Intell Robot Syst

Table 2 Path 1 (characteristics)

Path 1 A* Theta*

Path length (m) 4850 4618

Computational time (s) 1.203 1.393

Number of heading changes 42 13

Number of altitude changes 159 15

Number of path points 358 17

(a priori) and nodes including obstacles (scan-

ning at each cycle the environment matrix). Then,

the environment matrix was extended in order

to indicate also the status of the nodes, assigning

three different states to the matrix elements. Us-

ing 1 to define an obstacle, 2 to define a position

inside the open list and 3 to define a position in-

side the closed list, it is possible to use the same tri-

dimensional matrix to evaluate the obstacles and

the status of a single node. Revising the content of

the environment matrix reduced the running time

of mask (together with the overall computational

time).

Another important routine used by Theta*

evaluates the line of sight between nodes and is

called LoS. As it was mentioned before, Theta*

evaluates two paths to define movements from a

node to the next one. The first is from the current

node to its neighbour and the second is from the

parent of the current node to the same neighbour.

To evaluate the last path the algorithm verifies the

presence of obstacles between the nodes. In other

words, the algorithm checks that the path between

the parent of the current cell and its neighbour

is free. If the path is free the two nodes are con-

nected by line of sight (LOS). Verify the LOS on a

mesh made of nodes instead of cells is a problem.

The use of nodes gives the possibility to neglect

information between the nodes and simplify the

mesh construction, but it has some drawbacks.

Without refined details between the nodes, a line

connecting two of them can pass near the obsta-

cles (i.e. interdicted nodes) without touching them

(Fig. 4). Therefore, evaluating LOS only on the

nodes walked by a line (orange coloured in Fig. 4),

if any, can generate paths that cross obstacles.

On the other hand, spotting the significant nodes

representing obstacles sufficiently near to the line

of sight (green coloured in Fig. 4) on a discrete

domain is not easy, particularly if the domain is

tri-dimensional.

The first strategy implemented to find sig-

nificant nodes in LOS was based on the analysis

of the nodes along lines parallel to the local path.

This means that, starting from the nodes used to

verify the LOS, the subroutine starts checking the

other nodes crossed by this line (continuous line

Fig. 7 Path 1: 3D
representation



J Intell Robot Syst

in Fig. 4) and continues checking the presence

of further nodes on lines that are parallel to the

previous one (dashed lines in Fig. 4) within a

given range (�r). Figure 4 is a bi-dimensional

example that gives evidence of the sensitivity of

the algorithm, setting the range in order to eval-

uate accurately the LOS. For a tri-dimensional

path this problem is even more complicate and

requires a different approach. The line connecting

parent and neighbour is used as an approxima-

tion to evaluate the significant nodes (Fig. 5).

Given the line equation and using subscript p for

parent coordinates and subscript n for neighbour

coordinates:

y = a + b x where a =
ypxn − ynxp

xn − xp

and

b =
yn − yp

xn − xp

Substituting the x coordinates of nodes between

parent and neighbour inside the equation and

rounding results with the lower and higher integer,

the orange nodes in Fig. 4.

Figure 5 are obtained. These are the nodes

checked by the LoS subroutine in the bi-

dimensional case. The same method is applied to

the tri-dimensional space where two equations are

needed:

y = a1 + b 1x where a1 =
ypxn − ynxp

xn − xp

and

b 1 =
yn − yp

xn − xp

z = a2 + b 2x where a2 =
zpxn − znxp

xn − xp

and

b 2 =
zn − zp

xn − xp

Rounding the results obtained for the two co-

ordinates, the LOS is verified also in the tri-

dimensional case.

