M. ANCONA*, L. DE FLORIANI* AND J. S. DEOGUN†

Istituto per la Matematica Applicata del C.N.R., Via L. B. Alberti 4, 16132 Genova, Italy [†] Department of Computer Science, University of Nebraska, Lincoln, NE 68588, U.S.A.

definition of path in such a structure is given. The relationship between structured paths and canonical ones in the graph represented by a structured graph is investigated. Algorithms to construct structured paths and to compute a structured In this paper we investigate the path problem in a structured graph. The concept of structured graph is defined, and a formal detail levels. a graph at variable a representation of of graphs which provides path from a given canonical one are presented. a hierarchy structured graph is 7

Received December 1984

1. INTRODUCTION

Hierarchical graph models have been used as a tool for the design and analysis of systems in a variety of disciplines. In Ref. 4 the authors study a hierarchical graph structure, called structured graph,¹ at an abstract level, and develop a formal notation for such a structure and its properties. A structured graph is defined, intuitively, as a graph model, in which arcs or vertices can in turn represent structured graphs, thus leading to a hierarchy of graphs, in which higher-level graphs correspond to a greater degree of detail in the graph model specification.

Structured graphs find application in VLSI system design,^{8,10} computer network description and analysis,^{5,13,15} Petri nets,¹⁴ flow graphs and software system models,^{6,16} project network analysis,² and the development of parallel algorithms for graph manipulation.¹² The main motivation to the use of structured graphs lies in the possibility of a modular and structured approach to the development of large graph-based models as demonstrated by the use of a system for large-size graph manipulation based on structured graphs developed by two of the authors.³ Essentially, structured graphs combine the two concepts of substitution decomposition of a digraph^{9,11} and of modular representation at different levels of abstraction.

A structured graph is defined as a pair $\gamma = (\mathscr{G}, T)$, where $\mathscr{G} = \{G_i | i = 1, 2, ..., n\}$ is a finite family of graphs, called components of γ , and T is a rooted tree describing the parent-child relationship among the elements of \mathscr{G} . The notion of structured graph naturally leads to the concept of structured solution. A structured solution to a given graph problem in the graph represented by a structured graph is a solution which conforms to the hierarchical organisation of the structured graph, in such a way that a confinement of this solution to any component in the hierarchical representation is a well-defined solution for that component. In this paper we study the properties of paths in structured graphs. In particular, we define the concepts of path in a structured graph γ , called completely expanded graph associated with γ . Structured paths are the basic tool for studying path problems in models based on structured graphs. For instance, when applying a structured paths correctly describe interconnection paths among system component, and so on. Similarly, in computer network

analysis, structured paths describe main communication paths among clusters, and inside each cluster among subclusters or lower-level elements. These applications motivate the study of the properties of structured paths and of the relationship between structured and canonical paths in a graph admitting a hierarchical representation in a structured graph form.

The remainder of this paper is organised as follows. In Section 2 the definition of structured graph is introduced, and several concepts and properties related to structured graphs are developed. In Section 3 the definition of path in a structured graph is given, and Section 4 presents properties and algorithms related to paths. Section 5 summarizes the results.

2. STRUCTURED GRAPHS: DEFINITIONS AND PROPERTIES

Most of the graph terminology used in this paper is standard (see e.g. Ref. 7). A graph is defined as a pair G = (V, E), where V is the set of vertices and E is the set of pairs of distinct vertices called arcs. If the arcs are ordered pairs of vertices, the graph is said to be directed, otherwise it is called undirected. In the following we introduce the concepts of vertex- and arc-reducibility of a subgraph for both directed and undirected graphs, which are the basis of the notion of structured graph (see also Ref. 4). Let G = (V, E) be a graph and $H = (V_H, E_H)$ a

Let G = (V, E) be a graph and $H = (V_H, E_H)$ a connected subgraph of H. The set of boundary vertices of H, B(H), is defined as follows:

$$\mathfrak{B}(H) = \{y \in V_H \mid \text{there exists } x \in V - V_H$$

such that $(x, y) \in E$

If G is a digraph, for every connected subgraph H of G, the input vertex set I(H) and the output vertex set O(H) are defined as follows:

$$I(H) = \{y \in V_H \mid \text{there exists } x \in V - V_H \text{ such that } (x, y) \in E\}$$

$$O(H) = \{x \in V_H \mid \text{there exists } y \in V - V_H \text{ such that } (x, y) \in E\}$$

