
Path Planning using Probabilistic Cell Decomposition

FRANK LINGELBACH

Licentiate Thesis

Stockholm, Sweden 2005

TRITA-S3-REG-0501
ISSN 1404-2150
ISBN 91-7283-961-9

KTH Signaler Sensorer och System
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillst̊and av Kungl Tekniska högskolan framläg-
ges till offentlig granskning för avläggande av teknologie licentiatexamen torsdagen
den 10 februari 2005 i Kollegiesalen, Administrationsbyggnaden, Kungl Tekniska
högskolan, Valhallavägen 79, Stockholm.

c© Frank Lingelbach, 2005

Tryck: Universitetsservice US AB

Abstract

The problem of path planning occurs in many areas, such as computational biology,
computer animations and computer-aided design. It is of particular importance in
the field of robotics. Here, the task is to find a feasible path/trajectory that the
robot can follow from a start to a goal configuration. For the basic path planning
problem it is often assumed that a perfect model of the world surrounding the robot
is known. In industrial robotics, such models are often based on, for example, CAD
models. However, in applications of autonomous service robotics less knowledge
about the environment is available. Efficient and robust path planning algorithms
are here of major importance. To be truly autonomous, a robot should be able to
plan all motions on its own. Furthermore, it has to be able to plan and re-plan in
real time, which puts hard constraints on the acceptable computation time.

This thesis presents a novel path planning method called Probabilistic Cell
Decomposition (PCD). This approach combines the underlying method of cell de-
composition with the concept of probabilistic sampling. The cell decomposition
is iteratively refined until a collision-free path is found. In each immediate step
the current cell decomposition is used to guide probabilistic sampling to important
areas.

The basic PCD algorithm can be decomposed into a number of components
such as graph search, local planning, cell splitting and probabilistic sampling. For
each component different approaches are discussed. The performance of PCD is
then tested on a set of benchmark problems. The results are compared to those
obtained by one of the most commonly used probabilistic path planning methods,
namely Rapidly-exploring Random Trees. It is shown that PCD efficiently solves
various kinds of path planning problems.

Planning for autonomous manipulation often involves additional path constraints
beyond collision avoidance. This thesis presents an application of PCD to path
planning for a mobile manipulator. The robot has to fetch a carton of milk from
the refrigerator and place it on the kitchen table. Here, opening the refrigera-
tor involves motion with a pre-specified end-effector path. The results show that
planning the different motions for the high-level task takes less time than actually
executing them. The whole series of subtasks takes about 1.5 seconds to compute.

iii

Acknowledgements

First of all, I want to thank my academic advisors, Professor Bo Wahlberg and
Professor Henrik I. Christensen for giving me the opportunity to work at S3 and
CAS. Your doors are always open for a discussion. Thanks for all the helpful
comments and letting me do my thing even if the pre-planned path of my PhD
studies looked quite different from the one I am currently following.

Many thanks go to Danica Kragić, for pointing in the right directions, for her
enthusiasm and valuable help regarding all issues from proof reading to taming
Obelix.

Special thanks go to Morten and Daniel for all the discussions on path planning
and related stuff. Not to forget: Daniel, thanks for all debugging, driver fixing, cvs
support and so on. I want to thank all my colleagues at S3 and CAS for creating
such a pleasant atmosphere. Thanks to Karin, Stex and support@s3 for making
life at KTH a lot easier.

Finally, I want to thank my girlfriend, Tanja, for being there even when being
far away, for all her support and love.

This research has been sponsored by the Swedish Foundation for Strategic Research
through the Centre for Autonomous Systems (CAS). The support is gratefully
acknowledged.

v

Contents

Contents vii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline . 4
1.3 Main Contributions . 5

2 Path Planning – an Overview 7
2.1 Problem Formulation . 7

2.1.1 The Configuration Space . 7
2.1.2 Holonomic vs. Nonholonomic Path Planning 11

2.2 Classical Path Planning Methods . 13
2.2.1 Cell Decomposition . 13
2.2.2 Roadmap Methods . 14
2.2.3 Potential Field Methods . 15

2.3 Probabilistic Path Planning Methods 16
2.3.1 Probabilistic Roadmaps . 17
2.3.2 Rapidly-Exploring Random Trees 19
2.3.3 Roadmaps of Trees . 21
2.3.4 De-randomizing Probabilistic Path Planning Methods 21

3 Probabilistic Cell Decomposition 23
3.1 Introduction . 23
3.2 Notation . 24
3.3 The Basic Algorithm . 24

3.3.1 Cell Shape . 25
3.3.2 Graph Search . 25
3.3.3 Local Path Planning . 27
3.3.4 Cell Splitting . 28

vii

viii CONTENTS

3.3.5 Probabilistic Sampling . 28
3.4 On Probabilistic Completeness . 29
3.5 Example . 29
3.6 Simulation Results . 30

3.6.1 Experimental Setup . 31
3.6.2 Summary of the Results . 31

4 Modifications of the Elementary Components of PCD 35
4.1 Probabilistic Sampling . 35

4.1.1 Uniform Sampling over Possibly Occupied Volume 35
4.1.2 Sampling Interesting Cells . 36
4.1.3 Experimental Results . 37

4.2 Graph search . 37
4.2.1 The Connectivity Graph . 38
4.2.2 Optimal Graph Search . 38
4.2.3 Suboptimal Graph Search . 40
4.2.4 Experimental results . 41

4.3 Cell Splitting . 43
4.4 Cell Shape . 44
4.5 Summary of the Results . 45

5 Path Planning for Mobile Manipulation – an Application 49
5.1 Framework . 49
5.2 Path Planning for a Redundant Platform 50
5.3 Experimental Results . 53

6 Summary and Future Work 57
6.1 Summary . 57
6.2 Future Work . 59

6.2.1 The PCD Algorithm . 59
6.2.2 Planning for Mobile Manipulation using PCD 60

A Benchmark Problems 63
A.1 2D Maze . 64
A.2 2D Corridor . 65
A.3 6D Cage . 66
A.4 9D Pick’n’Place . 67
A.5 48D Multi Rods . 68

Bibliography 69

List of Figures

1.1 Obelix platform with PUMA 560 arm on XR4000 base and model of
Obelix platform used for path planning 2

2.1 Workspace W and corresponding configuration space C for two example
problems . 9

2.2 Feasible path for 2D robot in work space W and corresponding config-
uration space C . 10

2.3 Example for a nonholonomic robot . 12

2.4 Exact and approximate cell decomposition 14

2.5 Roadmap obtained from visibility graph and Voronoi diagram 16

2.6 Potential field for path planning . 17

2.7 Visualization of PRM progress . 18

2.8 Visualization of RRT progress . 20

3.1 Basic algorithm of PCD . 24

3.2 Cell decomposition and corresponding connectivity graph G 26

3.3 Local path planning in PCD . 28

3.4 Cell splitting in PCD . 29

3.5 Planning progress of PCD on example problem – part one 32

3.6 Planning progress of PCD on example problem – part two 33

4.1 Modifications of probabilistic sampling 36

4.2 Additional benchmark problems for modifications of graph search 41

4.3 Modification of cell splitting . 43

4.4 Alignment of configuration space obstacles with split directions 45

5.1 Overview of the architecture for the NoMan system. 51

5.2 Top and side view of the platform with parameterization used for con-
strained path planning . 53

5.3 Snapshots during execution of ”Fetch Milk”-task 56

ix

x List of Figures

A.1 Benchmark problem I (2D): Maze . 64
A.2 Benchmark problem II (2D): Narrow corridor 65
A.3 Benchmark problem III (6D): Rigid body 66
A.4 Benchmark problem IV (9D): Mobile manipulation 67
A.5 Benchmark problem V (48D): Multi rigid body 68

Chapter 1

Introduction

In this chapter, we give a brief introduction to the thesis. After presenting some
motivating examples where path planning methods are used to solve problems from
very different fields of research, we present the outline of the thesis and state the
main contributions.

1.1 Motivation

Applications of path planning exist in many areas. The field of application we have
in focus when designing PCD is path planning for an autonomous service robot in
a home or office environment.

Mobile Robotics

In the field of autonomous, mobile robotics, the ability to plan its own motions is
essential for a robot to be truly autonomous. It has to react to its environment
and carry out user-defined instructions. Nearly every task the robot has to accom-
plish involves a motion from one configuration to another. Each time, this raises
the question of how to move each joint in a feasible manner, such that the robot
reaches the goal state and avoids collisions with obstacles on its way. It is evident
that predefined controls are not sufficient to comply with these requirements in a
dynamic environment. On the other hand, the user does not want the robot to
mull over a feasible path for minutes when assigning a simple task to it. There is
an obvious need for efficient path planning algorithms.

To be able to plan its motions, the robot needs an accurate model of itself and
the world surrounding it. The first demand is often possible to meet. CAD-models
of the robot exist and sensors are precise enough to state the actual configuration of
the robot. In other cases, as can be seen from Figure 1.1, parts of the robot might be

1

2 CHAPTER 1. INTRODUCTION

very hard to model correctly. In this example, the cables reaching from the Barrett
Hand to the arm are flexible and thus difficult to be taken into consideration. Here,
one could build a conservative model that includes all points that the cables could
possibly reach or a more optimistic model that disregards the cables at the planning
stage.

The problem of obtaining a model of the environment is much harder. In a home
or office environment, almost all objects are movable. Some are quasi-static, like big
pieces of furniture, some objects change status within a well defined set of possible
configurations, like doors. If the robot shares the environment with humans, some
objects – besides the human itself – will dynamically change their positions. Obvi-
ously, a static model will not suffice for path planning, but the robot has to react to
sensor information. With substantial progress in the field of stereo vision and a big
drop in prices for 3D sensors such as, for example, laser scanners, the practicability
of path planning within mobile manipulation will increase significantly.

Figure 1.1: Left Figure: Obelix platform with PUMA 560 arm on XR4000 base;
Right Figure: Computer model of Obelix platform used for path planning

Industrial Robotics

For industrial robots the focus of demands on the path planning algorithm is shifted
towards other issues. Often a robot is programmed only once and then operates for

1.1. MOTIVATION 3

years carrying out the same task. In this field, CAD models of the robot and the
work cell it is working in are most often available. The work cell is specially designed
to contain as few obstacles as possible. There might exist dynamic obstacles in the
vicinity of the robot but their motions are known beforehand. An evident example
is a work piece on a conveyor belt that has to be processed by the robot.

For industrial applications, a major aspect is optimality of the obtained path.
As the robot repeats the same motion over and over again, savings in execution
time, energy consumption or similar measures sum up to huge amounts of money.
Optimality is typically not considered by probabilistic path planning algorithms.
Instead, the first feasible path that is found is returned and modified in a subse-
quent optimization step. Time efficiency of the path planning algorithm is clearly
important – even if there are no real-time requirements. Using automatic path
planning algorithms for robot programming can save many working hours of expe-
rienced engineers. Another key aspect is that the robot can be programmed off-line
if an accurate model is available. The assembly line does not have to be stopped,
which can result in notable savings.

Computational Biology

Applications for path planning algorithms exist also in fields that are rather unre-
lated to robotics at a first glance. In computational biology, path planning algo-
rithms are applied on a molecular scale. Ligands (molecules that bind to a receptor
protein), for example, have structural similarities with articulated robots. If a ref-
erence atom is kept fixed, the configuration of the ligand is determined by the state
of several rotational degrees of freedom. Singh et al. (1999) use this fact to ap-
ply robot path planning algorithms to study the dynamics of the process of ligand
binding. These dynamics are important in the context of drug design.

Another application within the field of computational biology is the investigation
of protein folding mechanisms. Long protein molecules naturally appear in a folded
low-energy state. Song and Amato (2001) study the folding pathways of proteins
with help of path planning methods. As the function of a protein is determined by
its three-dimensional structure, understanding the folding process is significant.

Computer Animations

In the area of computer animations, there exist several applications for path plan-
ning algorithms. As a natural advantage in this area a perfect world model exists.
Thus, path planning algorithms can be applied without being confronted with the
sensing and perception problems of mobile robotics. Computer games is a chal-
lenging field within this area. Characters that should follow the user’s instructions
have to be animated in realtime. Pre-computed animations are often feasible but
they restrict the free hand of the user. Beneath requirements on a path that are

4 CHAPTER 1. INTRODUCTION

similar to those of the field of robotics, such as collision avoidance, character mo-
tions should look natural to the human eye. Nieuwenhuisen and Overmars (2002)
compute smooth paths for camera movements in virtual environments. Kuffner
and Latombe (2000) use path planning techniques to animate manipulation tasks.
Pettré et al. (2002) present a method based on path planning for animation of
human characters.

Assembly Planning

Assembly planning has several applications, for example, in virtual prototyping
or product maintenance. Here, path planning can answer questions like: Is it
possible to assemble the product from its pieces? In which order must the pieces
be assembled? Closely related is the problem of disassembly planning (Sundaram
et al. 2001). If some part of an assembled product is broken, what is the best way
to replace it? Those problems can be solved using path planning techniques. Each
piece of the assembly is treated as a free-flying rigid body. Then, a path is planned
from some initial configuration to the assembled goal state.

1.2 Thesis Outline

Chapter 2

Path planning has been a very active field of research for more than two decades.
The motivating examples in this chapter show the need for efficient path planning
methods. In Chapter 2, we present the path planning problem. We give a brief
overview over the most important classical methods. Then, we present the two
probabilistic approaches that have drawn major attention during the last years.
Both approaches, Probabilistic Roadmap Methods (PRM) and Rapidly-exploring
Random Trees (RRT) have been shown to be able to solve high dimensional prob-
lems in acceptable computation times. We review both methods and present current
research topics regarding these two methods.

Chapter 3

In Chapter 3, we introduce the basic ideas of Probabilistic Cell Decomposition
(PCD). It combines the concept of probabilistic sampling with the underlying
method of cell decomposition. The elementary components of the algorithm are
presented in detail. The performance of the algorithm is tested on the set of bench-
mark problems presented in Appendix A. These problems are chosen from different
fields of applications including maze-like problems, rigid body problems and path
planning for a mobile manipulator. The problem dimension ranges from two to
forty-eight.

1.3. MAIN CONTRIBUTIONS 5

Chapter 4

Possible modifications to the elementary components of the basic algorithm of PCD
are discussed in Chapter 4. The components we investigate are graph search, prob-
abilistic sampling, cell shape and cell splitting. For each modification, we compare
the computation results with those of the basic algorithm.