The approach used to verify the line of

sight is heuristic, therefore space coordinates are

independent one from another and their corre-

lation looks forced, but it was verified that di-

viding the general condition in mono, bi and tri

dimensional sub-conditions (according to parent

and neighbour coordinates) good solutions are

obtained and the line of sight is verified substan-

tially everywhere:

•

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xp �= xn

yp �= yn

zp �= zn

(a) 

(b)

Fig. 8 a Path 1: comparison between A* and Theta*
(longitude–latitude plane). b Path 1: comparison between
A* and Theta* (flight altitude)



J Intell Robot Syst

•

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xp �= xn

yp �= yn

zp = zn

or

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xp �= xn

yp = yn

zp �= zn

or

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xp = xn

yp �= yn

zp �= zn

•

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xp �= xn

yp = yn

zp = zn

or

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xp = xn

yp �= yn

zp = zn

or

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xp = xn

yp = yn

zp �= zn

To complete the description of Theta*, the effect

of ambiguity between nodes must be introduced.

Ambiguities can be geometrical or functional and

arise when two or more nodes have the same

cost-function value. Basic Theta* exploits the cost

function of A* to expand the current cell. This

function (F) is made of two terms:

F = α · G + β · H

G moving cost from the current node to the

neighbour,

H moving cost (estimated) from the current

node to the last (target),

α, β gain factors.

In order to describe the generation of ambigu-

ities, a strategy to estimate H and G for a given

node in the bi-dimensional case is introduced. For

simplicity, consider that estimating H is equiv-

alent to fixing the cost for each horizontal or

vertical displacement from the node to the target

and multiplying this value for β. Then evaluate G,

to move from the current node to one of the neigh-

bours, fixing the cost of an horizontal/vertical dis-

placement with respect to a diagonal movement,

summing it to the G-value of the current node and

multiplying the result for α. Otherwise evaluate

G measuring the distance between the parent of

the current node to one of its neighbours with the

same method used to evaluate H and multiplying

the value for α. Figure 6 shows an example of

geometrical ambiguity, where the current node is

red coloured, the target is orange and the green

nodes are two of the eight neighbours. These

neighbours have the same value of the cost func-

tion, having equal distances from the current node

and the target one. For the cube of nodes in Fig. 6,

the third dimension increases the ambiguities and

the number of neighbours with same F-value

grows up.

Functional ambiguity is a more complex prob-

lem and regards possibility to find cells with the

same F-value, being far from each other, with

different parents and neighbours. This kind of

ambiguity is due to the structure of the cost func-

tional, obtained summing up the two components

H and G independently, both assuming similar

values and varying similarly. In other words, two

Fig. 9 Path 2: 3D
representation



J Intell Robot Syst

cells can have a distance from the target and a

G-value combined in such a way to give the same

F-value. As for the geometrical ambiguity, the

tri-dimensional structure increases the problem,

but functional ambiguities grow substantially us-

ing Theta*. The algorithm evaluates the G-value

of two paths: from the current cell to one neigh-

bour and from the parent of the current cell to

the same neighbour, increasing the possibility to

find a combination of G and H giving the same

F-value.

(a)

(b)

Fig. 10 a Path 2: comparison between A* and Theta*
(longitude–latitude plane). b Path 2: comparison between
A* and Theta* (flight altitude)

A* and Theta* expand a node evaluating the

F-values of parents and placing them in the open

list. Then the algorithm sorts the list and choses

the cell with the smaller F-value, expands the

node and then places this node in the closed list.

If the graph search tends to converge, the al-

gorithm meets only geometrical ambiguities and,

randomly choosing one of the nodes with same

F-value, solves them automatically. Particularly

the algorithm moves to the closed list the first

node sorted into the open list according to the

sorting strategy. Then continues the expansion

converging to the solution. If the algorithm does

not tend to converge, it starts to add to the open

list nodes with geometrical but also functional

ambiguities. The algorithm expands each node

jumping from a point of the graph to another and

adding other nodes with same F-value. Ambigui-

ties increase and, if the graph is wide (like many

tri-dimensional graphs), the algorithm is not able

converge.

A first strategy to reduce the ambiguities re-

sides in a careful choice of the gain factors inside

the cost function. As a matter of fact the choice of

α andβ permits to separate the effects of G and H

over F, strongly reducing the loss of convergence.

Tests with different gain factors, applying the al-

gorithm to various maps were conducted and the

best ratio between the two gains was fixed to:

α

β
=

1

10

A set of tests using different gain ratios is re-

ported in Table 1. The results are obtained for the

assigned map, fixing the start and target nodes.