A path (or cycle) P in G is said to be internal to H if and only if every arc of P belongs to H. H is said to be traversable if and only if there exists an internal path in H from x to y for every $x, y \in B(H)$. Similarly, if G is a digraph and H a connected subgraph of G, H is said to be traversable if and only if there exists an internal path

every $x, y \in V_H$, $x \in I(H)$ and y for x to in H from $y \in O(H).$

Let $\tilde{G} = (V, E)$ be a graph. A subgraph $G_H = (V_H, E_H)$ of G is said to be reducible to a vertex if and only if the following two properties are satisfied: (i) G_H is traversable

and

(ii) $(x_1, y), (x_2, y) \in E, x_1, x_2 \in V_H, y \notin V_H$ implies that $x_1 = x_2$. Let $\{G_i | i = 1, 2, ..., n\}, G_i = (V_i, E_i)$ be a family of disjoint subgraphs of *G*. Subgraphs $G_i, i = 1, 2, ..., n$ are said to be mutually reducible to single vertices, respectively, if and only if each G_i is reducible to a vertex and the following condition is satisfied:

there exists at most one arc (x, y) [or (y, x)] $\in E$ such that $x \in \overline{V}[y \in \overline{V}]$ and

$$y \in V_k [x \in V_k], k = 1, 2, ..., n,$$

where
 $\overline{V} = V - \bigcup_{i=1}^n V_i.$

 G_i , i = 1, 2, ..., n to a vertex v_i is called the reduced graph associated with G and defined by the family of subgraphs $\{G_i | i = 1, 2, ..., n$. The reduced graph is denoted by The graph obtained from G by reducing each subgraph i = 1, 2, ..., n. The re = $(V^{(R)}, E^{(R)})$, where $\{G_i | i = 1, 2,$ $G^{(R)} = (V^{(R)})$

$$V^{(R)} = (V - \bigcup_{i=1}^{n} V_i) \cup \{V_i | i = 1, 2, ..., n\}$$

and

 $= E \cap (V^{(R)} \times V^{(R)}) \cup \{(v_i, v_j) | \text{ there exists } (x, y) \in E,$ ٦ $E^{(B)}$

$$x \in B(V_i)$$
 and $y \in B(V_j) \} \cup$
 $\{(x, v_k) | x \in \overline{V}$ and there exists (x, y)

$$\{(x, v_k) | x \in V \text{ and there exists } (x, y) \in E, y \in B(V_k)\} \cup \{(v_k, y) | y \in \overline{V} \text{ and there exists } (x, y) \in E, we have the exist of the$$

The reduced graph $G^{(R)}$ associated with a directed graph G is defined similarly by replacing $x \in B(V_i)$ with $x \in O(V_i)$ and $y \in B(V_i)$ with $y \in I(V_i)$. The vertex v_i in $V^{(R)}$ obtained by reduction of subgraph G_i is called a macrovertex. Conversely, every vertex in V - V is called $x \in B(V_k)$

reducible graphs is to ensure that every subgraph G_i can be correctly represented as a vertex in the reduced graph $G^{(R)}$, whereas properties (ii) and (iii) make sure that $G^{(R)}$ does not have multiple arcs. This assumption is made only The purpose of the traversability property in vertexin order to simplify the treatment of structured graphs as well as the description of the algorithms working on them. The extension to multigraphs is, however, straightstraighta simple vertex of $G^{(R)}$. forward

Let $H = (V_H, E_H)$ be a graph and $\mathscr{G} = \{G_i | G_i = (V_i, E_i), i = 1, 2, ..., n\}$ be a family of disjoint graphs. Define $M_v \subset V_H$ such that each G_i in \mathscr{G} is associated with a unique $h_i \in M_v$ by a mapping μ . Define two mapping h_i as follows: h_i as follows:

$$\phi_i((x, h_i)) = v \quad \text{where} \quad x \in V_H - \{h_i\} \quad \text{and} \quad v \in V_i,$$

$$\psi_i((h_i, y)) = w \quad \text{where} \quad y \in V_H - \{h_i\} \quad \text{and} \quad w \in V_i.$$

of as , define the sets of the input and output vertices G, denoted by $I(G_i)$ and $O(G_i)$ respectively. follows: Again, G_i in