Chapter 5

Chapter 5 presents an application of the general path planning method PCD de-
veloped in Chapters 3 and 4 to the field of mobile manipulation. In a task specified
by the high level command ”place the milk on the kitchen table” the mobile ro-
bot has to plan several consecutive motions. It has to open the refrigerator, get
the milk, place it on the table and close the refrigerator again. Here, we neglect
related problems like, for example, task decomposition and focus on the path plan-
ning problem. Opening and closing the refrigerator door involves a motion with
constrained end-effector movement. We discuss this subproblem briefly.

Chapter 6

Chapter 6 concludes this thesis by discussing results of the preceding chapters.
Additionally, we give some prospects for future research. We outline directions of
future research regarding PCD as a general path planning method and in particular
for using PCD for path planning for mobile manipulation.

1.3 Main Contributions

The main contributions of this thesis are:

• A novel approach to probabilistic path planning called Probabilistic Cell De-
composition (PCD); This new approach combines probabilistic sampling with
the underlying method of cell decomposition

• Extensive studies on different components of PCD, such as graph search,
probabilistic sampling, cell shape and cell splitting

The results contained in this thesis have been presented at several international
conferences:

• Frank Lingelbach, ”Path Planning using Probabilistic Cell Decomposition”,
Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), New Orleans, LA, 2004

6 CHAPTER 1. INTRODUCTION

• Frank Lingelbach, ”Path Planning for Mobile Manipulation using Probabilis-
tic Cell Decomposition”, Proceedings of the IEEE International Conference
on Intelligent Robots and Systems (IROS), Sendai, 2004

• Daniel Aarno, Frank Lingelbach, Danica Kragić, ”Constrained Path Planning
and Task-consistent Path Adaptation for Mobile Manipulators”, submitted to
IEEE International Conference on Advanced Robotics (ICAR), Seattle, 2005

An additional paper that is not considered in this thesis as it is not related to
path planning:

• Vikram Krishnamurthy, Bo Wahlberg, Frank Lingelbach, ”A Value Iteration
Algorithm for Partially Observable Markov Decision Process Multi-armed
Bandits”, Sixteenth International Symposium on Mathematical Theory of Net-
works and Systems (MTNS), Leuven, 2004

Chapter 2

Path Planning – an Overview

In this chapter, we will give a broad overview on the field of path planning. After
a short introduction to the problem, we will present the most important classical
methods and recent work on probabilistic path planning.

2.1 Problem Formulation

The problem of path planning appears in many different forms that are only loosely
connected at first. An instance of the problem could, for example, be a point like
agent that has to traverse a maze, an articulated robot that has to move from one
configuration to another or path planning for a free-flying rigid body. This last
instance is also known as the Piano Movers’ Problem (Schwartz and Sharir 1983):
Given a current and a desired final position of the piano, find a continuous collision-
free path for the piano, connecting these two positions. A more complicated variant
of this problem includes multiple free-flying rigid bodies that have to avoid collisions
with static obstacles and themselves. This kind of problem is typical for the field of
assembly planning. Additional examples from the previous chapter include planning
for large molecules or animated characters.

2.1.1 The Configuration Space

All example problems given above have in common that some kind of agent has to
move from some initial to a goal configuration without colliding with obstacles on
its way. This leads to the configuration space concept.

The configuration of the agent is completely determined by n values, where n
is the number of the agent’s degrees of freedom (dof). For example, the state of a
point-like agent in a 2D maze is completely determined by two parameters, the x-
and y-coordinates. A free-flying rigid body in a three-dimensional workspace has six

7

8 CHAPTER 2. PATH PLANNING – AN OVERVIEW

dof, three translational and three rotational. Thus, each configuration corresponds
to a point q in an n-dimensional space which is called the configuration space C.
The space where the agent ”lives” is called the workspace W. Typically, W = R

2

or W = R
3. The image of the agent at the configuration q in W is denoted by

A(q).

A requirement on a feasible path is naturally that it is collision-free. The agent
in a maze example is not allowed to tunnel through the walls, a robot should better
not collide with any obstacle. Thus, the obstacles in the work space W have to be
translated to the configuration space C. A configuration q ∈ C is called colliding
if A(q) intersects with an obstacle in W. Let the closed set O ⊂ W denote the
obstacle region, namely the set of all points in the work space W that belong to
an obstacle. Then, the set of configuration space obstacles Cobst is defined as all
colliding configurations in C. The complement of Cobst in C is the set of collision-free
configurations Cfree, called collision-free configuration space or simply free space,

Cobst = {q ∈ C | A(q) ∩ O �= ∅} (2.1)

Cfree = C \ Cobst (2.2)

As both A(q) and O are closed sets, also Cobst is a closed set. This definition has
to be extended, for example, for multi rigid body problems or planning for some
articulated robots. Depending on the structure of the robot, it might be possible
that for some configurations one link collides with another. These self-collisions can
simply be added to Cobst. Two examples for possible workspace - configuration
space pairs are shown in Figure 2.1. For the 2D robot, colliding configurations
occur, when the inner or the outer link penetrates the platform or the ceiling. The
colliding region in the center of C corresponds to a collision of the outer link with
the ceiling. Only if the inner link points almost straight upwards, the outer link
can reach the ceiling. The colliding regions to the left and to the right correspond
to collisions with the platform. Obviously, if for some configuration the inner link
collides with the platform, the outer joint angle is irrelevant – the state is colliding.

For the lower problem in Figure 2.1, we assume that the triangular agent may
translate freely in the plane but it is not allowed to rotate. Thus, also this problem
has two degrees of freedom, namely the x- and y-coordinate of the agent. To
construct the configuration space C, we choose a reference point on the agent and
define a state q in C as free if the agent does not collide with any obstacle in W,
when the reference point is placed at q. As it can be seen in Figure 2.1, the shapes
of the obstacles in C are here strongly related to the shape in W – just blown up by
the size of the agent. To be more specific, the C-obstacles are obtained by taking
the Minkowsky sum of the W-obstacles and the agent. Consequentially, one of the
passages between the two large open regions in W is not traversable, as the agent
is too large.

2.1. PROBLEM FORMULATION 9

α

β

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

α

β

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 2.1: Upper Left Figure: Articulated 2 dof Robot, work space W; Upper
Right Figure: Corresponding 2D configuration space, Cobst: dark gray, Cfree: light
gray, configuration shown in W marked with x; Lower Left Figure: Triangular rigid
body allowed to translate but not to rotate; reference point marked with •; Lower
Right Figure: Corresponding 2D configuration space, Cobst: dark gray, Cfree: light
gray, configuration shown in W marked with x;

Not only the dimension but also the topology of C is of particular importance.
For the robot problem, it has to be decided at the modeling stage whether the
outer link is allowed to rotate freely several turns or if there are hard boundaries
such that the link is allowed to rotate only in the interval [−π, π]. If the outer link
is allowed to rotate freely, the upper boundary for β is identified with its lower
boundary. Thus, a path in C can ”leave” the configuration space at β = π and
re-enter at β = −π at the same α value. For a real robot, the internal structure
typically gives rise to limits also on the rotational degrees of freedom. In contrast,

10 CHAPTER 2. PATH PLANNING – AN OVERVIEW

Figure 2.2: Left Figure: Feasible path for 2D robot in work space W; Right
Figure: Corresponding continuous path in the collision-free configuration space
Cfree; Configurations marked with x and o in Cfree are plotted dark and light in W,
respectively.

a free-flying rigid body is usually allowed to rotate unlimited. Thus, the three-
dimensional configuration space of a free-flying rigid body in the plane is given as
C = R

2 × S which can be visualized as a hollow cylinder. The configuration space
of a free-flying rigid body in W = R

3 is six-dimensional, namely R
3 × SO(3). For

an in-depth discussion of C-topology, see (LaValle 2004).

Returning to the problem of path planning, the initial and the goal configuration
of the agent are represented by two points in C. A continuous path in C corresponds
to a continuous motion of the agent in W and, accordingly, a continuous path in
Cfree corresponds to a collision-free motion in W, connecting the initial with the
goal configuration. Thus, all path planning problems, that looked so different at
first glance, can be solved by finding a continuous path for a point like agent in
Cfree. Figure 2.2 shows snapshots of a continuous motion of the 2D robot and the
corresponding continuous path in Cfree.

An important concept of path planning is completeness. A path planning algo-
rithm is said to be complete if, for any planning task, it returns a feasible path or
the correct answer that no feasible path exists in finite time. Complete algorithms
exist, but their area of application is limited to very simple problems as the under-
lying ”generalized mover’s problem” is shown to be PSPACE hard (Latombe 1991).
A weaker concept is probabilistic completeness. A path planning algorithm is called
probabilistically complete if, for the case that a feasible path exists, the probability
that the algorithm solves the problem approaches one as computation time goes to
infinity. The biggest drawback of a method which is only probabilistically complete
is the fact that it can not decide whether a problem is not solvable. If a proba-

2.1. PROBLEM FORMULATION 11

bilistically complete method is used on an unsolvable problem, it will simply run
forever.

2.1.2 Holonomic vs. Nonholonomic Path Planning

In the basic path planning problem, dynamics of the agent are neglected. The time
dimension is modelled implicitly by implying that successive configurations of a
planned path have to be traversed one after another. As there are no constraints
on the dynamics, the agent is free to move in any direction in C, aside from possible
restrictions due to configuration space obstacles. This is referred to as holonomic
path planning. In this thesis, we will only consider planning for holonomic path
planning problems.

There might exist kinematic constraints that restrict the possible motions of
an agent. In the field of path planning, typically three kinds of constraints are
considered:

• holonomic constraints

• nonholonomic constraints

• kinodynamic constraints

Holonomic constraints are equality constraints among the parameters of a con-
figuration. A holonomic constraint reduces the dimension of C by one but the
problem stays holonomic. The concept of holonomic constraints can be visualized
using the articulated 2D robot shown in Figure 2.1. The base including the shoulder
of the robot is not able to move by any means. Thus, we do not have to plan any
actions for the base. The remaining part of the robot consists of two rigid links –
two rigid bodies. Consequentially, we can think of the planning problem as a multi
rigid body problem, where the two links are able to translate and rotate freely in
W = R

2. According to this, each link has 3 dof giving rise to a configuration space
of dimension 6. Though, the revolute joint between the inner link and the shoulder
determines two holonomic constraints, namely that the x- and y-coordinates of the
joint position on the link have to coincide with the x- and y-coordinates of the joint
position on the shoulder. If the reference point on the inner link is chosen at the
joint location, this is easy to see. Otherwise, if the reference point is chosen, for
example, as the center of the link, at a distance of dx1 and dy1 from the joint in
upright position, the holonomic equality constraints can be solved for the position
of the reference point.

xrp1
= xbj + dx1 sin(α)

yrp1
= ybj + dy1 sin(α)

12 CHAPTER 2. PATH PLANNING – AN OVERVIEW

where xrp1
, yrp1 is the position of the reference point and xbj , ybj is the position of

the base joint. When α is given and the position of the reference point calculated,
the position of the joint connecting link one and link two is also fixed (xlj , ylj).
Similar to the first link, the position of an arbitrarily chosen reference point on the
second link can be calculated using

xrp2
= xlj + dx2 sin(α + β)

yrp2
= ylj + dy2 sin(α + β).

Nonholonomic constraints involve not only the state but also state derivatives.
According to the definition in (Latombe 1991) a nonholonomic constraint is a non-
integrable scalar constraint of the form

G(q, q̇, t) = 0,

where G is a smooth function of the configuration q, its derivative q̇ and time.
Nonintegrability implies that the derivative parameters q̇ can not be eliminated by
integration. A nonholonomic constraint does not reduce the dimension of C but
restricts the set of possible motions in C. An illustrative example is a car-like robot
as can be seen in Figure 2.3. It can take any position and any orientation in the
plane. Thus, its configuration space is three-dimensional. But, due to nonholonomic
constraints, the space of possible differential motions in C is only two-dimensional,
namely position changes along the steering direction and orientation changes.

Kinodynamic constraints additionally include constraints on state accelerations.
Path planning problems involving nonholonomic or kinodynamic constraints are
called nonholonomic or kinodynamic path planning problems, respectively.

φ

φ

θ

R

x

y
R

R

x

y

Figure 2.3: Car-like robot with nonholonomic constraint: − sin θ dx+cos θ dy = 0

2.2. CLASSICAL PATH PLANNING METHODS 13

2.2 Classical Path Planning Methods

Here, we present the three most successful classical approaches to robot path plan-
ning,

• Cell Decomposition

• Roadmap Methods

• Potential Field

For each approach, we present the basic ideas and a few different realizations.
For these methods, an explicit representation of C is assumed to be known. See
(Latombe 1991), for an extensive overview on the field of classical path planning.

2.2.1 Cell Decomposition

The idea behind cell decomposition methods is to decompose the configuration
space C into a number of disjoint sets, called cells. An important element of cell
decomposition methods is the connectivity graph G that captures the structure of
C. Each cell is represented as a node in this graph. Two nodes are connected by
an edge if and only if the two corresponding cells are adjacent.

Cell decomposition methods can be classified as exact or approximate. The
major difference is that exact methods generate an exact decomposition of the free
configuration space Cfree, whereas approximate methods try to approximate the
structure of C with cells that have a simple shape like, for example, rectangloids.
Using these simple shapes, it is rarely possible to capture the exact shape of Cfree.

Exact Cell Decomposition

Characteristic for exact cell decomposition methods is that the union of all cells
equals the closure of the collision-free configuration space. A path connecting an
initial with a goal configuration is found by searching G for a cell path connecting
the cell containing the initial configuration with the cell containing the goal config-
uration. Such a cell path is also called channel. Then, as the interior of the channel
lies entirely in free space, a continuous path from the initial to the goal configuration
can be found. Figure 2.4 shows an example of trapezoidal decomposition.

Approximate Cell Decomposition

In approximate cell decomposition methods, all cells have a simple predefined
shape.The standard cell shape is the rectangloid, in n dimensions defined by

{(x1, . . . , xn) | x1 ∈ [x′
1, x

′′
1], . . . , xn ∈ [x′

n, x′′
n]}

14 CHAPTER 2. PATH PLANNING – AN OVERVIEW

The most commonly used decomposition technique is the 2m-tree decomposi-
tion, where m is the dimension of the configuration space. A cell that is not entirely
contained in Cfree or the complement of Cfree in C, Cobst, is called mixed and is split
up into 2m subcells. These are then recursively refined in the same manner until
a path in G has been found or a given minimum resolution is reached. This indi-
cates that the complexity of these algorithms grows exponentially in m constraining
the applicability for planning in high-dimensional spaces. A visualization of this
approach is shown in Figure 2.4.