Other tests were also conducted changing these

assignments.

Table 3 Path 2 (characteristics)

Path 2 A* Theta*

Path length (m) 2776 2653

Computational time (s) 1.622 1.638

Number of heading changes 66 9

Number of altitude changes 174 8

Number of path points 220 11



J Intell Robot Syst

Table 4 Urban path 1 (characteristics)

Urban path 1 A* Theta*

Path length (m) 287 269

Computational time (s) 5.718 3.081

Number of heading changes 15 2

Number of altitude changes 42 2

Number of path points 282 4

3 Results

In the chapter paths planned with the A* algo-

rithm are compared with the same paths obtained

using Theta* and its ability of improving the path

with comparable computational performance is

demonstrated. Path’s smoothing, obstacles sepa-

ration and covered distance are the parameters

used to evaluate the algorithms. Their application

to tri-dimensional environments is considered in

order to understand their merits and drawbacks,

even adding the vertical degree of freedom.

All the reported paths are obtained with the

MATLAB version 7.11.0 (R2010b), running on

MacBook Pro with Intel Core 2 Duo (2 ×

2.53 GHz), 4 Gb RAM and MAC OS X 10.5.8.

Two paths planned on alpine highlands are

reported (Aosta Valley): the first is a medium

distance path and the second is an orographic

obstacle separation. The first path shows the

ability of the algorithm to plan long tracks in

tri-dimensional environments, while the second

shows the approach to scaled obstacles.

Finally, other two paths generated in urban

environments are used to investigate separation

from obstacles and planning performance in clut-

tered environments.

3.1 Orographic Obstacles

Map characteristics:

• Number of points: 141,372.
• �lat: 10 m.
• �long: 10 m.
• �Z: 5 m.
• Environment matrix dimensions: 357 × 396 ×

54 (lat × long × Z).

Table 2 collects the characteristics of a medium

range planning exercise. The environment matrix

contains 7,634,088 nodes and the mean covered

distance is near to 5 km. The path obtained with

Theta* is shorter then that obtained with A*,

thanks to the strong reductions of heading and

altitude changes. This reduction is the key point

of the path search and filters out a huge num-

ber of nodes with their related heading and al-

titude changes. The computational time required

by Theta* is slightly higher, but the improvement

Fig. 11 Urban path 1: 3D
representation



J Intell Robot Syst

on the path is winning. Indeed, the Theta*-based

path is smoother than the A*-based output and

it follows slopes and contours more efficiently as

shown in Figs. 7 and 8.

The second path crosses a rocky obstacle re-

quiring a steep altitude variation. In this case,

the impact on altitude changes of Theta* search

method is relevant and the path smoothing effect

is evident. The environment matrix contains

16,727,040 nodes and the mean covered distance

is 3 km.

(a)

(b)

Fig. 12 a Urban path 1: comparison between A* and
Theta* (X–Y plane). b Urban path 1: comparison between
A* and Theta* (flight altitude)

Map characteristics:

• Number of points: 152,064.
• �lat: 10 m.
• �long: 10 m.
• �Z: 5 m.
• Environment matrix dimensions: 384 × 396 ×

110 (lat × long × Z).

Figure 10 gives evidence that the path search

towards the target follows the local slope of the

terrain with small heading changes due to micro-

scale mountain peaks. Figures 9 and 10 show the

smoothing effects on the path and show the im-

provement in altitude change as already reported

in Table 3.

3.2 Urban Environments

Urban environments face the solution with dis-

crete obstacles (designed with sharp edges) set

within narrow and cluttered environments. In

the given exercise, the environment matrix has

9,990,000 nodes and distances between nodes are

�X = �Y = 1 m and �Z = 0.5 m (Table 4). The

first path is planned on a map with only one wide

building in the middle and with the starting and

target nodes selected to force the path across the

building. This is a test for graph search algorithms

experiencing convergence delays. The algorithm

is forced to expand the nodes along directions

far from the target with consequent dissipation of

computational time.