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

554

i = 1, 2, ..., n. $\psi_i((h_i, y)) = w, y \in V_H\},$ $= v, x \in V_H$ $\phi_i((x, h_i))$ and and $O(G_i) = \{w \mid w \in V_i$ $I(G_i) = \{v \mid v \in V_i$

If every G_i in \mathscr{G} is traversable (with respect to $I(G_i)$ and $O(G_i)$), then the graph G = (V, E) such that

$$V = \bigcup_{i=1}^{n} V_i \cup (V_H - M_v)$$

$$E = \bigcup_{i=1}^{n} E_i \cup (E_H \cap M_v \times M_v) \cup \{(x, y)\} \quad \text{either}$$

$$y = \phi_i((x, h_i)),$$

$$(x, h_i) \in E_H \quad \text{or} \quad y = \psi_i((h_i, y)), \quad (h_i, y) \in E_H$$
is suffer the constant of the formula the formula for the formula fo

is called the expanded graph of *H* defined by family \mathscr{G} , mapping μ and the two families of mappings $\Phi = \{\phi_i\}_{i \leq n}$ and $\Psi = \{\psi_i\}_{i \leq n}$. Every G_i in \mathscr{G} is called the expansion graph of the vertex h_i in M_v . If *H* is an undirected graph, the definition of an expanded graph is slightly different. Since the arcs have no orientation, $\phi_i((x, h_i)) = \psi_i((h_i, x)), x \in V_H$ and $h_i \in M_v$. Hence only one mapping $\phi_i = \psi_i$ needs to be defined, and $B(G_i) = I(G_i) = O(G_i)$ is thus the set of boundary vertices of graph G_i in \mathscr{G} .

reduced and expanded graph is that if $G^{(R)}$ is the reduced graph associated with G and defined by the family \mathscr{G} , G is the expanded graph of $G^{(R)}$ defined by family \mathscr{G} by mapping μ and by the families of functions ϕ and ψ , where (i) for every G_i in \mathscr{G} there exists a macrovertex $h_i \in V^{(R)}$ such that $\mu(G_i) = h_i$; <u>of</u> of the definitions An immediate consequence

2 (ii) for every macrovertex h_i in $V^{(R)} \phi_i((x, h_i)) =$ where

$$(x, h_i) \in E^{(R)}, v \in I(G_i) \text{ and } (x, v) \in E$$

and $\psi_i((h_i, y)) = w$, where

$$(h_i, y) \in E^{(R)}, w \in O(G_i)$$
 and $(w, y) \in E$.

Hence two operators V_{Exp} and V_{Red} , called respectively vertex expansion and vertex reduction can be defined. The expansion operator maps the reduced graph $G^{(R)}$ and the family $\mathscr{G} = \{G_i | i = 1, 2, ..., n\}$ into the expanded graph *G*. More formally

$$V_{\mathrm{Exp}}(G^{(R)},\mathscr{G},\mu,\phi,\psi)=G.$$

Conversely, the reduction operation maps a graph G and a family = $\{G_i | i = 1, 2, ..., n\}$ of mutually reducible subgraphs of G into the reduced graph $G^{(R)}$, that is

$$V_{\text{Red}}(G,\mathscr{G}) = (G^{(R)}, \mu, \phi, \psi),$$

 $E_i)$ \$ where μ , ϕ and ψ are defined by G and \mathscr{C} as above. Let G = (V, E) be a digraph; a subgraph $G_i = (V_i$ is said to be reducible to an arc if and only if (i) $I(G_i) = \{x_i\}, O(G_i) = \{y_i\}, x_i, y_i \in V_i, x_i \neq y_i;$ (ii) every vertex z in $V_i - \{x_i, y_i\}$ belongs to

any

internal path; (iii) (x_i, y_i) is not in $E - E_i$; (iv) x_i, y_i do not belong to any internal cycle in G_i . Let $\{G_i|i = 1, 2, ..., n\}$, $G_i = (V_i, E_i)$, be a family of connected subgraphs of G. Then subgraphs G_i , i = 1, 2, ..., n are said to be mutually reducible to single arcs if and only if each G_i is arc-reducible and the following two conditions are satisfied:

i ≠ j, ..., *n*; for 1, 2, (v) $E_i \cap E_j = \emptyset$, for $i \neq j$, i = 1, (vi) $I(G_i) \times O(G_i) \neq I(G_j) \times O(G_j)$,