Figure 2.4: Left Figure: Exact cell decomposition, Cfree exactly decomposed into
trapezoids; Right Figure: Approximate cell decomposition, mixed cells are divided
until a series of free cells connects the start with the goal cell; free cells: light gray,
obstacle cells: dark gray, mixed cells: white, obstacles (- -)

2.2.2 Roadmap Methods

The basic idea of roadmap methods is to create a roadmap that reflects the connec-
tivity of Cfree. If such a roadmap exists for a given configuration space, the problem
of solving a path planning query is reduced to connecting the initial and the goal
configuration to the roadmap. If both configurations can be connected to the same
connected component of the roadmap, a feasible path is found by simply following
the path in the roadmap. Otherwise, if the connectivity of the roadmap correctly
reflects the connectivity of Cfree, no feasible path exists. To construct the roadmap,
several approaches have been proposed.

For a set of polygonal configuration space obstacles S in the plane it can be
shown that the shortest path from any initial configuration to any goal configuration
is polygonal and its inner vertices are vertices of S (de Berg et al. 1997). Taking the
vertices of S as the nodes of the roadmap and connecting two nodes by a straight

2.2. CLASSICAL PATH PLANNING METHODS 15

line path if this is collision-free, yields an optimal roadmap. Optimal in the sense
that the inner edges of the optimal polygonal path are contained in the roadmap
and it remains only to connect the initial and the goal configuration to the ”right”
vertices. The roadmap built in that way is called the visibility graph of S. It is
actually sufficient to plan on the reduced visibility graph, which is obtained by only
considering those edges that are tangent to the obstacle at both vertices. An edge
is called tangent to an obstacle at a vertex if the infinite line through this edge is
tangent to the obstacle in a neighborhood around the vertex. An example is shown
in the left part of Figure 2.5. It clearly depends on the path planning problem at
hand whether this definition of an optimal roadmap is suitable or not. Aside from
trivial problems, where the straight line path between initial and goal configuration
is collision-free, the minimum clearance between the agent and an obstacle along the
shortest path is zero, by construction of the roadmap. This is clearly undesirable,
for example, for robotic path planning problems, where it is often reasonable to
keep a safety margin.

For this kind of problems, it might be preferable to choose a path that maximizes
the clearance. The so called Voronoi diagram of the configuration space is the set
of collision-free configurations, whose minimal distance to Cobst is achieved with at
least two points on the boundary of Cobst (Latombe 1991).

V =
{

q ∈ Cfree | d = min
q′∈Cobst

dist(q, q′),

∃q′, q′′ ∈ Cobst q′ �= q′′, d = dist(q, q′) = dist(q, q′′)
}

As can be seen from the example shown in the right part of Figure 2.5, if the agent
moves along the Voronoi diagram, it keeps a maximum distance to all C-obstacles.

2.2.3 Potential Field Methods

Potential field methods try to guide the agent from the initial configuration qinit

to the goal configuration qgoal using an artificial potential field. The agent can
follow a virtual force defined at each point by the gradient of the potential field.
Typically, the potential field is composed of one field attracting the agent to the goal
configuration and one field repelling the agent from configuration space obstacles.
Figure 2.6 shows a simple example using a parabolic field with minimum in the
goal state and one repelling from obstacles. As can be seen from the color coding,
the global optimum is located at the goal state. Nevertheless, the agent might not
find its way to the goal but get stuck in a local minimum. If the attractive and
the repelling field are simply added together, the total gradient might sum up to
zero at some configurations. If the agent is attracted to such a configuration, it
will stay there, as the virtual force driving the agent vanishes in this point. A
number of different potential fields have been proposed to reduce the number of

16 CHAPTER 2. PATH PLANNING – AN OVERVIEW

Figure 2.5: Left Figure: Roadmap obtained from reduced visibility graph, edges
running along obstacles not shown, all obstacle edges that are not in contact with
the configuration space boundary belong to the roadmap; Right Figure: Roadmap
obtained from Voronoi diagram where configuration space boundary is regarded as
obstacle

local minima and the size of their region of attraction, see (Latombe 1991). Another
approach to deal with local minima is the randomized path planner (RPP) proposed
by Barraquand and Latombe (1990). Here, randomization is used in a way different
from the probabilistic methods presented in the next section. The RPP starts a
random walk each time it encounters a local minimum.

2.3 Probabilistic Path Planning Methods

For high-dimensional path planning problems, it is computationally too expensive
to calculate an explicit representation of the configuration space. Probabilistic path
planning techniques have achieved substantial attention throughout the last decade
as they are capable of solving high-dimensional problems in acceptable execution
times. As no explicit representation of C exists, probabilistic methods invoke a
binary collision checker to test whether a specific configuration is feasible. For a
given configuration q, the collision checker simply verifies whether A(q) collides
with an obstacle in W. The two methods that attracted most attention during the
last years are Probabilistic Roadmaps and Rapidly-exploring Random Trees. Both
are probabilistically complete.

2.3. PROBABILISTIC PATH PLANNING METHODS 17

Figure 2.6: Potential field for path planning, attractor at goal state (0.9, 0.9) and
repelling from obstacles

2.3.1 Probabilistic Roadmaps

Probabilistic Roadmap Methods (PRM) (Kavraki et al. 1996, Amato et al. 1998
b, Dale and Amato 2001) usually distinguish between a learning phase and a query
phase. In the learning phase the roadmap is built by randomly sampling the config-
uration space. Those samples that correspond to collision-free configurations form
the vertices of the roadmap. Neighboring vertices are then connected by edges if a
local planner is able to connect the corresponding two configurations by a contin-
uous path in Cfree. The most common local planner simply checks a straight line
path connecting these configurations. In the query phase, the initial and the goal
state are connected to the roadmap, which is then searched for a path connecting
these two states. Figure 2.7 shows a simple 2D example of the learning and the
query phase.

If the environment is static, the roadmap can be reused for further queries.
Therefore, most PRM methods are classified as multiple query methods. Bohlin
and Kavraki (2000) introduced a single query variant called Lazy PRM. In this
approach, the roadmap validation is postponed. The roadmap is built not in the
collision-free configuration space Cfree, but in the whole configuration space C. First
after a path has been found in the query phase, this path is checked whether

18 CHAPTER 2. PATH PLANNING – AN OVERVIEW

it is feasible or not. Thereby, the number of collision checks needed is reduced
drastically, making Lazy PRM favourable especially if collision checking is very
costly. If no path could be found, the roadmap has to be extended.

Figure 2.7: Left Figure: Learning phase – the configuration space is sampled;
collision-free samples x, colliding samples o; Right Figure: Still in the learning
phase, neighboring collision-free samples are connected by a straight line path to
form the roadmap, colliding samples are discarded; query phase – the initial and
goal configuration are connected to the roadmap, which is then searched for the
shortest path connecting these two configurations.

Difficulties arise for PRM methods when the solution path has to pass through
a narrow passage. The probability that a random sample falls inside this passage
is very low. Thus, the number of samples that have to be drawn gets prohibitively
large. Obviously, the connectivity of the roadmap has to reflect the connectivity of
the free configuration space Cfree to be able to solve path planning problems. Thus,
current research focusses on improving the connectivity of the roadmap while at
the same time keeping down the number of nodes.

To cope with this problem, several variations and extensions have been proposed.
Morales et al. (2003) propose to add a connected component connection step after
the roadmap is constructed in the learning phase. The main focus is not on guiding
new samples to difficult areas, but trying to connect nodes in different connected
components. Hsu et al. (1998) try to find narrow passages by dilating the free
space. They first allow for a small penetration of the agent into an obstacle to
construct the roadmap. Then, the colliding nodes are retracted to Cfree by local
re-sampling.

Another important aspect is that the number of nodes in the roadmap should
not grow too large. Many samples in large open regions of Cfree typically do not
enhance the connectivity of the roadmap and are therefore almost useless. If the

2.3. PROBABILISTIC PATH PLANNING METHODS 19

connectivity of the roadmap is not sufficient, uniform random sampling will mainly
produce more samples in large open regions while only rarely finding a valuable
sample in a difficult part of Cfree. Siméon et al. (2000) propose visibility based
roadmaps, where a collision-free sample is added as a node to the roadmap only
if it is not visible by any other node or if it is visible to at least two nodes from
different connected components. In this context, two nodes are visible for each
other if a local planner is able to connect them by a feasible path, e.g., the straight
line path is collision-free.

In (Boor et al. 1999) a Gaussian sampling strategy is introduced to keep only
free samples that are close to configuration space obstacles. A maximum distance
is chosen according to a Gaussian probability distribution. In a related approach,
Aarno et al. (2004) bias the probabilistic sampling using a potential field. As the
potential field is generated in the workspace, it does not suffer from the possibly
high dimensionality of C. Each sample in C is not only checked for collision, but
for its correspondence in W, the workspace potential field is integrated over some
control points. In this way, a configuration space potential is approximated which
is then used to decide whether or not a sample is important enough to keep. Hsu et
al. (2003) classify a sample as important only if it passes the bridge test. The bridge
test stands for finding colliding samples to both sides of a collision-free sample in
a random direction at a short distance. Thus, the line segment connecting the
two colliding configurations can be seen as a bridge from one C-obstacle to another
hovering over the collision-free sample. Consequentially, mainly samples in narrow
regions of Cfree remain. Kurniawati and Hsu (2004) try to identify narrow passages
in C based on a tetrahedralization of W and sample these regions to find collision-
free samples.

2.3.2 Rapidly-Exploring Random Trees

Another approach to probabilistic planning are Rapidly-exploring Random Trees
(RRTs)(LaValle 1998). In the basic RRT algorithm a tree is grown from the initial
configuration to explore Cfree. In each step a random sample in C is taken. Starting
from the nearest vertex in the tree a new edge pointing at the sample is added.
This nearest vertex expansions implicitly adds a Voronoi bias to the configuration
space exploration. As the vertices on the boundary of a tree have the largest
Voronoi regions, they will frequently be chosen for expansion. Thus, large free
areas are explored rapidly by RRT methods. Figure 2.8 shows a 2D example for a
bi-directional RRT method. Two trees grow from the initial and goal configuration
to explore the free configuration space Cfree. When both trees can connect to the
same collision-free configuration, a feasible path is found.

One of the most efficient variations of this algorithm is RRTConCon (LaValle
and Kuffner 2000). Here, one tree is grown from the initial configuration and an-
other from the desired goal configuration. In every step both trees try to connect

20 CHAPTER 2. PATH PLANNING – AN OVERVIEW

Figure 2.8: Left Figure: trees grow from the initial and goal configuration to
explore Cfree; Right Figure: after some more iterations, both trees can connect to
the same sample – a feasible path is found

to the same state in Cfree. Thus, a path is often found very quickly at the cost
of diverging a lot from an optimal path. This can be corrected by a subsequent
smoothing step. The major advantage of RRT-like methods is that they are per-
fectly suitable for nonholonomic and kinodynamic planning problems (LaValle and
Kuffner 2001). For these types of problems, PRM and the proposed PCD method
face the difficulty that connecting two states by an edge raises a possibly nontrivial
control problem.

Also RRT planners experience difficulties if narrow passages are crucial to the
connectivity of the configuration space. However, the problems faced by RRTs
differ slightly from those for PRM. For RRT planners the main difficulty is to find
an entrance to the passage. Once it contains a sample inside the passage, it can
grow incrementally through it. But, on the other hand, the incremental process
makes the problem of finding an entrance a lot harder. If a collision-free sample
inside the passage is found, which can not be connected to the existing trees, it is
thrown away. Strandberg (2004 a) proposes to keep these valuable samples and let
them spawn so called local trees which will potentially connect to the global start
or goal tree later on.

Related concepts that also explore the configuration space by growing a tree are
Expansive Space Trees (Hsu et al. 2002) and the Ariadne’s Clew algorithm (Mazer
et al. 1998).

2.3. PROBABILISTIC PATH PLANNING METHODS 21

2.3.3 Roadmaps of Trees

In an attempt to combine PRM and RRT, Akinc et al. (2003) propose a powerful
multi-level path planner. Here, RRT serves as a local planner to a PRM-like planner
that keeps track of the global planning problem. The high level planner divides the
problem into subtasks which are than passed to the local – low level – planner for
solving. As the relatively large subproblems can be assigned to different processors,
the method achieves high parallel performance. Impressive results where obtained
on a number of challenging path planning problems.

2.3.4 De-randomizing Probabilistic Path Planning Methods

Noticing the success and performance of probabilistic path planning methods, a
question that naturally arises is: To what extent is the performance of these meth-
ods due to the randomness involved?

In the case of PRM, LaValle et al. (2004) showed that the original probabilis-
tic approach does not provide any advantages over deterministic sampling. Both,
quasi-random sampling with Hammersley or Halton sequences and lattice based
roadmaps are beneficial in terms of discrepancy and dispersion. These benefits are
due to the fact that standard uniform samples tend to accumulate in some areas,
while other areas are sparsely covered.

Lindemann and LaValle (2004) presented RRT-like planners that are based on
deterministic sampling. In this context the choice of deterministic sequence that
provides the samples is very important to maintain the Voronoi bias. Halton points
were used in this case as well.

Chapter 3

Probabilistic Cell Decomposition

In this chapter, we present a novel approach to probabilistic path planning called
Probabilistic Cell Decomposition. It combines the concept of probabilistic sampling
with the underlying method of cell decomposition.

3.1 Introduction

As stated in Section 2.2.1, the idea behind cell decomposition methods is to parti-
tion C into disjoint cells. Unfortunately, the deterministic methods rely heavily on
an explicit representation of the configuration space. Though, for high-dimensional
problems, the computation of this representation is too expensive to be practical.
Cell decomposition methods can be classified as exact and approximate. PCD is
based on the latter, where all cells have a predefined shape. The most commonly
used decomposition technique is the 2m-tree decomposition, where m is the dimen-
sion of the configuration space. A cell that is not entirely contained in Cfree or the
complement of Cfree in C, Cobst, is called mixed and is split up into 2m subcells.
This subdivision technique is impractical for high-dimensional problems. A mixed
cell in a, for example, twenty-dimensional configuration space had to be split up
into more than one million cells.