In this case Theta* is more effective then A*

in searching for the optimal path reducing the

computational time. Less heading and altitude

changes are required using Theta* (the distance

between start ant target nodes is 300 m). As for

Table 5 Urban path 2 (characteristics)

Urban path 2 A* Theta*

Path length (m) 264 247

Computational time (s) 1.047 1.176

Number of heading changes 14 4

Number of altitude changes 22 3

Number of path points 244 5



J Intell Robot Syst

Fig. 13 Urban path 2: 3D
representation

the other cases, the smoothing effect is shown in

Figs. 11 and 12.

Map characteristics:

• Number of points: 90,000.
• �X: 1 m.
• �Y: 1 m.
• �Z: 0.5 m.
• Environment matrix dimensions: 300 × 300 ×

111 (X × Y × Z).

The second urban path is obtained reproducing

an environment with different kinds of buildings.

This field strongly stresses the FOV verification,

forcing the algorithm to check the separation from

buildings. Some paths exhibit penetration of the

smaller obstacles, taking up few nodes (difficult to

detect).

Map characteristics:

• Number of points: 90,000.
• �X: 1 m.
• �Y: 1 m.
• �Z: 0.5 m.
• Environment matrix dimensions: 300 × 300 ×

111 (X × Y × Z).

The environment matrix dimensions and the mean

path length are the same of the previous case

(Table 5). The computational time is substan-

tially reduced, together with heading and altitude

changes. Figures 13 and 14 show the paths ob-

tained with the two algorithms and outline the ca-

pability of the Theta* algorithm to connect points

with LOS exploiting any heading variation.

(a)

(b)

Fig. 14 a Urban path 2: comparison between A* and
Theta* (X–Y plane). b Urban path 2: comparison between
A* and Theta* (flight altitude)



J Intell Robot Syst

4 Conclusions and Future Works

Implementing Theta* on 3D graphs requires fair

effort, struggling with some drawbacks. Current

results show that reasonable computational time

is required, considering the number of nodes used

in the graphs and the available computers. Then,

comparing the two graph search methods, the

advantages of Theta* become evident. This al-

gorithm reduces the length of the track avoid-

ing a considerable number of nodes, requiring

just a slightly larger computational time than A*.

Theta*-generated paths are smooth and useless al-

titude changes are avoided. When obstacles block

the path, Theta* is able to reduce the searching

time, exploiting a more effective nodal expansion

strategy.

Both algorithms don’t consider vehicle kine-

matics as part of the path generation. This is

the main issue for non-holonomic vehicles like

fixed-wing UAVs, requiring a smoothing process

to reallocate the waypoints sequences in order

to obtain flyable paths. A solution, adopted to

smooth the path according with turning radius

and rate of climb limitations is the use of the

Dubins curves. This is the current solution

adopted as post-smoother in the path planning

tools developed.

Another option, that is attractive for its low

computational impact, is the introduction of the

kinematic constraints inside the graph search algo-

rithm: the Dubins airplane model is implemented

as a constraint in the evaluation of the nodes,

combined with obstacles separation and command

optimization.

Future developments aim to implement more

effective approaches, even for the simulation of

the sense and avoid case. Safe paths (in terms

of separation from the static obstacles distributed

on the map) may be obtained introducing the

vehicle kinematics inside the waypoints sequence

elaboration by means of a Model Predictive ap-

proach, regenerating the output path piecewise.

Using a simple model of the aircraft it is possible

to generate an optimal path over a finite time

horizon, minimizing the distance with respect to

the reference path (given by the graph search

algorithm) while maintaining adequate separation

also from obstacles eventually detected by the

sensors. Within this approach the updated path is

also constrained by the vehicle’s kinematics.

However, within the current analysis, Theta*

still resulted the best choice for path planning on

graphs with the above described characteristics

(typical of alpine environments cluttered with ob-

stacles). Future work on this algorithm aims to

improve the LOS verification and the overcome of

ambiguities. The first task is mandatory for appli-

cations within urban environments, enforcing the

robustness of the solver. The second task requires

a deeper revision of the algorithm. The presence

of ambiguities is strictly connected with the al-

gorithm expansion method and with the graph’s

structure.