i ==

2, ..., *n*. Vertices x_i and y_i in V_i are respectively called the input is called the set of boundary vertices of G_i . The two latter conditions in the above definition ensure that two graphs in common, i.e.: $V_i - \{x_i, y_i\} \cap V_j - \{x_j, y_j\} = \emptyset$, whereas it can happen that the input vertex of G_i is the same as and output vertex of graph G_i . The set $B(G_i) = \{x_i, y_i\}$, G_i and G_j in \mathscr{G} , $i \neq j$, have no edge and no internal vertex 'n, the output vertex of G_j or conversely, but never $x_i =$

and $y_i = y_j$. If G is an undirected graph, the conditions in the definitions of arc reducibility and mutual reducibility above must be replaced with the following ones:

 $x_i, y_i \in V_i,$ $B(G_i) = \{x_i, y_i\},\$ Ď G_i in (i) for every $\mathcal{Y}_{i};$ $X_i \neq X_i$

 $B(G_i)$ belongs to an internal path in G_i joining the two boundary vertices; (ii) every vertex $z \text{ in } V_i$ -

 $\{v\} =$ or B $= (V^{(R)}, E^{(R)})$ such that (iii) (x_i, y_i) is not in $E - E_i$; (iv) $E_i \cap E_j = \emptyset$ for $i \neq j$; (v) $B(G_i) \cap B(G_j) = B$ where $B = \emptyset$ Thus the graph $G^{(R)} = (V^{(R)}, E^{(R)})$ such

$$V^{(R)} = \bigcup_{i=1}^{n} B(G_i) \cup (V - \bigcup_{i=1}^{n} I)$$
$$E^{(R)} = (E - \bigcup_{i=1}^{n} E_i) \cup E^{(M)}$$

?

where

$$E^{(M)} = \{z_i, z_i = (x_i, y_i), i = 1, 2, ..., n\}$$

called the reduced graph associated with G and defined property in both definitions of arc reducibility, together subgraph G_i in \mathscr{G} can be correctly represented by an arc Conversely, every arc in $E^{(R)} - E^{(M)}$ is called a simple arc $\mathscr{G} = \{G_i | i = 1, 2, ..., n\}$. The traversability every (x_i, y_i) in the reduced graph $G^{(R)}$, and properties (iii) and (v) ensure that $G^{(R)}$ contains no multiple arc. Thus every arc a in $E^{(R)}$ such that $a \in E^{(M)}$ is called a macroarc that with property (iv) for digraphs, ensures by family of $G^{(R)}$. 2

Let $H = (V_H, E_H)$ be a graph and $\mathscr{G} = \{G_i | G_i = (V_i, E_i), i = 1, 2, ..., n\}$ a family of graphs such that (i) there exists a mapping $\mu: \mathscr{G} \to E_H$, such that

Ю́ Ш $V_i \cap V_H$ and $\mu(G_i) = \{(x_i, y_i)\};$ (ii) $E_i \cap (E_H - \{x_i, y_i\}) = \emptyset$

and $(V_i - \{x_i, y_i\}) \cap (V_j - \{x_j, y_j\})$ i = 1, 2, ..., n;(iii) $E_i \cap E_j = \emptyset$ i = 1, 2, ..., n;Ŕ

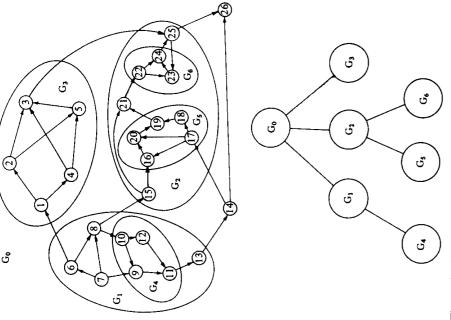
(iv) every z in $V_i - \{x_i, y_i\}$ belongs to an internal path in G_i from x_i to y_i ;

(v) vertices x_i and y_i do not both belong to a cycle internal to G_i , i = 1, 2, ..., n. Then the graph G = (V, E) such that = 1, 2,

$$V = \left(\bigcup_{i=1}^{n} V_i\right) \cup V_H$$
$$E = \left(\bigcup_{i=1}^{n} E_i\right) \cup E_H - \bigcup_{i=1}^{n} \left\{ (x_i, y_i) \mid x_i, y_i \in V_i \text{ and } \mu(G_i) \right\}$$