As no explicit representation of the configuration space is available, it is never
known, whether a cell is entirely free or entirely contained in Cobst. To handle this
problem in PCD, a cell is assumed to be free until disproval. A cell is called possibly
free, as long as all collision checks of samples in this cell have negative outcome.
Accordingly it is called possibly occupied if all checks are positive. If both collision-
free and colliding samples occur in the same cell, it is named known to be mixed
and has to be split up into possibly free and possibly occupied cells. This implies
unfortunately that a cell path in G does no longer automatically deduce an existing

23

24 CHAPTER 3. PROBABILISTIC CELL DECOMPOSITION

WHILE (!success)

IF (path <- findCellPath(G))

IF (checkPath(path))

success <- true

ELSE

splitMixedCells

ELSE

q <- randomState(pOccCells)

IF (!collision(q))

splitMixedCells

Figure 3.1: The basic algorithm of PCD

path in Cfree, but the states along a path through this channel have to be checked
for collision.

3.2 Notation

Let us introduce the basic notation. A cell κi might be

• possibly free, i.e. P (κi ⊂ Cfree) > 0

• possibly occupied, i.e. P (κi ⊂ Cobst) > 0

• known to be mixed, i.e. κi �⊂ Cfree ∧ κi �⊂ Cobst

Let κinit and κgoal denote the possibly free cells containing the initial and the goal
configuration, qinit and qgoal, respectively. Note that throughout the decomposition
process these labels might be passed to different cells. The nodes of the connectivity
graph G are the possibly free cells. Two nodes are connected by an edge if and only if
the corresponding cells are adjacent. The set of cells corresponding to the connected
component of G containing κinit is called the start region Rinit, accordingly for the
goal region Rgoal. A path in G connecting κinit and κgoal is called a channel or cell
path.

3.3 The Basic Algorithm

The basic algorithm of PCD is given in Figure 3.1. The algorithm is initialized
with κinit = κgoal = C. Thus, initially the whole configuration space is covered by

3.3. THE BASIC ALGORITHM 25

one cell. As the only two samples inside this cell, qinit and qgoal, are collision-free,
the cell is labelled as possibly free.

In every iteration, G is searched for a channel connecting κinit with κgoal. When-
ever such a channel exists, states along a path through these cells connecting qinit

with qgoal are checked for collision. If no collision occurs, a feasible path has been
found. Otherwise, a cell that was marked as possibly free contains free and colliding
states. Thus, this cell has to be marked as known to be mixed and split up into
possibly free and possibly occupied cells.

If no such channel exists in G, check random states in the possibly occupied cells
for collision. If the test is negative, a cell that was marked as possibly occupied
contains free and colliding states and has to be relabelled and split up. In this
manner, the possibly occupied cells are refined until a path in G has been found.
All states that are checked for collision, either in the sampling step or while path
checking, are stored as samples in the respective cell. In the following, the important
parts of the algorithm are described in some more detail.

3.3.1 Cell Shape

We choose to decompose the configuration space into rectangloid cells as the advan-
tages of this shape clearly outrange existing drawbacks. Trivially, any rectangloid
is convex. Furthermore, it is defined by only 2n values (one upper and the opposing
lower vertex), which is beneficial with respect to both memory consumption and
execution time. In contrast, an arbitrary n-dimensional polytope with the same
number of vertices as the corresponding rectangloid is defined by n × 2n values.
Starting with rectangloid cells aligned to the coordinate axes, the cells obtained
by splitting a cell orthogonal to any coordinate axis are trivially also rectangloid.
The check, whether two cells are adjacent, is simplified considerably as it is di-
vided up into two easily verifiable parts. First checking if one of the coordinates
of the upper vertex of one cell is equal to the respective coordinate of the lower
vertex of the other cell and - if so - check if the measure of the shared area on the
(n-1)-dimensional hyperplane orthogonal to this coordinate axis is larger than zero.

An obvious drawback of the rectangloid cell shape is that even geometrically
simple C-obstacles can hardly ever be made up by a finite number of cells. Addi-
tionally, the resulting path planner is not independent of the internal alignment of
the problem. This second argument will vanish if the obstacles in C are mainly not
oriented in a common direction.

3.3.2 Graph Search

The possibly free cells form the vertices in a non-directed, possibly not connected
graph, the connectivity graph G. Two adjacent cells are connected by an edge.
Adjacency in this context is defined as indicated above. The (n-1)-dimensional

26 CHAPTER 3. PROBABILISTIC CELL DECOMPOSITION

measure of the shared area on the boundary between two cells has to be strictly
positive. This allows for multiple edges connecting the same two vertices depending
on the topology of the configuration space. The cost assigned to an edge is the
distance between the two centers of the cells according to some metric. Figure 3.2
shows a cell decomposition and the corresponding connectivity graph G. In each
iteration, A*-search (Luger and Stubblefield 1989) is used to find an optimal channel
φ connecting κinit with κgoal.

Figure 3.2: Left Figure: Cell decomposition; Right Figure: Corresponding con-
nectivity graph G with three connected components.

The main idea of A* is to employ an estimate of the goal distance – given by
the heuristic h – for each node in the graph to reduce the number of nodes that
have to be evaluated. It maintains a priority queue of already visited nodes, sorted
by the sum of the cost along the shortest known path from the start cell to the
node (g) and its goal distance estimate (h).

In each iteration of A*, the node with the lowest key value in the queue gets
expanded. All of its neighbors that have not been visited yet get placed in the
priority queue. Those that have been visited before are checked whether a shorter
path to the start node has been found. In this case, their position in the priority
queue gets updated.

To ensure that A* finds the optimal path, h has to be a underestimator of the
true goal distance, it has to fulfill h(κi) ≤ h∗(κi) for all i, where h∗ is the actual cost
along the shortest path in the graph connecting κi with κgoal. The heuristic used
in PCD is h(κi) = M(κi, κgoal), where M is the Euclidian metric, which obviously
satisfies this condition. Another heuristic h̄ is called to be more informed than h if
h̄(κi) > h(κi) for all i. When using the least informed heuristic h(κi) = 0 for all i,
A* coincides with the ordinary breadth first search.

3.3. THE BASIC ALGORITHM 27

Initially, the start cell gets expanded. An optimal path from κinit to κgoal is
found when the goal cell is visited.

3.3.3 Local Path Planning

Whenever a channel φ = {κinit = κp0
, κp1

, . . . , κpn
= κgoal} connecting κinit with

κgoal in G has been found in the graph search step, a local path planner has to
find a path in Cfree connecting qinit with qgoal. To maintain the iterative structure
of the algorithm, this continuous path may not traverse possibly occupied cells.
Otherwise, when checking this path for feasibility, a collision might be found in
a possibly occupied cell. Then, the path is not feasible, but the new information
about the colliding sample will not lead to a cell split as the cell was already
labelled as possibly occupied. Thus, in the next iteration, the graph search will
return the same channel and the local path planner will check the same continuous
path through these cells. The iterative algorithm gets stuck.

As can be seen in Figure 3.3, connecting the centers of adjacent cells by a
straight line path is ruled out according to these restrictions. The direct connection
of two centers of adjacent possibly free cells might traverse a possibly occupied cell.
Instead, the centers of the shared boundary between two successive cells will be
connected by straight line paths. In an n-dimensional configuration space, two
adjacent cells are separated by an (n-1)-dimensional hyperplane. As the cells are
convex, the path connecting the centers of shared boundaries by a straight line is
guaranteed to lie completely inside the channel of possibly free cells. Thus, to find a
path through a possibly free cell κpi

, the local path planner simply tries to connect
the center of the shared area on the hyperplane separating κpi−1

and κpi
with the

center of the shared area on the hyperplane separating κpi
and κpi+1

by a straight
line. Similarly qinit and qgoal are connected to the center of the shared boundary to
the next cell on φ.

This path in C is then checked for collisions to determine whether it is entirely
lying in Cfree or not. For the moment, this check is done at a number of r dis-
crete points along the path. Observe that for any finite step size between these
points and for arbitrary robot shapes and obstacles this can not guarantee that
the continuous path is collision-free as well. Here adaptive step size methods using
distance measures (Schwarzer et al. 2002) could give certainty at the cost of higher
computational effort.

Discrete point collision checking has been studied in the context of PRM (Amato
et al. 1998 a), (Geraerts and Overmars 2002). Mainly two techniques, incremental
and binary checking, have drawn major attention. The incremental method checks
a path by successively checking configurations at a given step size along the path.
In contrast, the binary method checks the configuration midway on the path and
then recursively uses this technique to check the first and the second half until a
given step size has been reached. In general the binary checking detects a collision

28 CHAPTER 3. PROBABILISTIC CELL DECOMPOSITION

Figure 3.3: Left Figure: Connecting the centers of adjacent cells might lead to a
path not lying entirely in possibly free cells.; Right Figure: Connecting the centers
of the shared boundary of adjacent cells in a channel yields a path entirely contained
in the channel.

faster as it is more likely that colliding states lie in the middle of the path than
close to the collision-free ends. Therefore, binary checking is used within PCD.

3.3.4 Cell Splitting

Whenever a collision-free state is found within a possibly colliding cell or a colliding
state is found within a possibly free cell, this cell has to be marked as known to be
mixed and split up into possibly free and possibly colliding cells.

The requirement for rectangloid cells restricts us to cuts along the coordinate
axes. A cell that is known to be mixed might not be divided into one possibly free
and one possibly colliding cell only, but further splitting could be necessary. An
n-dimensional rectangloid cell that is known to be mixed containing m collision-free
samples and one colliding sample (accordingly vice versa) can be split up into at
most min(2n, m) free cells and one colliding cell.

The strategy used to determine where to cut a cell was finding the nearest
existing sample and then cut orthogonal to the dimension of the largest distance
right in the middle between those two samples. Figure 3.4 shows an example where
a collision-free sample was found in a possibly occupied cell containing several
colliding samples.

3.3.5 Probabilistic Sampling

Whenever a channel is not found, the possibly occupied cells are sampled in order to
refine them and make them better adopt the obstacles in C. In the basic algorithm

3.4. ON PROBABILISTIC COMPLETENESS 29

Figure 3.4: Left Figure: Collision-free sample (o) found in possibly occupied cell
containing several colliding samples (x). Cell is known to be mixed and has to be
split up into possibly free and possibly occupied cells. Right Figure: First split
with respect to the closest colliding sample (upper right), then wrt. lower right
sample, finally wrt. left sample

one sample is drawn in each possibly occupied cell. If this sample happens to be
collision-free, the corresponding cell is known to be mixed and has to be split up
into possibly occupied and possibly free cells.

3.4 On Probabilistic Completeness

In (Lingelbach 2004 b) it was stated that PCD is probabilistically complete and
an outline of the proof was given. Unfortunately, the proof did not formally hold
under the given assumptions. However, we are confident that the conjecture is
correct in a sense that probabilistic completeness can be proven following those
lines of reasoning.

3.5 Example

We will now apply PCD to the example problem frequently used in Chapter 2.
Figures 3.5 and 3.6 show twelve snapshots of the solution process.

Figure 3.5.a Initially, the whole configuration space is covered by one possibly
free cell that contains two collision-free samples, the initial and the goal con-
figuration.

Figure 3.5.b Trivially, a series of possibly free cells is found that connects the cell
containing the initial configuration with the cell containing the goal configu-

30 CHAPTER 3. PROBABILISTIC CELL DECOMPOSITION

ration. The cell path consists of only one cell. Thus, the local planner tries
to connect the initial with the goal configuration by a straight line path. The
first three checked samples are collision-free, the fourth sample is colliding.

Figure 3.5.c A colliding sample has been found in a possibly free cell. Thus, this
cell is no longer possibly entirely free but known to be mixed – it contains
both, colliding and collision-free samples. Consequentially, it has to be split
up into possibly free and possibly occupied cells.

Figure 3.5.d After the cell splitting step, one possibly occupied and two possibly
free cells remain. The left possibly free cell is the new start cell κinit, the
right possibly free cell is the new goal cell κgoal. As the possibly free cells
are not adjacent, the connectivity graph G is not connected and κinit and
κgoal are in different connected components of G. Thus, no cell path can
be found connecting κinit with κgoal. As no cell path could be found, the
possibly occupied cells have to be sampled until a collision-free sample is
found. After finding this collision-free sample, the cell is no longer possibly
entirely occupied but known to be mixed.

Figure 3.5.e The mixed cell is split up into a possibly occupied and a possibly free
cell. Fortunately, incorporating the new possibly free cell, the connectivity
graph G is connected and a cell path from κinit to κgoal can be found. The
local planner tries to find a continuous path from qinit to qgoal through the
cell path. Again it finds a collision, leading to a cell split. Notice the three
collision-free samples found earlier in this cell.

Figure 3.5.f The cell is split up into two possibly free cells and one possibly oc-
cupied cell. The local planner tries to find a continuous path through the
channel and, again, finds a collision.

Figures 3.6.a, 3.6.b, 3.6.c, 3.6.d, 3.6.e After some more iterations, it can be
clearly seen, that the cell decomposition adapts to the obstacles.

Figure 3.6.f Finally, the local planner successfully connects qinit with qgoal.

3.6 Simulation Results

In this section, experimental results are presented for various kinds of problems
followed by an interpretation of these results. The PCD planner presented in this
chapter is tested on maze like problems, rigid body motion planning and path plan-
ning problems for articulated robots. The set of benchmark problems is presented
in Appendix A.

3.6. SIMULATION RESULTS 31

3.6.1 Experimental Setup

The computation times were measured on a 1700 MHz machine with 512 MB of
physical RAM. The algorithm was implemented and tested in the Motion Strategy
Library (MSL) (LaValle 2000). Since the method is based on probabilistic sampling,
the results are not directly repeatable. Therefore, the data we present here is based
on 200 independent runs for each problem. For the execution time we present the
values after which 25%, 50% (median) and 75% of the runs returned a feasible
path. These values are less susceptible to outliers than, for example, the mean.
Furthermore, the median number of collision checks and the median number of
possibly free and possibly occupied cells used is given. As can be seen from the
basic algorithm given in Figure 3.1, the execution time can mainly be divided
into time spent on graph search, local path planning including path verification
and probabilistic sampling. Splitting of mixed cells is accounted for within path
verification and probabilistic sampling depending on which action led to the cell
split. We present the median times spent on these three parts, respectively.

