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Abstract

This paper addresses the problem of path plan-
nrng using a dynamic vehicle model. Previous works
which include a basic kinematic model generate paths
that are only realistic at very low speed. By consider-
ing higher vehicle speed during navigation, the vehicle
can significantly deviate from the planned trajectory.
Consequently, the planned path becomes unusable for
the mission achievement. So, to bridge a gap between
planning and navigation, we propose a realistic path
planner based on a dynamic vehicle model.

1 Introduction

Moving an autonomous vehicle is often divided in
two phases. In the first one, a feasible path between
two configurations is computed. Then, this path is
followed by the vehicle, using the trajectory returned
by the planner and a control law. Most of research
works considered these two steps as independent and
only focus on one of them. Unfortunately, the plan-
ning phase is strictly dependent on the model used
during the navigation process.
The dependence between planning and navigation

is always considered when planning for an holonomic
or nonholonomic model [1] since one can imagine that
a path planned for a differential drive could not be
followed by a car as it is not differentiable and the
derivative is not continuous. This dependence have to
be preserved when working on path planning for car.
Indeed, most of research works [2,3] use the classical
kinematic car-like model to plan path for every kind
of car. However, each car does not react the same
way (skidding, trajectory...) when applying the same
input (the steering angle for example). So, when the
path is planned, the control law have to hugely cor-
rect the car position to follow the path. Furthermore,
the kinematic car-like model implies a moving with-
out skidding assumption which is very limitative as
it implies a really low speed during navigation. This
model does not either consider the slip angle which
can't be canceled on a moving car. On the contrary,
these are considered when planning with a dynamic
vehicle model.

Furthermore, some works [4-6] aim to provide a
safe path using localization technique such as Kalman
filtering. For example, in [6], uncertainties are rep-
resented by an ellipsoid centered on an estimated
point. As the estimated point is computed during
the planning phase using the kinematic model, ellip-
soids are misplaced. Moreover, if the skids and slids

are added to the Kalman prediction process, ellip-
soids size would be increased. This implies an unsafe
path during the navigation process. On the contrary,
using a dynamic model will lead to a better placed es-
timated points which considers skidding and sliding.
Thus, ellipsoid will be smaller and better placed. We
do not use localization algorithm in this paper but it
could be easily added [7].
To avoid these matters, we propose in this paper

the use of a vehicle model identical to the car that
will have to follow the planned path.
We choose to use a Rapidly-exploring Random Tree

(RRT) planner since it can easily take the dynamic
model between two configurations. As its construc-
tion is incremental, we only have to integrate the dy-
namic system to obtain the new configuration using
the present one and the control input. Using model
with dynamic constraints is more complicated on a
planner that uses a roadmap. Indeed, it is for ex-
ample impossible to generate Dubin's curves [8] that
respect nonholonomic and dynamic constraints.

This paper is organized as follows. In a first part,
we present the two models used; first, the classical
kinematic model and then the dynamic model we use.
In the second part, we focus on the RRT planner by
looking at the algorithm and its properties. Then, the
dynamic model is integrated in the planner. Finally,
in section 5, we compare and contrast the results ob-
tained using the two different models.

2 Problem Statement
2.1 Vehicle model
We present in this section two different kinds of

vehicle model. The first one is a simple kinematic
model which is used in many path planning works.
The second one is a dynamic model usually called
bicycle model.

2.1.1 Kinematic model

The robot moves in a configuration space X. A
configuration is given by (x, y, 0) where x and y rep-
resent the coordinates of the characteristic point lo-
cated midway of the rear wheels. 0 represents the
orientation of the mobile.
The classical car-like model represented on figure 1

uses a kinematic based differential system

± = v cos 0
vsin0 (1)

t0 =~Ltan
This system implies the moving without skidding as-
sumption. It is to restrictive and does not permit to
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Figure LKinematic model

m(X-vyr) =-Ff cos5f -Fyf sin5f -Fxr
1m(by + v,r) = Fyf cos5f -Fxf sin Sf + Fyr
Iz = Lf (Fyf cos 5f -Ff sin ff LrFyr

(2)
In order to easily compare the results with those

obtained with the kinematic model, we choose to use

a constant longitudinal speed for both models. This
implies a constant speed v during the whole planning
phase for the differential system (1) and a constant
longitudinal speed v, for the dynamic model. Fur-
thermore, as the aerodynamic resistance is neglected,
the longitudinal tire force Fxf becomes zero.