1

arc is called the expanded graph of H defined by family $\mathscr G$ and mapping μ . Each G_i is the expansion graph of the arc the definition of reduced and expanded graph that, if G^(R) is $\mu(G_i) = (x_i, y_i)$ every from (x_i, y_i) in E_H such that $\mu(G_i) = (x_i, y_i)$ and $(x_i, y_i) = \mu(G_i)$ is a macroarc. It follows



and the tree structure vertex-structured digraph describing it. ◄ Figure 1.

the reduced graph associated with G and defined by the family \mathscr{G} , then G is the expanded graph of $G^{(R)}$ defined by \mathscr{G} and by a mapping μ such that $\mu(G_i) = (x_i, y_i)$ where $G_i \in \mathscr{G}$, $(x_i, y_i) \in E^{(R)}$, $x_i \in I(G_i)$ and $y_i \in O(G_i)$. As in the case of vertices, two operators, called arc expansion and arc reduction and denoted by A_{Exp} and

in denoted by $A_{\rm Exp}$ and $A_{\rm Exp}$ maps the reduced ..., n into the = 1, 2, A_{Red} respectively, are defined. A_{Ex} graph $G^{(R)}$ and the family $\mathscr{G} = \{G_i\}^i$ expanded graph G, i.e.

$$A_{\mathrm{Exp}}(G^{(R)}, \mathscr{G}, \mu) = G.$$

Conversely, A_{Red} maps G into $G^{(R)}$ as follows

$$A_{\mathrm{Red}}(G,\mathscr{G})=(G^{(R)},\mu)$$

where μ is defined as above.

F = (*G*, A structured graph is then defined as a pair γ where

$$\mathscr{G} = \{G_i | i = 1, 2, ..., n\}$$
 is a family of graphs,

 t_j of đ g one-to-one mapping τ , which maps each node t_i of T into a unique graph G_i in \mathscr{G} (i.e. $\tau(t_i) = G_i$, $t_i \in T$ and $G_i \in \mathscr{G}$) $= G_i, t_i \in T \text{ and } G_i \in \mathscr{G}$ by τ^{-1} into a child t_i of macroelement (macrovertex or macroarc) belonging to such that every graph G_j mapped by τ^{-1} into a child t_j a non-terminal node t_i of T is the expansion graph of and there exists a rooted tree with n nodes, $= \tau(t_i), G_i \in \mathscr{G}$ the graph G_i T is

contains only macroarcs. The graphs G_i belonging to the family \mathscr{G} are called graph components of γ . The graph called vertex-structured if it it ïf arc-structured and contains only macrovertices, IS structured graph

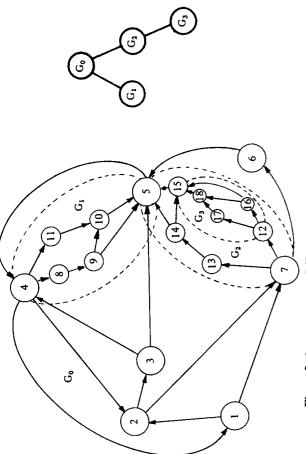


Figure 2. An arc-structured digraph and the tree structure describing it.

graph of γ and is denoted as G_{γ} . Figs 1 and 2 show respectively an example of a vertex-structured and of an arc-structured graph together with the tree structure component associated with the root of T is called the root describing them.

A structured graph γ can be regarded as a variable-resolution representation of a graph, called the com-pletely expanded graph, defined by γ and denoted by $G_{\gamma} = (V_{\gamma}, E\gamma)$. G_{γ} is defined in terms of operator $G_y = (V_y, E_y)$. G_y is defined in tercursive expansion, described below. From the expansion operators

 $A_{\rm Exp}$ introduced before, we can define an expansion operator Exp, which is independent of the kind of graphs under consideration. To this aim, we denote the family of the expansion graphs of G_i in γ by \mathscr{G}_i , that is and Exp. 7 operators

$$\mathscr{G}_i = \{G_k \in \mathscr{G} \mid G_k \text{ is a child graph of } G_i \in \mathscr{G}\}$$

and we define the extended family of the expansion graphs of G_i in γ , denoted by $\overline{\mathscr{G}}_i$, as follows: ₿_i = then graph, arc-structured $\{(G_j, \mu(G_j)) | G_j \in \mathscr{G}_i\};$ an 2 2