3.6.2 Summary of the Results

The results are shown in Table 3.1. The two 2D problems are solved almost instan-
taneously. The multi rigid body problem needed more than half an hour execution
time in more than 50 % of the runs. Interestingly, the apportioning of computa-
tion time to graph search, local path planning and probabilistic sampling varies
very much for the different problems. This can be explained by the structure of
the problems. The configuration space of the multi rigid body problem, for exam-
ple, is forty-eight-dimensional. Thus, a cell has very many neighboring cells and,
consequentially, the connectivity graph is highly connected. In a highly connected
graph, a cell path from the start to the goal cell is very likely to be found. As
the sampling step is only processed if no cell path was found, the time spent on
probabilistic sampling is negligible compared to the overall execution time. For the
two 2D problems, the average number of neighboring cells is much lower and thus,
after a local path planning step, the probability that G is no longer connected is
much higher.

Another observation that can be made is the difference, whether there are more
possibly free or possibly occupied cells. If the majority of cell splits occurs during
local path planning, there will be more possibly occupied cells. This is due to the
fact that every time a possibly free cell is split, one possibly occupied cell and at
least one – but most often only exactly one – new possibly free cells occur. Else,
when cells are split after probabilistic sampling, more possibly free cells arise.

32 CHAPTER 3. PROBABILISTIC CELL DECOMPOSITION

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: These figures show the progress of PCD on the example problem. A
detailed explanation of all instances is given in Section 3.5. Possibly free cells: light
gray; possibly occupied cells: dark gray; path checked by local planner: black line;
colliding samples: +; collision-free samples: o; qinit, qgoal: ∗; obstacles: - -

3.6. SIMULATION RESULTS 33

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: These figures show the progress of PCD on the example problem. A
detailed explanation of all instances is given in Section 3.5. Possibly free cells: light
gray; possibly occupied cells: dark gray; path checked by local planner: black line;
colliding samples: +; collision-free samples: o; qinit, qgoal: ∗; obstacles: - -

34 CHAPTER 3. PROBABILISTIC CELL DECOMPOSITION

Problem I Problem II Problem III Problem IV Problem V
maze corridor cage mobmanip multi

dim(C) 2 2 6 9 48

t25 0.12 0.09 0.45 0.08 447.6
t50 0.15 0.12 1.16 0.16 1915.1
t75 0.19 0.20 3.36 0.54 4072.3

Checks 3091 3212 4273 238 19821
#κfree 167 124 598 16 1432
#κocc 86 66 497 23 2916
tgs50 0.02 0.01 0.78 0.01 1472.7
tlpp50 0.08 0.06 0.22 0.13 433.2
tps50 0.05 0.06 0.16 0.03 7.3

Table 3.1: Experimental Results; Execution time, number of collision checks and
number of cells; median time spent on graph search, local path planning and prob-
abilistic sampling, respectively

Chapter 4

Modifications of the Elementary

Components of PCD

In this chapter, we investigate the elementary components of PCD further and
propose possible modifications and improvements. For each component, the per-
formance of the different alternatives is then compared using the set of benchmark
problems presented in Appendix A. The components we will investigate are

• Probabilistic sampling

• Graph search

• Cell splitting

• Cell shape.

4.1 Probabilistic Sampling

Whenever a channel is not found, the possibly occupied cells are sampled in order
to refine them and make them better adapt to the obstacles in C. Different ways of
distributing the samples are possible. An evident drawback of the sampling scheme
used in the basic algorithm is that a big possibly occupied cell might block a narrow
passage between the start and the goal configuration. If samples are taken one per
cell, the probability of finding this narrow passage is very low.

4.1.1 Uniform Sampling over Possibly Occupied Volume

Instead, samples could be drawn uniformly distributed over the accumulated volume
of all possibly occupied cells. Using this method, the accumulated volume of all
possibly occupied cells is sampled until a collision-free sample is found. Thus, the

35

36
CHAPTER 4. MODIFICATIONS OF THE ELEMENTARY COMPONENTS

OF PCD

cell where the sample was found has to be split up into possibly free and possibly
occupied cells.

4.1.2 Sampling Interesting Cells

Another point worthy of consideration is if really all possibly occupied cells have to
be sampled. The sampling step is due each time there was no path in G connecting
the start with the goal cell. Thus, the main task for the sampling step is to connect
the two components in G containing the start and the goal cell. The idea here is
two sample only interesting cells. In (Verwer 1990) an uncertain cell (in our case a
possibly occupied cell) is called interesting if it is adjacent to Rinit or Rgoal. As it
turned out in the experiments, for the chosen problems almost all possibly occupied
cells are adjacent to at least one of these regions. Tightening the requirements, a
possibly occupied cell is called interesting if it is adjacent to Rinit and Rgoal. To
maintain probabilistic completeness (see Section 3.4), with a given probability of
p > 0 a sample is drawn in every possibly occupied cell.

Figure 4.1 shows a 2D example where the circle in the lower left corner has
to be connected to the circle in the upper right corner. Those cells marked dark
gray in the left illustration will be omitted by this sampling scheme as they are not
separating the goal from the start region.

Figure 4.1: Left Figure: Cell decomposition after some iterations; Right Figure:
Path found after a few more iterations; obstacles: (−−), possibly free cells: white;
interesting / not interesting possibly occupied cells according to 4.1.2: light gray /
dark gray; path (· · ·)

4.2. GRAPH SEARCH 37

Problem I Problem II Problem III Problem IV Problem V
maze corridor cage mobmanip multi

dim(C) 2 2 6 9 48

Sampling over the accumulated volume
t25 0.10 0.64 1.15 0.13 189.23
t50 0.14 1.46 4.83 0.24 789.34
t75 0.17 6.20 11.18 0.72 2347.83

Checks 2437 13212 11983 272 16163
#κfree 108 462 920 18 1203
#κocc 68 703 1234 26 2680

Sampling interesting cells.
t25 0.09 0.09 0.28 0.06 165.76
t50 0.12 0.12 0.78 0.12 624.86
t75 0.15 0.17 1.59 0.39 1674.03

Checks 2388 2369 3313 238 12074
#κfree 106 78 279 16 1095
#κocc 65 49 415 23 2407

Table 4.1: Experimental results for modifications on probabilistic sampling; Ex-
ecution time, number of collision checks and number of cells for various methods
and problems

4.1.3 Experimental Results

Table 4.1 shows the results for the different sampling schemes. Sampling interesting
cells gave clearly the best performance for all benchmark problems. Sampling over
the accumulated volume does not lead to any efficiency improvements. For the
narrow corridor problem the performance got much worse. This can be explained
by the fact that, while trying to find a path through the narrow corridor, many
small cells are created in the vicinity of the narrow passage. Thus, sampling in
interesting cells and also drawing one sample per cell will lead to many samples in
the region of the narrow corridor. The main advantage of sampling in interesting
cells is the fact that splitting an interesting cell will most likely connect the start
with the goal region, whereas the other two sampling schemes also sample in regions
of C that are not of major importance for the solution process.

4.2 Graph search

The examples from the preceding chapter indicate that up to 75% of the overall
computation time is spent on repeatedly finding a channel connecting κinit with
κgoal. Thus, the efficiency of PCD can be improved considerably by improving the
graph search part.

38
CHAPTER 4. MODIFICATIONS OF THE ELEMENTARY COMPONENTS

OF PCD

4.2.1 The Connectivity Graph

The possibly free cells form the nodes of the non-directed connectivity graph G.
In the following we will denote both a cell and its corresponding node in G by
κi. Two nodes κi, κj are connected by an edge ei,j if the corresponding cells are
adjacent. The cost assigned to an edge ei,j is c(ei,j) = M(κi, κj), where M is a
metric reflecting the distance between the centers of κi and κj .

The structure of G depends very much on the particular planning problem and
the topology of C. Let nneighb(i) denote the number of possibly free cells adjacent
to κi and nneighb the average number of possibly free neighbors in the graph.

Splitting of possibly occupied cells

Possibly occupied cells only get split in the sampling step, that is, if no channel was
found connecting κinit with κgoal. Thus, it is known that prior to incorporating the
new cells, G is disconnected and κinit and κgoal belong to two different connected
components, Rinit �= Rgoal. Furthermore, it is clear that no nodes are deleted from
G but only new nodes are added for each newly arisen possibly free cell. Depending
on the sampling strategy used, such a recent possibly free cell might be further split
up within the same sampling step. This has not to be taken care of as a splitting
of possibly free cells as described later, since G is first evaluated after the complete
sampling step.

Splitting of possibly free cells

Free cells get split when a collision was detected while checking a path through
a channel of possibly free cells. Here, a possibly free cell is split up into one
possibly occupied and up to 2n possibly free cells, where n is the dimension of the
configuration space. Thus, one node is deleted and between one and 2n nodes are
added to G for each split.

4.2.2 Optimal Graph Search

A*-search

In the basic algorithm presented in Chapter 3 in each iteration A*-search (Luger
and Stubblefield 1989) was used to find a path in G.

Between two iterations, only a few cells get split and G does not change very
much. By restarting A*-search in each iteration, a lot of information gathered in the
previous graph search is discarded that might be used in the following run. Thus,
iterative methods like lifelong planning A* (LPA*) (Koenig and Likhachev 2002)
are expected to give improvements compared with repeated A*.

4.2. GRAPH SEARCH 39

Incremental A*-search

In their paper Koenig and Likhachev (2002) present performance improvements of
factor five to ten of LPA* compared to repeated A*. Unfortunately, the setup for
these experiments does not fit the graph search problem occurring in PCD. While
they used a regular eight-connected grid world, where often exist many parallel
paths of the same length, in PCD G is irregular and ties in path length occur only
accidentally. Another difference in the setup is that in (Koenig and Likhachev 2002)
edge costs changed for randomly chosen edges in the graph. Thus, often the optimal
path was not effected at all. In PCD the graph often changes due to collisions in a
previously found channel. Thus nodes along the optimal path are deleted.

In PCD, two different actions will effect G and thus call for a re-computation
of the optimal path. If no path was found in the previous graph search, Rinit got
completely expanded and the shortest path from every node in Rinit to κinit is
known. This knowledge can be taken over to the current graph search step. The
new nodes get placed on the priority queue, if and only if they are adjacent to the
prior Rinit. By expanding these nodes an optimal path will be found if it exists.
Otherwise, Rinit will again get completely expanded, which will be important for
the following sampling step.

When possibly free cells get split after a collision has been found, nodes have to
be deleted from G in addition to the incorporation of new nodes. Since only cells
in a found channel are checked, the corresponding nodes in the graph lie on the
shortest path connecting κinit with κgoal. Thus, at least the start distances of all
cells on the shortest path subsequent to a split cell have to be updated. Depending
on the structure of G, this shadow can be very wide, containing a large number of
cells whose start distance changed. Obviously, the number of cells to be updated
is larger, if the split cell was close to the start cell.

Incremental A* with occasional restart

As stated above, the structure of G depends strongly on the particular planning
problem. Especially the informedness of the heuristic h can vary over a wide range.
Since our goal is to present a general path planner, choosing a suitable heuristic for
a particular problem is not an option. Instead, we propose an adaptive method to
decide, if starting from scratch might be advantageous over incremental search.

If the changes in G are due to splitting of a possibly occupied cell in the sampling
step, new cells have to be incorporated into the graph. No increased start distances
have to be propagated through the graph and thus, the number of nodes expanded
by LPA* is not greater than that of A*. Hence, LPA* is used for graph search after
a sampling step.

When possibly free cells get split and deleted from G, the start distances of all
nodes have to be updated whose shortest path to the start cell passed one of these

40
CHAPTER 4. MODIFICATIONS OF THE ELEMENTARY COMPONENTS

OF PCD

deleted nodes. The complexity of the propagation of increased start distances
is quadratic in the number of neighbors nneighb, which itself increases with the
dimension of C. Thus, if a node far away from the goal node gets deleted and the
increased start distances have to be propagated over many cells, the performance
of incremental A* decreases rapidly.

Since a deleted node κi lied on a previously found optimal path, the shortest
goal distance in the graph is known and we can define the relative informedness of
the heuristic h at this node as

ĥi =
hi

h∗
i

=
hi

ggoal − gi

which is simply the estimated goal distance of node κi using the heuristic h divided
by the shortest path from κi to κgoal found in the graph.

The relative informedness can be seen as a measure of how useful the heuristic h
is, to guide the graph search towards the goal. For a node κi, the optimal value of 1
is obtained only if the path from κi to κgoal is a straight line. Then after expanding
this node, no other nodes will be expanded than those lying on the shortest path.
In general, the relative informedness is higher for nodes closer to the goal.

When the relative informedness of a node to be deleted drops below a certain
threshold, restarting the A*-search might be advantageous over propagating the
changed information through the whole graph. Unfortunately, ĥ is defined using
information that is revoked by deleting the respective node. In general, the changes
made in the graph are not too extensive and ĥi still gives a good measure for the
usefulness of h in this region of the graph.

4.2.3 Suboptimal Graph Search

As the graph search algorithm is used very frequently, the question arises whether it
is necessary to search for an optimal channel every time. It might be advantageous
to trade optimality for speed and use a fast but suboptimal graph search algorithm
like a less informed best-first search (BFS) that utilizes only goal distance to guide
its search. Typically, a close-to-optimal path is found much faster than using A*.
Though, in a worst case, BFS might take more time to obtain a longer path than A*
would need to find the optimal one. This, however, will only happen exceptionally
and the more significant drawback is that the longer path obtained by BFS is in
general more likely to be in collision with obstacles than a shorter one.

Especially for probabilistic methods, changes in one part of the algorithm might
have significant side-effects which, in a worst case, let the overall performance
decrease. Using Incremental A* will not show any of those, since it will give exactly
the same result – the optimal channel with respect to some heuristic. The channel
found by BFS will in general not coincide with the one obtained by A*.

4.2. GRAPH SEARCH 41

Figure 4.2: Left Figure: The point-like agent has to traverse the long narrow
corridors from the lower left to the upper right corner; Right Figure: The C-shaped
agent has to reach the upper right corner of the maze.

4.2.4 Experimental results

As the time spent on graph search is negligible for the two 2D problems and the
mobile manipulation benchmark, we test the different graph search methods on two
other benchmark problems instead. Figure 4.2 shows the two problems taken from
MSL, namely 2dpoint2 and 2dmaze4c, referred to as (i) and (ii), respectively. In
the first problem, the point-like agent has to traverse the long narrow corridor from
the lower left to the upper right corner. The agent is not allowed to rotate. Thus,
the configuration space is two-dimensional. In the second problem, the C-shaped
agent has to reach the upper right corner. The pillars in the middle of the corridor
force the agent to rotate around them. The agent is allowed to translate and rotate
in the plane, giving rise to a three-dimensional configuration space.