Acknowledgements This research work is part of the
project SMAT-F1 (Sistema per il Monitoraggio Avan-
zato del Territorio—Fase 1) funded by Regione Piemonte
(Italy).

References

1. Bellman, R.: On a routing problem. Q. Appl. Math.
16(1), 87–90 (1958)

2. Bertuccelli, L.F., How, J.P.: Robust UAV search for
environmentas with imprecise probability maps. In:
IEEE Conference of Decision and Control, Seville,
Spain (2005)

3. Capozzi, B.J.: Evolution-based path planning and man-
agement for autonomous UAVs. Ph.D. Dissertation,
University of Washington, USA (2001)

4. De Filippis, L., Guglieri, G., Quagliotti, F.: A minimum
risk approach for path planning of UAVs. J. Intell.
Robot. Syst. 1(2011), 203–222 (2011)

5. De Filippis, L., Guglieri, G., Quagliotti, F.: Flight
Analysis and Design for Mini-UAVs. XX AIDAA
Congress, Milano, Italy (2009)

6. Dijkstra, E.W.: A note to two problems in connexion
with graphs. Numer. Math. 1, 269–271 (1959)

7. Ferguson, D., Stentz, A.: Using interpolation to im-
prove path planning: the field D* algorithm. J. Field
Robot. 23(2), 79–101 (2006)

8. Floyd, R.W.: Algorithm 97: shortest path. Commun.
ACM 5(6), 345 (1962)

9. Ford, L.R., Jr., Fulkerson, D.R.: Flows in Networks.
Princeton University Press (1962)

10. Guglieri, G., Quagliotti, F., Speciale, G.: Optimal tra-
jectory tracking for an autonomous Uav. In: Automatic
Control in Aerospace, vol. 1(1) (2008)

11. Hart, P., Nilsson, N., Raphael, B.: A formal basis for
the heuristic determination of minimum cost paths.
IEEE Trans. Syst. Sci. Cybern. SCC-4(2), 100–107
(1968)



J Intell Robot Syst

12. Horner, D.P., Healey, A.J.: Use of artificial potential
fields for UAV guidance and optimization of WLAN
communications. In: Autonomous Underwater Vehi-
cles, 2004 IEEE/OES, pp. 88–95, 17–18 June 2004

13. Koenig, S., Likhachev, M.: D* Lite. In: Proceeding
of the AAAI Conference on Artificial Intelligence,
pp. 476–483 (2002)

14. Koenig, S., Likhachev, M.: Incremental A*. In: Pro-
ceeding of the Natural Information Processing Systems
(2001)

15. Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta*:
any-angle path planning on grids. In: Proceedings
of the AAAI Conference on Artificial Intelligence,
pp. 1177–1183 (2007)

16. Nikolos, I.K., Tsourveloudis, N.C., Valavanis, K.P.:
Evolutionary algorithm based offline/online path plan-
ner for UAV navigation. IEEE Trans. Syst. Man
Cybern., Part B, Cybern. 33(6), 898–912 (2003)

17. Pfeiffer, B., Batta, R., Klamroth, K., Nagi, R.: Path
planning for UAVs in the presence of threat zones
using probabilistic modelling. In: Handbook of Mili-
tary Industrial Engineering. Taylor and Francis, USA
(2008)

18. Stentz, A.: Optimal and efficient path planning for un-
known and dynamic environments. Carnegie Mellon
Robotics Institute Technical Report, CMU-RI-TR-93-
20 (1993)

19. Stentz, A.: The focussed D* algorithm for real-time
replanning. In: Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 1652–1659
(1995)

20. Warshall, S.: A theorem on Boolean matrices. J. ACM
9(1), 11–12 (1962)

21. Waydo, S., Murray, R.M.: Vehicle motion planning us-
ing stream functions. In: 2003 IEEE International Con-
ference on Robotics and Automation (2003)


	Path Planning Strategies for UAVS in 3D Environments
	Abstract
	Introduction
	Algorithm Description
	Modelling of the Tri-Dimensional Environment
	Theta* and the Minimum Path Search

	Results
	Orographic Obstacles
	Urban Environments

	Conclusions and Future Works
	References