Considering this, we obtain

Vy = mf COS f + m -v_ r

= If Fyfcos 6f - LT Fyr. (3)

Thus, as a linear tire model is used, we can write

Fyf
Fyr

-Co f

-Caer Zr

where CXf and Cxr are the cornering stiffness coeffi-
cients for front and rear tires. cf and ar are respec-

tively the slips angles for the front and rear wheels.
These angles are assumed to be small. So that, we

obtain

Figure 2.Simplified dynamic model

avr

consider neither skidding when turning at high speed
nor slip angle. So, using it in a planner implies lots
of approximations. A path planned with this model
could not be followed by a car without important cor-

rections in the closed-loop control even if we use a

good control law. This could lead to many collisions
during the navigation process. As we want to reduce
the correction during navigation, we use a more rep-

resentative model of the car in the next section.

vy + Lfr

vx

vy -Lrr

vx

cf

Lf and Lr are the distance from the center of gravity
to the front and rear wheel, respectively. r is the
radius of the tire.

According to this, we obtain the full non-linear
model

[VY [A C vy (4)

with

2.1.2 Dynamic model

In this paper, we use a five degrees of freedom dy-
namic car model. The state of the car is defined by
x = (xg,yg,O,vy,r)T. Xg and yg represent the co-

ordinates of the center of gravity of the robot. 0 is
still its orientation. vy is the lateral speed and r is
the yaw rate. This model is often simplified by pro-

jecting the front and the rear wheels on two virtual
wheels located at the middle of the car. It is called
the bicycle model (fig 2) based on [9].
The model we use in this paper is represented on

figure 2. As it is often the case in commercialized
vehicle, we only use one steering angle, the front one.

Using the second Newton's law, the fundamental law
of dynamics, we obtain:

A = Cf cos6f+C r

mTvx

B = -Lf C,if cos 6f + LrC,,r
mTvx

C = -Lf C,Cf cos 6f + LrC,,r
Izvx

L2 Ceif cos 6f + LrCcer
LJ

E

F

vx,

I vx

Co fcos 5f

m

LfCof cos 6f
Iz

By integrating 4, we can compute the new coordi-
nates (xg, yg, 0) of the mobile:
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vX cos(O) -vy sin(O)
vX sin(O) + vy cos(O)

We now have our five degrees of freedom non-linear
model x = f(x, u). This state transition equation
will be used in section 4 to compute x(t + At) using
x(t) and the input u.

2.2 Environment model
The planner uses an ideal 2D world map. Obstacles

are represented by polygonal lines.
Set of n obstacles is represented by X0b,.

Xobs = {Xobs5 i 1=...n} (6)

The part of X which is free of any obstacle is noted
Xfree -

Xfree = Xobs (7)

3 Rapidly-exploring Random Trees
3.1 Presentation of the algorithm

Rapidly-exploring Random Trees [10] is an incre-
mental method to quickly explore the whole configu-
ration space. The key idea is to visit the unexplored
parts of the space by breaking the large Voronoi areas.
The principle is simple (Alg. 1). First, xiit is added
to the tree G. Then, a configuration Xrand e Xfree
is randomly chosen. The nearest-neighbor func-
tion searches in the tree the nearest node to Xrand
according to a specified metric d. This node is called
Xnear. A control input is then chosen, randomly or
according to a specified criterion. Choosing the input
that brings Xnew as close as possible to Xrand could
be a possible criterion. This input is then applied to
Xnear. This is possible by integrating the equation 1
on a time increment At, using a numerical technique
like Runge-Kutta. This creates a new point called
xnew. If the path between Xnear and Xnew lies in
Xfree (this is used to ensure that intermediate con-
figurations lie in Xfree when discrete jumps are made
when integrating on At), Xnew is added to G and the
algorithm execution continues by choosing a new ran-
dom configuration. Otherwise, Xnew is not added to
G.
A path is found when Xnew = Xgoal or when

Xnew G Xgoal C Xfree (8)

where Xgoal is the goal region.