If γ is a vertex-structured graph, then $\overline{\mathscr{G}}_i = \{(G_j, \mu(G_j), \phi_j, \psi_j) | G_j \in \mathscr{G}_i\}$. Hence, operator Exp is defined over $G_i \in \mathscr{G}_i$ as

$$\operatorname{Exp}(G_i, \overline{\mathscr{G}}_i) = \begin{cases} G_i & \text{if } \mathscr{G}_i = \emptyset \\ \overline{G}_i & \text{otherwise} \end{cases}$$

where \overline{G}_i is the expanded graph of G_i defined by the extended family $\overline{\mathscr{G}}_i$. The recursive expansion operator RExp is then expressed as

$$\operatorname{RExp}(G_i, \overline{\mathscr{G}}_i) = \begin{cases} G_i \text{ if } \mathscr{G}_i = \emptyset \\ \operatorname{RExp}(\operatorname{Exp}(G_i, \overline{\mathscr{G}}_i), \overline{\mathscr{G}}_i^*) \text{ otherwis} \\ \text{where} \end{cases}$$

ø

 $\overline{\mathscr{G}}_i^*$ is the extended family defined by $\overline{\mathscr{G}}_i^* =$

of the $\{\mathscr{G}_m | \mathscr{G}_m$ is the family of expansion graphs of the macroelements of $G_i \in \mathscr{G}_i$ and $\overline{\mathscr{G}}_i$ is the extended family , Э. હે associated with \mathscr{G}_{i} . THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

556

Let G_r in \mathscr{G} be the root graph of γ . Then the completely expanded graph defined by γ is given by

$$G_{\gamma} = \operatorname{RExp}(G_{r}, \overline{\mathscr{G}}_{r}),$$

 G_{γ} is obtained by starting from G_r and recursively In the remainder of this section, we introduce some replacing its macroelements with their expansion graphs. i.e.

concepts and definitions which are used in the next two A subgraph of a structured graph is defined by suitably sections.

Then any connected subgraph combining the concepts of subtree and subgraph. Let T be a rooted tree. Then any connected sub

structured graph and T' as follows of T'. Let $\gamma = (\mathscr{G}, T)$ be a structured graph and T' a subtree of T. Then T' uniquely defined a subfamily $\mathscr{G}' \subset \mathscr{G}$ as follows a complete subtree of T if and only if all descendants of the root of T' in T are nodes of T'. Let $\gamma = (\mathscr{G}, T)$ be a of T is called a subtree of T. A subtree T' of T is called

$$\mathscr{G}' = \{G_i \mid \tau(t_i) = G_i \text{ and } t_i \in T'\}.$$

 $=(\mathscr{G}', T')$ is said to be the subgraph of γ "'. A more general definition of subgraph of a structured graph can be given by taking subgraphs of its graph components into consideration. defined by T'. The pair γ'

corresponding to the same node t_i of T'. Then η is a subgraph of γ if and only if (i) $H_i \subset G_i$ $\gamma = (\mathscr{G}, T)$ and $\eta = (\mathscr{H}, T')$ be two structured such that T' is a subtree of T. Let $G_i \in \mathscr{G}$ and graphs such that T' is a subtree of T. Let $G_i \in \mathscr{G}$ and $H_i \in \mathscr{H}$ be two graph components of γ and η , respectively, Let

(ii) if I_i is not the root of T', then G_i and H_i are both expansion graphs in γ and η respectively of a macroelement e_i , which belongs to $H_j \in \mathscr{K}$ (and thus to G_j), where H_j and G_j are the parent graphs of H_i and G_i , respectively, in η and γ (i.e. $\mu(H_i) = \mu(G_i) = e_i$).