We use ”sampling in interesting cells” for all tests. As A*, incremental A* and
incremental A* with occasional restart return exactly the same path, we test them
in parallel. Thus the number of cells, the number of collision checks needed and
the path length is the same for all three methods. The results of the tests can be
seen in Table 4.2. The median execution time and the median time spent on graph
search are given for all four methods and the four problems. Additionally, the path
length is given for the optimal graph search methods and for best-first search.

The performance of incremental A* depends very much on the structure of G.
For the first two problems G is winded, following the shape of the maze. Thus,
the heuristic used by the optimal graph search methods does not provide valuable

42
CHAPTER 4. MODIFICATIONS OF THE ELEMENTARY COMPONENTS

OF PCD

Problem i Problem ii Problem III Problem V
long corridor C-maze cage multi

dim(C) 2 3 6 48

A*-search
t50 24.41 26.07 0.78 624.86

tgs50 3.29 12.52 0.47 458.54
path length 751.2 1393.3 322.2 953.7

Incremental A*-search
t50 24.63 34.87 0.66 453.19

tgs50 3.56 21.34 0.34 287.73

Incremental A*-search with occasional restart
t50 22.68 24.74 0.68 460.56

tgs50 1.90 11.31 0.37 294.79

Best-first search
t50 26.55 21.52 0.52 713.28

tgs50 2.41 6.43 0.18 112.81
path length 748.5 1528.3 349.7 1284.5

Table 4.2: Experimental results for modifications on graph search; Median exe-
cution time, median time spent on graph search and path length

information until the search has come close to the goal cell. Thus, for these prob-
lems, incremental A* is even slower than searching from scratch at each iteration.
Using the switch to restart the incremental A*-search if the relative informedness is
below a certain threshold, gives rise to small improvements compared to repeatedly
running A* and discard the information gained in the previous iteration. For the
rigid body problems, the heuristic provides enough information for incremental A*
to perform better than repeated A*.

For all but the first problem, the path obtained by best-first search is about
10% to 30% longer of that obtained using an optimal graph search method. For
the multi rigid body problem, it can be observed that the overall planning time
increases while the fraction of time spent on graph search drops from 75% to 15%.
This can, again, be explained with the structure of G for this problem. Here, the
connectivity graph is highly connected, leading to a large number of parallel cell
paths connecting the start cell with the goal cell. Thus A* has to expand a very
large number of nodes, whereas best-first search directly heads for the goal cell.
The drawback is a longer path returned by best-first search. As a longer path in
general corresponds to a higher probability of collision, the time gained on graph
search is lost in local path planning and a higher number of iterations needed to
solve the path planning problem.

4.3. CELL SPLITTING 43

α

β

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

α

β

Figure 4.3: Left Figure: Articulated 2 dof Robot colliding with the podium; Right
Figure: Configuration space C, collision-free (light gray) and colliding (dark gray)
states, collision-free sample (o), colliding sample (x) shown in W

4.3 Cell Splitting

The cell splitting step can be adapted if there is some information available about
C-obstacles. This is most evident for multi rigid body problems or path planning
for an articulated robot. If, in a multi rigid body problem, one body collides
with an obstacle, all other configurations corresponding to the same state of this
colliding body will neither be feasible. In particular, it does not help to change
the state of any other body to get rid of this collision. In the same way, the
structure of an articulated robot can be utilized throughout the cell splitting step.
A mobile manipulator usually has a chain-like structure, where a manipulator with
multiple links is mounted on a mobile base. It is intuitively clear that, if for some
configuration the base is in collision with an obstacle, all other configurations with
the same base state will also be colliding. More general, a collision of a link with
the environment can be eliminated only by a movement of this link or one that is
closer to the base. In the same way, a self-collision can only be dealt with by a
relative motion of the two colliding links.

Figure 4.3 shows a 2D example. A 2 dof robot is mounted on a solid podium.
The possible collisions are those of the two links with the podium or the ceiling.
To the right in the same figure, the configuration space is shown. The area of
colliding states around the origin corresponds to collisions of the outer link with
the ceiling. For α < −2.2 or α > 2.2 the inner link collides with the podium. Thus,
regardless of β, the state is colliding. Assume now the whole configuration space
being only one possibly free cell. The colliding sample (x) has been found in the
cell, the closest existing collision-free sample is marked (o). Thus the cell has to

44
CHAPTER 4. MODIFICATIONS OF THE ELEMENTARY COMPONENTS

OF PCD

Problem IV Problem V
mobmanip multi

dim(C) 9 48

t25 0.05 9.11
t50 0.06 21.38
t75 0.08 61.13

Checks 155 4213
#κfree 6 288
#κocc 4 857

Table 4.3: Experimental results for modifications on cell splitting; Execution time,
number of collision checks and number of cells

be marked as known to be mixed and split into possibly free and possibly occupied
cells. According to Section 3, the cell has to be split orthogonal to the dimension of
the largest distance right in the middle between these two samples. This would lead
to a horizontal split orthogonal to the β-axis. Obviously, a vertical split orthogonal
to the α-axis would be much more convenient.

For cell splitting this leads to the following strategy: Find the nearest existing
sample. Split the cell orthogonal to the dimension of the largest distance between
these two samples, where only those dimensions are considered that might lead to an
elimination of the collision. To be able to adapt the cell splitting, more information
about the collision has to be available than just a binary answer. The planner needs
to know which body actually was colliding. The results of tests applying this cell
split adaptation can be seen in Table 4.3.

The number of cells needed to solve the problems is reduced significantly. As a
consequence thereof, the execution time is decreased, too. For the mobile manip-
ulation problem it is advantageous, that the main obstacles like the table and the
chair are low enough. Thus, only the base can collide with the obstacles and this
part of the planning is reduced to the 2D problem of finding a path for the base
towards the shelf.

4.4 Cell Shape

The advantages of a rectangloid cell shape, mentioned in Section 3.3.1, seem to
outweigh possible drawbacks. Thus, instead of proposing alternative cell shapes
and testing their effect on the performance, we will investigate the influence of the
alignment of rectangular obstacles with the split directions. Especially for Problems
I and II, the obstacles are perfectly aligned with the coordinate axes.

In order to investigate the influence of the alignment on the planning perfor-
mance, we rotate a slightly modified version of the two 2D benchmark problems

4.5. SUMMARY OF THE RESULTS 45

0 90 180 270 360
0

0.1

0.2

0.3

0.4

0.5

0 90 180 270 360
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4.4: Left Figure: Rotated benchmark problem I; Right Figure: rotated
benchmark problem II; computation time in seconds plotted vs. rotation angle in
degrees: t25: dashed; t50: solid; t75: dotted

at a resolution of 5 degrees. The modification comprises an inflation of the outer
obstacle ring such that the interior can be rotated. This inflation causes the small
differences in computation time for a rotation angle of zero compared to the results
presented before. For each rotation angle, Figure 4.4 shows t25, t50 and t75 for 200
runs. The sampling method used is sampling in interesting cells and A* is used for
graph search. It can be clearly seen from Figure 4.4 that the planning time is min-
imal for a rotation angle of α = kπ/2, k = 0, . . . , 4. This is rather unsurprising
as for these angles the C-obstacle boundaries are perfectly aligned with the split
directions.

Consequentially, if information about the main orientations of configuration
space obstacles is available, the performance of PCD might be increased by a trans-
formation of C such that the boundaries of configuration space obstacles get aligned
with the coordinate axes. As could be seen in Section 4.3, parts of the configuration
space obstacles of multi rigid body problems and articulated robots are naturally
aligned with the coordinate axes.

4.5 Summary of the Results

Here, we will summarize the results of the preceding sections and propose the
elementary components for a general PCD planner. It should be general in a
sense that for a given problem class, no further information about the problem
is given. We will then compare the performance of the general algorithm to that of
RRTConCon, a very successful variant of Rapidly-exploring Random Trees.

46
CHAPTER 4. MODIFICATIONS OF THE ELEMENTARY COMPONENTS

OF PCD

Restricting the set of cells for sampling to those that are adjacent to the start
region Rinit and the goal region Rgoal gave clearly the best results for the chosen
benchmark problems. We assume that this holds true for most path planning
problems. Therefore, we propose to use sampling in interesting cells in the general
planner.

For the graph search part, the method of choice may depend on the application
at hand. The results obtained for the different methods do not clearly favor any
of them. Best-first search gave good performance at the cost of a longer path.
The performance of the incremental A* search is very much dependent on the
graph structure of the connectivity graph G of the problem. The heuristic switch
deciding when to restart the incremental A* algorithm improved the results for the
degenerated graph search problems. However, the quality of the threshold used may
be problem dependent. As general path planners should contain as few parameters
as possible, that have to be tuned to obtain a good performance, we propose to use
A* even at the cost of slightly worse efficiency.

The cell split adaptation gave rise to major performance improvements, where
applicable. If the problem class reveals information about C-obstacles, as for the
multi rigid body problem and the mobile manipulation benchmark, one clearly
benefits from using this information.

We compare the results obtained by the general PCD planner to those ob-
tained by one of the most successful variants of Rapidly-exploring Random Trees,
namely RRTConCon. This method was presented briefly in Section 2.3.2. An
implementation of the algorithm is distributed with the Motion Strategy Library
(LaValle 2000). Table 4.4 shows the execution time and the number of collision
checks needed for both methods on the five benchmark problems. Additionally, we
give the number of cells needed for PCD and the number of nodes in the trees for
RRTConCon.

The results show that PCD performs well compared with RRTConCon. The
most significant difference appears for the 2D narrow corridor problem. Here, RRT-
ConCon faces the difficulty to incorporate a sample inside the corridor into one of
the trees. Even if it finds a valuable sample inside the narrow passage, it tries to
connect to it most probably through the nibs attached to both ends of the corridor.
Thus, the sample can not be reached by one of the trees. PCD is also consider-
ably faster, where the split adaptation is applicable. One could argue that PCD
needs more information from every collision check to obtain the higher performance.
This is true, but using recent collision checking packages as, for example, PQP, this
information is available at no higher cost.

Compared to the results obtained by the basic algorithm, presented in Chap-
ter 3, major improvements could be made for the three higher-dimensional prob-
lems. The results on the two 2D problems differ not very much.

4.5. SUMMARY OF THE RESULTS 47

Problem I Problem II Problem III Problem IV Problem V
maze corridor cage mobmanip multi

dim(C) 2 2 6 9 48

PCD
t25 0.09 0.09 0.28 0.05 9.11
t50 0.12 0.12 0.78 0.06 21.38
t75 0.15 0.17 1.59 0.08 61.13

Checks 2388 2369 3313 155 4213
#κfree 106 78 279 6 288
#κocc 65 49 415 4 857

RRTConCon
t25 0.38 582.93 1.09 1.36 66.58
t50 0.67 1499.32 2.08 1.81 124.94
t75 1.15 2431.66 3.57 2.42 226.3

Checks 3768 114900 23185 2945 75392
#Nodes 422 25764 550 79 3695

Table 4.4: Experimental Results; Execution time, number of collision checks and
number of cells for a general PCD planner. For RRTConCon, the number of tree
nodes is given instead of cells.

Chapter 5

Path Planning for Mobile

Manipulation – an Application

In this chapter, we present an application of PCD from the field of autonomous
mobile manipulation in a home or office environment. In this field, the ability to
plan its own motions is essential for a robot to be truly autonomous. It has to
react to its environment and carry out user-defined instructions. Nearly every task,
the robot has to accomplish, involves a motion from one configuration to another.
Each time, this raises the question of how to move each joint in a feasible manner,
such that the robot reaches the goal state and avoids collisions with obstacles on its
way. Planning performance is of particular importance as the user wants the robot
to react on a given command without mulling over a feasible path for a while.

5.1 Framework

A typical task for an autonomous service robot could be: ”Get the milk from the
refrigerator!”. The high level “get milk” task can be decomposed into a number of
subtasks on a lower level like:

• open the refrigerator

• get the milk

• place the milk on the table

• close the refrigerator

Each of these tasks can then be divided into even finer grained tasks. The ”open
the refrigerator” task, for example, can be divided into:

• locate the refrigerator

49

50
CHAPTER 5. PATH PLANNING FOR MOBILE MANIPULATION – AN

APPLICATION

• locate the door handle

• approach the door handle

• grasp the door handle

• move the door handle along a specific trajectory

• release the door handle

Executing such tasks requires, among other things, knowledge of different areas
such as software and hardware architectures, low-level and real-time programming,
modeling, automated control, fault-control, human-robot interaction, vision and
perception, localization, mapping and path planning.

At the Centre for Autonomous Systems (CAS) an architecture for integrating
research from different areas into a complete system is under development. The
NoMan (Novel Manipulation) architecture provides a simple to use architecture
for testing ideas on real robots. One of the short term goals of NoMan is to
combine relevant research from different areas into a system capable of navigating
an office environment and performing the “get milk” task. The NoMan project uses
a deliberate/reactive architecture. A simplified version of the NoMan architecture
is shown in Figure 5.1. The architecture presented here excludes some parts that
are not needed for the “get milk” task.

The top layer of the NoMan architecture is the specification layer where tasks are
specified. A task specification can be as simple as a predefined task (for example,
a surveillance robot) or it can be more complex, originating from a human-robot
interaction (HRI) sequence (for example, a verbal speech command or a gesture),
see (Christensen et al. 2001) and (Topp et al. 2004). From the specification layer
a task description is propagated to the task planner. Such a task description could
be Fetch(MILK). Using the knowledge base the task planner then decomposes the
task into sub-tasks. For instance the knowledge base knows that the milk is likely
to be in the refrigerator and the refrigerator is in the kitchen. The task planner
can then use the world model and the path planner to compose a necessary low-
level task description for performing the Goto(KITCHEN) sub-task. This low-level
task description is then fed to the task execution layer. From the low-level task
description the task execution layer starts a set of reactive behaviors and monitors
their progress. In the Goto(KITCHEN) example the reactive behavior would be the
path adaptation behavior, which is composed of an obstacle avoiding and a path
following behavior.