3.2 Improvements
RRT is often slow to plan a path as it randomly

reaches a defined Xgoal. To speed up the algorithm,
we can bias it toward the goal by modifying the
random_config() function (see algorithm 1, func-
tion RRT, line 3). Such modifications were proposed
in [11] and called goalbias and goalzoom. Instead of

Algorithm 1 RRT [10]
Function: RRT(K e N, Xinit e Xfree, At C R)
i: G.init (Xinit )
2: for i 0 to K do
3: Xrand <- random config(Xfree)
4: Extend(G, Xrand)
5: end for
6: return G

Function: Extend(G, Xrand)
1: Xnear < nearest neighbor(G, Xrand
2: u <- select input(Xrand, Xnear )
3: Xnew <- new state(xnear, u, At)
4: if collision free path(xnear,xnew) then
5: G.add node(xnew)
6: G.add edge(xn,ar, Xnew. u)
7: end if
8: return G

choosing the random configuration in the whole con-
figuration space, it sometimes (depending on a fixed
probability p) picks the random configuration in a
part of the space. Goalbias picks Xgoal as random
configuration Xrand with a probability p and goal-
zoom picks, with also a probability p, Xrand in a circle
centered on Xgoal with a radius of minvi d(xi, xgoal)
where xi represents the nodes of the tree.

Using the connect heuristic [12], the algorithm it-
erates the extend() function until a collision is de-
tected. It allows to go quickly deeper to a given di-
rection.

It is also possible to use two RRTs to plan paths
faster. This bidirectional RRT [11] uses a RRT start-
ing from Xinit and another one starting from Xgoal.
The path is planned when these two trees meet each
other.

Observations in [11] provide comparisons between
these improvements. The connect heuristic seems to
explore more quickly the configuration space than ex-
tend in a holonomic case. On the contrary, extend
seems to be quicker in a nonholonomic case. It also
appears that goalzoom performances are better than
goalbias ones as it gradually biases toward the goal.

3.3 Properties
RRT has really nice properties [10]. An interesting

property for path planning problems is that a path
planned with RRT does not need a local planner to
find a way from a configuration to another. Indeed,
the new point Xnew is calculated to take nonholo-
nomic constraints directly into account.
RRT expansion is biased toward unexplored parts

of the configuration space by breaking large Voronoi
regions. It allows the RRT to rapidly explore in the
beginning, and then converge to a uniform coverage
of the space.
The most interesting property, proved in [11, 12]

is that the distribution of vertices is uniformly dis-
tributed in the configuration space. This involves the
possibility of finding a path, if it exists, by generat-
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(a)
100 points

(b
100 point

(c)
6000 points

Figure 3.RRT exploring a circle

ing an infinite number of vertices. That allows us to
prove the probability completeness of the RRT algo-
rithm. In figure 3, we show a RRT exploring a circle.
As one can see, the distribution of vertices, after 6000
iterations of the algorithm, is uniform.

goal

Figure 4.Path planned using RRT and kinematic model

4 Integration of our model in the plan-
ner

The RRT is an incremental path planner. In this
algorithm, the new_state 0 function allows us to
choose which kind of model we want to use to repre-
sent the dynamic of our robot. Starting from a given
configuration Xnear x(t), we integrate our system
(4) using a given input u to obtain Xnew x(t +At).
the configuration that will be added to the tree if it
lies in Xf ree-
The use of such a model would have been definitely

more complicated with a non-incremental path plan-
ner like the Probabilistic Path Planner [2]. It im-
plies the use of a local planner to compute a feasible
path between two consecutive points of the path. It
is indeed much more difficult to find a set of inputs
that bring a vehicle with dynamic constraint from a
configuration to an other than to integrate a system
on a time increment At. Furthermore, dynamic con-
straints prevent the use of curves like Dubin's ones.
The integration of the systems in the new_state

function is done using a numerical technique. In this
paper, we do a fourth order Taylor's approximation
and use it in a Runge-Kutta integration for both kine-
matic (1) and dynamic model (4):

At
Xn+r., 6+ (ki +2k2 +2k3 +k4) (9)

where

k, f (x k,uu)tn ±

k2 =f (Xn+ kiUn)

k3 =f (Xn +-k2 Un)

k4 =f (Xn + k3 , Un )tn +,,,t:
and f is the state transition equation.

5 Results
To illustrate the efficiency of the RRT path plan-

ner with a kinematic and a dynamic model, we im-

Figure 5.Obstacle avoidance using kinematic model

plemented it in C language on a 1.2GHz Pentium PC
running Linux. We use At = 200ms as time incre-
ment.

In a first part, we show classical results of a RRT
planner using a Kinematic model.