 ϕ_i, ψ_i and ϕ'_i, ψ'_i denote the association mappings defined for G_i and H_i , respectively. If $(x, e_i) \in E'_i$ then $\phi'_i(x, e_i) = \phi_i(x, e_i) \in I(H_i)$ where $x \in V_j$. If $(e_i, y) \in E'_i$ then $\psi'_i(e_i, y) = \psi_i(e_i, y) \in O(H_i)$ where $y \in V_j$. (iii) if γ and η are vertex-structured graphs, then, let

subgraph of y, then $\eta \subset \gamma$. is a complete subtree of T, then η is called η is a subgraph of γ , then $\eta \subset$ If T' is a commutate If η

complete subgraph of γ . If u is a macroelement of γ and

 G_i its expansion graph, then the complete subgraph $\gamma_i = (\mathscr{G}_i, T_i)$ defined by the subtree T_i of T whose root corresponds to G_i is called the structured expansion graph of u in γ . Then the graph $G_{\gamma_i} = \operatorname{RExp}(G_i, \mathfrak{F}_i)$ is called the complete expansion graph of u. Also, $G_{\gamma_i} \subset G_{\gamma}$. Let $H \subset G_i$ be a subgraph of a graph component G_i of γ . The subgraph of γ induced by H, denoted by $\eta = (\mathscr{G}_H, T_H)$, is defined as follows. If t_i is the node of Tassociated with G_i , then t_i is the root of T_H . Every $T_j \subset T$, subtree of T, rooted at a child node of t_i , such that $G_j = \tau(t_j)$ is the expansion graph of a macroelement of G_i of t_i. And

$$\mathscr{G}_{H} = \{H\} \cup \{G_{k} \in \mathscr{G} \mid G_{k} \neq G_{i}$$

and $G_{k} = \tau(t_{k}), t_{k} \in T_{H}\}.$

 G_{γ} , we define the concept of projection of such a subgraph on any component of γ . Let $H = (V_H, E_H)$ and $K = (V_K, F_K)$ be two graphs. The intersection of H and K is the graph $M = (V_M, E_M)$ such that $V_M = V_H \cap V_K$ and $E_M = E_H \cap E_K$. Let $\gamma = (\mathscr{G}, T)$ be a structured graph and H a subgraph of G_{γ} . Then the projection of H on G_i is the smallest subgraph H_i of G_i such that Given any subgraph of the completely expanded graph

$$\widehat{h}_{n_i}\cap H\subseteq H_{n_i}$$

where H_{n_i} is the completely expanded graph associated with the subgraph $n_i \subset \gamma$ induced by H. The following properties follow immediately from the definition of projection.

The projection of H on the root graph of γ is not on any G_i of γ is unique. (i) The projection of $H \subset G$, empty Ξ

if and only if H is not empty. The projection of G_y on any $G_i \in \mathscr{G}$ is the same as **E**

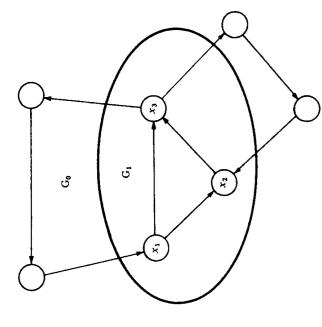
 G_i . The connectivity properties of a structured graph γ are closely related to those of its corresponding completely expanded graph G_{γ} . A structured graph $\gamma = (\mathscr{G}, T)$ is expanded graph G_{γ} . A structured graph $\gamma = (\mathscr{G}, T)$ is said to be connected if and only if each graph component graph, we have that an arc-structured graph is connected if and only if its root graph is connected. It can easily be proved that G_{γ} is connected if and only if γ is connected. Let $\gamma = (\mathscr{G}, T)$ be a structured digraph. Then γ is said to be strongly connected if and only if every $G_i \in \mathscr{G}$ is strongly connected. The concept of strong connectivity of γ is connected. From the definition of arc-structured

any component which is not the root be strongly connected because of the does not make sense when referred to arc-structured The following results are a direct consequence of the constraints imposed by the definition of arc reducibility. definitions of strongly connected graph and expansion. cannot be strongly connected digraphs, since graph

a vertex-structured digraph. If γ is strongly connected, then G_{γ} is strongly $\gamma = (\mathscr{G}, T)$ be 2.1. Let connected. Lemma

reverse is not true, as shown by the example d in Fig. 3. depicted in Fig. The

Lemma 2.2. Let $\gamma = (\mathscr{G}, T)$ be a strongly connected vertex-structured digraph. Then (i) any subgraph $\gamma' = (\mathscr{G}', T')$ of γ defined by a subtree T' of T is strongly connected



structured digraph γ such that its corresponding completely connected vertexis not strongly 2 connected since G_1 is not strongly connected. An example of a non-strongly strongly connected: <u>.</u> graph expanded Figure 3.