5.2 Path Planning for a Redundant Platform

The platform used in our experiments is composed of a mobile XR4000 base (3
dof), a PUMA 560 arm (6 dof) and a Barrett hand (4 dof). For a given grasp,

5.2. PATH PLANNING FOR A REDUNDANT PLATFORM 51

Task Parameters

Reactive Executer

Task Execution Supervisor

Task Description

Deliberate Layer (min)

Task Execution Layer (s)

Reactive Layer (ms)

Specification Layer

Low-Level Task
Description

Path Adaptation Force Relaxation... Vision Force Laser...

Reactive Behaviours
Low-Level

Control Algorithms
Sensors Dynamics...

Path
Planner

World
Model

Platform
Model

Knowledge
Base

...

Task Planner
Subtask

Decomposition

HRI Predefined Tasks... RRI

Information flow

Part of

Legend

Extract

Grasp
Planner

Figure 5.1: Overview of the architecture for the NoMan system.

52
CHAPTER 5. PATH PLANNING FOR MOBILE MANIPULATION – AN

APPLICATION

the joints of the hand are fixed. Thus, only 9 dof remain. For some tasks that
the robot has to accomplish, there may be additional constraints on a feasible
path. A very common one is, for example, a given end-effector path. If the pose
of the end-effector is given, the inverse kinematics of the platform can be used
to calculate a feasible joint configuration. For a redundant platform, there exist
infinitely many solutions to the inverse kinematics. These can be grouped into
a finite number of self-motion manifolds (Burdick 1989). The joint configuration
can change continuously along such a manifold without affecting the pose of the
end-effector. We therefore propose to perform probabilistic path planning in the
space Cp = s × ps, where s is the progress along the end-effector path and ps is a
parameterization of the self-motion manifold for a given s.

Using the example of opening a refrigerator from Section 5.1, a given grasp,
obtained from the grasp planner (Miller et al. 2003), fixes the position of the
end-effector relative to the door handle. Thus, a given opening angle of the door
determines the pose of the end-effector and consequentially restricts the feasible
configurations of the platform. To open the door, the end-effector has to follow a
path that is defined by the position of the door hinge, the distance between the
door handle and the hinge and the chosen grasp. For the platform described above,
there remain 3 dof after fixing 6 dof by the holonomic constraints of the given end-
effector pose. The rotational axis of the base coincides with the axis of the first
joint of the arm. Together with the fact that the shape of the base is rotational
invariant, if the small gearbox on top of the base cylinder is neglected, we assume
all configurations equivalent for which holds xrot − x0 = const (where xrot is the
base rotation and x0 is the state of the first joint) Consequentially, 2 dof remain
for the self-motion manifold.

The problem can be parameterized in the following way:

• α is the door opening angle, i.e., the progress along the end-effector path

• φ, r give the position of the base relative to the end-effector in polar coordi-
nates

We denote this 3-dimensional configuration space by Cp. For each collision check,
the configuration in Cp has to be mapped to the natural configuration space Cn. For
a given triple (α, φ, r), the position of the end-effector and the base are fixed. The
inverse kinematics of the manipulator then maps the relative base – end-effector
position to a feasible configuration of the manipulator. Thus, in addition to the
binary collision check, there arises another requirement for a configuration x ∈ Cp

to be feasible: the inverse kinematics must have a solution for x on the chosen
manifold. For the PUMA 560 there exist eight self-motion manifolds characterized
by elbow-up / elbow-down, right-arm / left-arm and flip / no-flip.

There may be problems that are not solvable without switching to another
manifold. Thus, a path planning algorithm that maps a Cp configuration to only

5.3. EXPERIMENTAL RESULTS 53

Figure 5.2: Top and side view of the platform with parameterization used for
constrained path planning

one specific manifold can not find a feasible path for this kind of problems. This
can be seen as a limitation of our approach. On the other hand, to switch to
another manifold, the manipulator has to pass a singular configuration like an
outstretched arm. However, in such a configuration the manipulator can not react
to external forces in all directions. Thus, unexpected deviations from the path may
be harmful to the platform. Therefore, it seems natural to avoid these singular
configurations and, consequentially, remain on one manifold. The choice of manifold
is up to the task planner that provides the path planner with a feasible start and
goal configuration. Here, a possible approach could be starting with a standard
manifold or checking random samples on the different manifolds for collision to
obtain a rating of the manifolds.

5.3 Experimental Results

In order to test PCD on the ”fetch milk” problem, we try to solve a series of
subtasks, as possibly given from a task planner, using PCD. The task planner is
not implemented yet, but the subgoals were chosen by hand. This ensures also that
all subtasks are solvable. In a setting with an automated task planner, it had to
be taken into account, that a subgoal might not be reachable from the given initial
position. PCD – as many other probabilistic path planning algorithms – is not able
to decide whether a problem is solvable or not. It simply runs until a feasible path
is found. If no feasible path existed, it would in theory never stop but refine the
cell decomposition. Thus, in a completely automated setting, each path planning

54
CHAPTER 5. PATH PLANNING FOR MOBILE MANIPULATION – AN

APPLICATION

process had to be monitored and possibly terminated after some time concluding
that no path could be found.

The following low level tasks involve a motion of the robot

(i) approach the refrigerator

(ii) open the refrigerator door

(iii) approach the milk

(iv) transfer the milk to the table

(v) approach the open refrigerator

(vi) close the refrigerator door

(vii) return to initial position

Here, opening and closing the refrigerator door implies motions with pre-defined
end-effector paths as mentioned in Section 5.2. In this example, the milk carton
has not been opened yet. Thus there are no additional constraints on the transfer
path (iv). If the motions are sufficiently slow, an open milk carton could have been
modelled using holonomic constraints stating that the carton has to be upright
along the path. For faster motions, the dynamics of the milk in the carton would
imply nonholonomic constraints.

Several snapshots from some of the subtasks are shown in Figure 5.3. In Fig-
ure 5.3.a, the robot is located in its the middle of the kitchen. This is the initial
configuration for subtask (i) and the goal configuration for subtask (vii). Fig-
ure 5.3.b shows the robot opening the door. Observe that the robot maneuvers
itself into a tight corner between the wall, the refrigerator door and the chair. This
gives rise to a relatively narrow passage which the robot has to pass through when
approaching the milk. In Figure 5.3.c, the robot stands in front of the refrigerator
and grasps the milk carton. The next figure shows the robot placing the milk on the
table. Then it returns to the refrigerator (Figure 5.3.e). Here, it has to maneuver
around the chair and, again, pass through the narrow passage between the chair
and the refrigerator door. The last figure shows the robot closing the door.

To compute the different paths, we use the Components for Path Planning
(CoPP), a framework recently developed by Strandberg (2004 b). A* is used for
graph search and the sampling scheme is sampling in interesting cells. For the un-
constrained problems, the cell split adaptation presented in Section 4.3 is exploited.

Table 5.1 shows the execution times for the different subtasks. It can be seen
that planning the whole series takes between 0.7 and 2.5 seconds. That is far less
than executing this series of motions would take at a speed suitable for a service
robot in a home or office environment. Though, as we stated earlier in this chapter,

5.3. EXPERIMENTAL RESULTS 55

Table 5.1: This table shows the execution times for the different subtasks of the
”fetch milk”-task.

subtask (i) (ii) (iii) (iv) (v) (vi) (vii)
dim(C) 9 3 9 9 9 3 9

t25 0.05 0.08 0.23 0.10 0.18 0.09 0.05
t50 0.06 0.12 0.43 0.13 0.41 0.13 0.07
t75 0.07 0.20 0.91 0.25 0.83 0.20 0.08

the subgoals where carefully chosen by hand. If an automated task planner had
been involved, planning of the whole sequence could have taken considerably longer
because of subgoals that are very difficult to reach or even not reachable at all.

The most difficult subtasks are those where the robot has to move through the
narrow passage formed by the chair and the open refrigerator door. Especially the
door is here causing troubles, as it is most probably colliding with one of the outer
links, such that the cell split adaptation can not provide any help.

56
CHAPTER 5. PATH PLANNING FOR MOBILE MANIPULATION – AN

APPLICATION

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Figure (a): initial position; Figure (b): opening the refrigerator;
Figure (c): grasping the milk carton; Figure (d): placing the milk on the table
Figure (e): returning to refrigerator; Figure (f): closing the refrigerator

Chapter 6

Summary and Future Work

In this chapter we will summarize the thesis and give some directions for future
research.

6.1 Summary

Chapter 3

In Chapter 3, we introduced the basic ideas of Probabilistic Cell Decomposition
(PCD). It combines the concept of probabilistic sampling with the underlying
method of cell decomposition. The elementary components of the algorithm are
presented in detail. The performance of the algorithm is tested on the set of bench-
mark problems presented in Appendix A. These problems are chosen from different
fields of application including maze-like problems, rigid body problems and path
planning for a mobile manipulator. The problem dimension ranges from two to
forty-eight.

Chapter 4

In Chapter 4 we proposed several modifications and improvements to the elementary
components of PCD and tested their effect on the overall computation time.

Graph search In the basic algorithm, in each iteration A* is used on the connec-
tivity graph G to compute an optimal channel connecting the start with the
goal cell. As the graph changes only gradually between successive iterations
incremental A* seems to be an option. Unfortunately, due to the structure
of G and the type of changes between successive iterations, using an incre-
mental A* variant led only to marginal improvements. For some problems,
the performance even declined. A heuristic switch when to restart the in-
cremental algorithm gave rise to an increased efficiency. Also non-optimal

57

58 CHAPTER 6. SUMMARY AND FUTURE WORK

best-first search has been tested. Lower computation times face the cost of
longer solution paths. As none of the methods gave rise to considerable im-
provements and the best method – incremental A* with occasional restart –
involves tuning a threshold parameter, we propose to use A* further on.

Probabilistic sampling We investigated several possible ways of distributing sam-
ples in the possibly occupied cells. Best results were obtained by sampling in
interesting cells, where those cells are called interesting that divide the start
region from the goal region.

Cell shape The choice of cell shape is crucial to the performance of the method.
Changes in cell shape would directly effect all other components of the algo-
rithm. Substantial arguments such as simplicity and memory consumption let
us choose rectangloid cells. Therefore, we did not test different cell shapes but
tested the effect of obstacle alignment with the split directions. We rotated
the two 2D benchmark problems gradually and measured computation time
and number of cells needed. Not surprisingly, best performance was achieved
when the obstacles where perfectly aligned with the split directions.

Cell splitting For those problems where applicable, adjusting the directions of
cell splits gave major improvements in computation time and the number of
cells needed to solve the problem. For the mobile manipulation benchmark
the articulated structure of the robot can be utilized to guide the splitting.
The idea that can be exploited in this case is that a collision between a link
and an obstacle can only be removed by a relative motion between this link
and the obstacle. In the multi rigid body problem, similar considerations give
insight that a collision between two free-flying rigid bodies calls for a split
orthogonal to one of the dimensions affecting the pose of these two bodies.

We proposed a general PCD algorithm based on sampling in interesting cells, A*-
search and, where applicable, split adaptation. The performance of this algorithm
was then compared to one of the most successful variants of Rapidly-exploring
Random Trees, namely RRTConCon. The experimental results showed significant
improvements compared with the basic algorithm presented in Chapter 3. On the
set of benchmark problems chosen, PCD was considerably faster than RRTConCon.

Chapter 5

In Chapter 5, we applied the modified PCD algorithm to a series of mobile ma-
nipulation tasks emanating from the given high level command ”place the milk on
the kitchen table”. Here, we focussed on the path planning problem and neglected
issues like manipulation planning, grasp planning and sensor based planning. For
a specific subtask – opening and closing the refrigerator door – the path of the

6.2. FUTURE WORK 59

end-effector was given. We discussed this subproblem briefly and proposed a pa-
rameterization of the constrained problem for the Obelix platform. Planning the
whole series of subtasks takes about 1.5 seconds.

6.2 Future Work

Future work may consider both work on PCD as a general path planning method
and modifications tailored to the field of mobile manipulation.

6.2.1 The PCD Algorithm

In Chapter 4, some modifications to the elementary components of PCD are dis-
cussed. This list is by no means conclusive, but many more modifications are
conceivable. As each change in one component may have negative side effects on
the overall performance, it is very hard to predict whether these modifications will
lead to improvements.

Local Path Planning For a given cell path, the shortest path through this chan-
nel is obtained by solving a convex optimization problem. A shorter path
corresponds in general to a lower risk of collision. It will be interesting to
investigate, whether it is beneficial to spend the time on solving this opti-
mization problem to obtain the shorter path.

Probabilistic Sampling So far, we looked at static features only when deciding
which possibly occupied cell to choose for sampling. The superior sampling
scheme was sampling in those cells that divide the start region from the goal
region. It might be practical to look also at the ”dynamics” and choose cells
in the vicinity of the last cell split or along a previously found but discarded
path.

Furthermore, it is worth investigating whether improvements can be achieved
by not uniformly sampling a chosen possibly occupied cell. Here, one could
think of sampling on or close to the boundary of the cell. The sampling
area can be confined further by only taking those parts of the boundary into
account, where the cell adjoins to a possibly free cell, leading to a higher
possibility of finding a collision-free sample, or to a possibly occupied cell,
may be leading to a reduction of splits nonrelevant to the solution progress.

Cell Splitting In Section 4.3, we discussed a possible cell split adaptation for
problems where information about configuration space obstacles is available.
This adaptation concerns the direction of the split and leads to great improve-
ments where applicable. Another parameter to explore is the location of the
split. In the current algorithm, the mixed cell is split in the middle between

60 CHAPTER 6. SUMMARY AND FUTURE WORK

the two closest samples of opposing type. It might be advantageous not to
split exactly in the middle but shift the split location to one sample or the
other. If the cell is split closer to the collision-free sample, the cell decompo-
sition gets more conservative. If the cell is split closer to the colliding sample,
the cell decomposition gets more optimistic. We assume that, by varying this
location parameter, more load can be put on the graph search and sampling
component or on local path planning and verification of these local paths.

It might also be beneficial to decide with respect not only to the type of
sample, but to take also the type of the cell that gets split into account. The
cell split location can be shifted towards the ”wrong” sample, for example, a
colliding sample found in a possibly free cell. This reduces the number of splits
needed on average per mixed cell at the possible cost of worse adaptation to
configuration space obstacles.

6.2.2 Planning for Mobile Manipulation using PCD

Planning under differential constraints So far, PCD is not particularly suit-
able for nonholonomic path planning. As stated in Section 2.1, differential
constraints naturally arise from the dynamics of an agent. In contrast to the
Obelix example, these differential constraints can not be neglected for many
systems. Even if we look only at the field of robotics, there exist numerous
examples of nonholonomic systems.