Then, we show planning results using the dynamic
model presented in section 2.1.2.

Finally, these results are compared.

5.1 Results obtained with kinematic
model

Some basic results using the kinematic model are
shown in figures 4, 5 and 6.

In figure 4, we planned a path for a car that can
only move forward (a Dubin's car [8]). In figure 5, we
simulate an obstacle avoidance.

Figure 6 is computed in a more complicated envi-
ronment which looks like a labyrinth. This example
is interesting. It is indeed a kind of example where
the RRT, using a kinematic car model with a low
speed, can easily (quickly) find a path. As we are go-
ing to see in the next section, finding a path is much
more difficult when using a dynamic car model with
a higher speed.

0-7803-9521-2/06/$20.00 §2006 IEEE. 784



Figure 6.Kinematic model and labyrinth environment

Figure 7.Path planned using RRT and dynamic model

5.2 Results obtained with dynamic
model

In this section, we use the same environments as
those used in the previous section. But, instead of
planning using the kinematic model and the low speed
assumption, we use a dynamic model with higher
speed. The results can thus be compared between
planning using these two models.

In figure 7, we use the same environment as in fig-
ure 4. In figure 8, we show another exemple using the
same environment as in figure 5 with a really high
speed.
The main visible difference is located on the turn-

ing radius value. Using our dynamic vehicle model,
planned paths are smoother and the turning radius
greatest lower bound is bigger than those obtained
with kinematic model. This is a normal consequence
of the high speed assumption since a car turning at
high speed with a big steering angle will skid. This
imply that the planner has more diffilculties to find a
path that lies in Xf,,,.

Considering the obstacle avoidance situation, the
path planned in figure 5 is not realistic. Indeed, dur-
ing the navigation process, a car moving at a moder-

Figure 9.Dynamic model and labyrinth environment

ate or high speed could not follow such a trajectory
when applying the commands returned by the plan-
ner. This would lead to skids and collisions. On the
contrary, the path planned with a dynamic model is
smooth and considers the skidding. It can be followed
during navigation.

Figure 9 is also an explicit example as it can be
directly compared to figure 6. Using the kinematic
model, a path is found without any difficulty. On the
contrary, using a dynamic model and a higher speed,
it is quite hard to find a path which do not imply some
collisions. High speed implies a bigger turning radius.
Corridors are however narrows. That is why lots of
paths could not be admissible without collisions.

5.3 Computation time comparison
The time spent to generate a node of the RRT is

globally the same when using dynamic or kinematic
models. We indeed use the same planning algorithm
and integration technique. The integration is a little
bit longer for the dynamic model since the number of
degrees of freedom is bigger.
The computation time needed for an iteration of

the RRT algorithm is however negligible compared to
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Table LComputation time using kinematic and dy-
namic vehicle model; labyrinth example

Kinematic model Dynamic model
Time (s) | 4.4 11.8

the time needed to compute all the iterations when
exploring the state space between xinit and Xgoal.

In algorithm 1, if the new_state 0 function detects
a collision, Xnew is not created nor added to the tree.
So, some iterations of the algorithm do not aim to the
creation of a new node in the tree. This leads to a
loss of time. As we can see in figure 9, the number of
nodes in the tree is bigger than in figure 6. Resolving
such a path planning problem needs to generate in
mean 70000 nodes using the dynamic vehicle model
and 30000 using the kinematic one. This is due, as
explained in section 5.2, to the fact that the planner
has difficulties to stay in Xfree when considering a
dynamic car that moves at high speed.

So, when planning in an environment where col-
lisions could happened like the labyrinth in figures
6 and 9, the planning process could be more than 3
times slower when using a dynamic vehicle model (see
table 1).

6 Conclusion
In this paper, we presented an efficient way to plan

realistic paths using a RRT path planner which em-
bedded a dynamic vehicle model. The methodology
we propose is general. It can be easily extended to
other kind of vehicle or models. We could imagine to
extend our work to more efficient dynamic models us-
ing Pacejka's [13] or Dugoff's [14] formulas. We only
have to modify the size of the vehicle and replace our
dynamic model with another one in the new-state()
function of algorithm.
Work about the quality of the path following as

well as the realism of our dynamic model has not
been done yet. This should form the subject of future
studies. We will also study the computation time
and try to reduce it in order to use it in a real-time
application.
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