UAV The dynamics of Unmanned Aerial Vehicles (UAV) obviously impose
nonholonomic or kinodynamic constraints.

Robotic platforms Most robotic platforms have a differential drive and
support wheels limiting their motions to rotations and forward/backward
driving. Car-like robots additionally have a maximum turning radius
constraining their maneuverability.

The local planner used within PCD has to connect specific configurations
by a feasible path. In presence of nonholonomic constraints, this poses a
possibly nontrivial control problem for each local path. RRT methods avoid
this problem due to their incremental growth. This idea might be applicable
to PCD. Given a channel of possibly free cells, there is no need to connect
pairs of specific configurations but the control problem might be easier to solve
if it incrementally has to connect a specific configuration to a goal region - the
shared boundary between the current and the next cell in the channel. Only
one point to point connection remains to connect to the goal configuration.

Sensor based planning Sensor based planning includes both planning using sen-
sor data and planning such that available sensors can be utilized in an optimal

6.2. FUTURE WORK 61

way. The second point can probably taken care of by a subsequent optimiza-
tion step. For example, an eye-in-hand camera should point on the target
object or a 2D laser scanner could be swept orthogonal to the scanning plane
to obtain 3D information.

Planning using sensor data is a challenging task, even if the world is assumed
to be static. The inaccuracy of the sensors has to be taken into account.
The world model obtained from sensor data has to reflect these uncertainties.
Thus, a collision check might no longer be binary but return a probability
that the given configuration is collision-free. It is not clear at first glance,
how this can be incorporated into PCD. The concept of probably free and
probably occupied cells might however provide handy opportunities.

Sensor data obtained while following the path have to be incorporated in
the world model and the remaining path has to be validated and, if needed,
modified.

For dynamic environments, the problem gets even harder. Are the new sensor
data due to changes in the environment, uncertainties in sensor readings or
even wrong sensor readings? What fraction of the old data is invalidated by
the new data? Building a dynamic world model is not a task for a path plan-
ning algorithm but it has to cope with the problems arising from not knowing
exactly, how the environment looks like or from changes in the world model.
It is a moot point whether the straight forward way of reacting to an updated
world model would work for PCD. First, affected saved configurations had to
be updated and then, the cell decomposition had to be revised according to
the changes. A cell might turn from possibly occupied to mixed or even to
possibly free. In exceptional cases, it might be possible, to merge two cells of
the same type, but in general the complexity of the cell decomposition will
increase.

Appendix A

Benchmark Problems

In this appendix, we present the set of benchmark problems that was used frequently
throughout this thesis. The problems are taken from different fields such as maze
like problems, rigid body planning, planning for a mobile manipulator and multi
rigid body planning.

63

64 APPENDIX A. BENCHMARK PROBLEMS

A.1 2D Maze

Figure A.1 shows the agent in the start configuration. The goal configuration
is located in the upper right corner of the maze. The configuration space for
this problem is only two dimensional as the agent is only allowed to translate but
not to rotate. For this low dimensional problem with polygonal obstacles and a
polygonal agent, it is actually possible to easily calculate Cfree and the optimal
path. This problem is distributed with the Motion Strategy Library (LaValle 2000)
as 2dpoint1.

Figure A.1: Benchmark problem I (2D): The small quadratic agent has to traverse
a maze.

A.2. 2D CORRIDOR 65

A.2 2D Corridor

Here, the small quadratic agent has to pass through a corridor which is only 1.5-
times wider than the agent itself. The nibs on both sides of the corridor make it
very hard for RRT-like methods to find a path through the narrow passage. In the
rare case that a collision-free sample is found inside the corridor, RRT will try to
connect to this sample from the closest existing node in the tree. This will most
likely be separated from the sample by a nib. Thus, the tree can not connect to
the sample and the very valuable sample inside the corridor is discarded.

Figure A.2: Benchmark problem II (2D): The small quadratic agent has to pass
through the narrow corridor.

66 APPENDIX A. BENCHMARK PROBLEMS

A.3 6D Cage

In this problem, the L-shaped rigid body has to escape from the cage. It can
translate within some bounds and rotate freely in the 3D workspace. Thus, its
configuration space is C = [0, 1]3 × SO(3). As can be seen from Figure A.3, there
exist a lot of different paths the rigid body can take. This problem is taken from
the Motion Strategy Library (2dpoint1).

Figure A.3: Benchmark problem III (6D): The eight L-shaped rigid body has to
escape from the cage.

A.4. 9D PICK’N’PLACE 67

A.4 9D Pick’n’Place

In this mobile manipulation benchmark, the robot has to maneuver around the
table and place the tool on the uppermost shelf. On its way to the shelf it has to
pass through a somewhat narrow passage made up by the the chair and the table.
The robot consists of a PUMA 560 arm mounted on a XR4000 base. The base can
rotate and translate freely in the plane. The arm has six degrees of freedom. Thus,
the configuration space of the whole mobile manipulator is nine-dimensional.

Figure A.4: Benchmark problem IV (9D): The mobile robot has to place the large
tool on the uppermost shelf.

68 APPENDIX A. BENCHMARK PROBLEMS

A.5 48D Multi Rods

This high dimensional problem was also taken from MSL (multi3). The eight
rigid bodies have to exchange their positions without colliding with each other on
their path. Each rigid body can move freely in space. Thus, the configuration
space for this problem is composed of the eight individual configuration spaces:
C = SE(3)8. The challenge of this problem is the very high dimensionality of C.
Even if the problem looks trivial to the human eye, it is very tough for a path
planning algorithm. A problem that occurs especially for PCD is that due to the
structure of the configuration space, a cell has very many neighboring cells. Thus,
the connectivity graph G is heavily connected which slows down the graph search
step.

Figure A.5: Benchmark problem V (48D): The eight rigid rods have to exchange
their positions.

Bibliography

Aarno, Daniel, Danica Kragić and Henrik I. Christensen (2004). Artificial potential
biased probabilistic roadmap method. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation.

Aarno, Daniel, Frank Lingelbach and Danica Kragić (2005). Constrained path plan-
ning and task-consistent path adaptation for mobile manipulators. Submitted
to: IEEE International Conference on Advanced Robotics (ICAR).

Akinc, Mert, Kostas E. Bekris, Brian Y. Chen, Andrew M. Ladd, Erion Plakue and
Lydia E. Kavraki (2003). Probabilistic roadmaps of trees for parallel computa-
tion of multiple query roadmaps. In: Proceedings of International Symposium
of Robotics Research (ISRR).

Amato, N. M., O. B. Bayazit, L. K. Dale, C. V. Jones and D. Vallejo (1998 a).
Choosing good distance metrics and local planners for probabilistic roadmap
methods. In: Proceedings of the International Conference on Robotics and
Automation (ICRA). pp. 630–637.

Amato, N., O. Bayazit, L. Dale, C. Jones and D. Vallejo (1998 b). OBPRM: An
obstacle-based PRM for 3D workspaces. In: Proc. Int. Workshop on Algo-
rithmic Foundations of Robotics (WAFR).

Barraquand, J. and Jean-Claude Latombe (1990). A Monte-Carlo algorithm for
path planning with many degrees of freedom. In: Proceedings of the Interna-
tional Conference on Robotics and Automation (ICRA).

Bohlin, Robert and Lydia Kavraki (2000). Path planning using lazy PRM. In: Pro-
ceedings of the International Conference on Robotics and Automation. Vol. 1.
pp. 521–528.

Boor, V., M.H. Overmars and F. van der Stappen (1999). The Gaussian sampling
strategy for probabilistic roadmap planners. In: Proceedings of the Interna-
tional Conference on Robotics and Automation. pp. 1018–1023.

69

70 BIBLIOGRAPHY

Burdick, J. W. (1989). On the Inverse Kinematics of Redundant Manipulators:
Characterization of the Self-Motion Manifolds. In: International Conference
on Robotics and Automation.

Christensen, Henrik I., Danica Kragić and F. Sandberg (2001). Vision for interac-
tion. In: Sensor Based Intelligent Robotics (G.D. Hager, H.I. Christensen,
H. Bunke and R. Klein, Eds.). pp. 51–73. Lecture Notes in Computer Science.
Springer.

Dale, Lucia K. and Nancy M. Amato (2001). Probabilistic roadmaps - putting it
all together. In: Proceedings of the International Conference on Robotics and
Automation (ICRA). pp. 1940–1947.

de Berg, Mark, Marc van Kreveld, Mark Overmars and Otfried Schwartzkopf
(1997). Computational Geometry: Algorithms and Applications. Springer.
BER m2 97:1 1.Ex.

Geraerts, R. and M.H. Overmars (2002). A comparative study of probabilistic
roadmap planners. In: Proceedings of the 5th International Workshop on
Algorithmic Foundations of Robotics (WAFR).

Hsu, David, Lydia E. Kavraki, Jean-Claude Latombe, Rajeev Motwani and Stephen
Sorkin (1998). On finding narrow passages with probabilistic roadmap plan-
ners. In: Proceedings of the 3rd International Workshop on Algorithmic Foun-
dations of Robotics (WAFR).

Hsu, David, Robert Kindel, Jean-Claude Latombe and Stephen M. Rock (2002).
Randomized kinodynamic motion planning with moving obstacles.. I. J. Ro-
botic Res. 21(3), 233–256.

Hsu, David, Tingting Jiang, John Reif and Zheng Sun (2003). The bridge test
for sampling narrow passages with probabilistic roadmap planners. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA).

Kavraki, Lydia, Petr Svestka, Jean-Claude Latombe and Mark Overmars (1996).
Probabilistic roadmaps for path planning in high dimensional configuration
spaces. IEEE Transactions on Robotics and Automation 12(4), 566–580.

Koenig, Sven and Maxim Likhachev (2002). Incremental A*. In: Advances in
Neural Information Processing Systems 14 (T. G. Dietterich, S. Becker and
Z. Ghahramani, Eds.). MIT Press. Cambridge, MA.

Kuffner, James J. and Jean-Claude Latombe (2000). Interactive manipulation plan-
ning for animated characters. In: Proceedings of the Pacific Graphics.

71

Kurniawati, Hanna and David Hsu (2004). Workspace importance sampling for
probabilistic roadmap planning. In: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).

Latombe, Jean-Claude (1991). Robot Motion Planning . Kluwer Academic Publish-
ers.

LaValle, Steven M. (1998). Rapidly-exploring random trees: A new tool for path
planning. Technical Report 98-11. Computer Science Dept., Iowa State Uni-
versity.

LaValle, Steven M. (2000). Motion Strategy Library. Available at
http://msl.cs.uiuc.edu/msl/.

LaValle, Steven M. (2004). Planning Algorithms. [Online]. Available at
http://msl.cs.uiuc.edu/planning/.

LaValle, Steven M. and James J. Kuffner (2000). Rapidly-exploring random trees:
Progress and prospects. In: Proceedings of the 4th International Workshop
on Algorithmic Foundations of Robotics (WAFR).

LaValle, Steven M. and James J. Kuffner (2001). Randomized kinodynamic plan-
ning. International Journal of Robotics Research 20, 378–400.

LaValle, Steven M., Michael S. Branicky and Stephen R. Lindemann (2004). On the
relationship between classical grid search and probabilistic roadmaps. IEEE
Journal of Robotics Research 23(7-8), 673–692.

Lindemann, S.R. and Steven M. LaValle (2004). Steps toward derandomizing RRTs.
In: Proceedings of the Fourth International Workshop on Robot Motion and
Control (RoMoCo). pp. 271–277.

Lingelbach, Frank (2004 a). Path planning for mobile manipulation using Proba-
bilisitic Cell Decomposition. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Lingelbach, Frank (2004 b). Path planning using Probabilisitic Cell Decomposi-
tion. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

Luger, George F. and William A. Stubblefield (1989). Artificial Intelligence and
the Design of Expert Systems. Benjamin/Cummings.

Mazer, E., J. M. Ahuactzin and P. Bessiere (1998). The Ariadne’s Clew algorithm.
Journal of Artificial Intelligence Research 9, 295–316.

72 BIBLIOGRAPHY

Miller, Andrew T., Steffen Knoop, Henrik I. Christensen and Peter K. Allen (2003).
Automatic grasp planning using shape primitives. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). Taipai.

Morales, Marco, Samuel Rodŕıguez and Nancy M. Amato (2003). Improving the
connectivity of PRM roadmaps. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). Taipai. pp. 4427–4432.

Nieuwenhuisen, D. and M.H. Overmars (2002). Motion planning for camera move-
ments in virtual environments. Technical Report UU-CS-2003-004. Utrecht
University: Information and Computing Sciences. Utrecht, the Netherlands.

Pettré, J., Thierry Siméon and Jean Paul Laumond (2002). Planning human walk
in virtual environments. In: Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Vol. 3. pp. 3048–3053.

Schwartz, J.T. and M. Sharir (1983). On the piano movers’ problem: I. the case
if a two-dimensional rigid polygonal body moving amidst polygonal bariers.
Communications on Pure and Applied Mathematics 36, 345–398.

Schwarzer, F., M. Saha and J.C. Latombe (2002). Exact collision checking of robot
paths. In: Proceedings of the 5th International Workshop on Algorithmic
Foundations of Robotics (WAFR).

Siméon, T., Jean-Paul Laumond and C. Nissoux (2000). Visibility based probabilis-
tic roadmaps for motion planning. Advanced Robotics Journal .

Singh, Amit Pal, Jean-Claude Latombe and Douglas L. Brutlag (1999). A motion
planning approach to flexible ligand binding. In: Proceedings of the Sev-
enth International Conference on Intelligent Systems for Molecular Biology.
pp. 252–261.

Song, Guang and Nancy M. Amato (2001). Using motion planning to study protein
folding pathways. In: Proceedings of the fifth annual international conference
on Computational biology . ACM Press. pp. 287–296.

Strandberg, Morten (2004 a). Augmenting RRT-planners with local trees. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA).

Strandberg, Morten (2004 b). Robot Path Planning: An Object-Oriented Ap-
proach. PhD thesis. KTH, Royal Institute of Technology.

Sundaram, S., I. Remmler and N. Amato (2001). Disassembly sequencing using a
motion planning approach. In: Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA).

73

Topp, Elin A., Danica Kragić, Patric Jensfelt and Henrik I. Christensen (2004).
An interactive interface for a service robot. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

Verwer, B J H (1990). A multiresolution work space, multiresolution configura-
tion space approach to solve the path-planning problem. In: Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA).
pp. 2107–2112.