graphs of any macrovertex u of γ are strongly connected (ii) the structured and the complete expansion

PATHS IN A STRUCTURED GRAPH ė

graphs. Since a structured graph is defined as a hierarchy of graphs, it is natural to define a path in such a structure as a collection of paths, organised in a similar tree to the In this section we extend the concept of path to structured given structured graph.

graph A path P_{xy} between a pair of vertices x and y of a gr G is defined as an ordered sequence of vertices of G

$$P_{xy} = [z_1, z_2, ..., z_m]$$
 such that $z_1 = x, z_m = y$

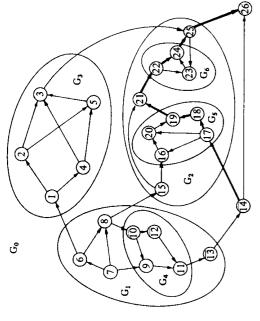
and
$$(z_i, z_{i+1}), 1 \le i \le m-1$$
 is an arc of G.

graph, $G_i = (V_i, E_i)$ and $G_j = (V_j, E_j)$, $i \neq j$, be two graphs in \mathscr{G} and x, y two vertices, $x \in V_i$ and $y \in V_j$. Then, a path P_{xy} of paths in y between x and y, $x \neq y$, is a finite sequence vertex-structured 62 گ $\gamma = (\mathscr{G}, T)$ Let

 $P_{xy} = [P_{x_1y_1}, P_{x_2y_2}, \dots, P_{x_my_m}], \text{ with } x_1 = x, y_m = y, \text{ and } y_i = x_{i+1}, i = 1, 2, \dots, m-1, \text{ such that}$ $(i) \quad \text{Every } P_{x_ky_k}, 1 \le k \le m, \text{ is a simple path between}$ $a \text{ pair of vertices } x_k \text{ and } y_k \text{ in a graph } G_p \in G.$ $(ii) \quad \text{If } P_{x_ky_k} \text{ is a path in } G_p \text{ and } P_{x_{k+1}y_{k+1}} \text{ is a path in } G_q, \text{ then } G_q.$

(iii) If $P_{x_k y_k}$ and $P_{x_e y_e'}$, $k \leq e$, are both paths in G_p , then every path $P_{x_s y_e'}$, $k+1 \leq s \leq e-1$, is a path in a graph G_q which must be either a descendant of G_p or G_p itself.

arc of $P_{x_{k-1}y_{k-1}}$. If G_q is a child or a descendant graph of G_p , then x_k is the macrovertex expanded into G_q or into an ancestor of G_q . (iv) For every path $P_{x_ky_k}$ in a graph $G_p \in \mathscr{G}$ we have that if k = 1, $x_k = x$. Otherwise, let $P_{x_{k-1}y_{k-1}}$ be a path in G_q . If G_q is the parent or an ancestor graph of G_p , then in G_q . If G_q is the parent or an ancestor graph of G_p , then x_k is the boundary vertex of G_p associated with the last



= [14, 17, 18, 19, 21, 22, 24, 25, 26] is an example of a path in the vertex-structured digraph depicted in Fig. 1. Figure 4. P

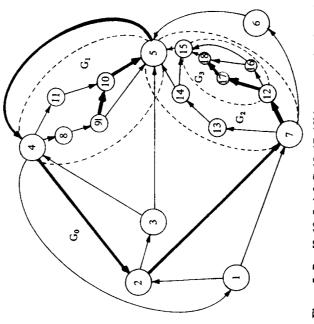


Figure 5. P = [9, 10, 5, 4, 2, 7, 12, 17, 18] is an example of a path in the arc-structured digraph depicted in Fig. 2.

Similarly, if k = m, then $y_k = y$. Otherwise, let $P_{x_{k+1}}y_{k+1}$ be a path in G_q . If G_q is the parent or an ancestor graph of G_p , then x_k is the macrovertex expanded into G_q ; if G_q is a child or a descendant graph of G_p , then x_p is the boundary vertex of G_p associated with the first arc Similarly, of P

 $f_{\text{Fig.}4}^{x_{k+1}y_{k+1}}$. Fig. 4 shows an example of path in the vertex-structured graph depicted in Fig. 1

The definition of path in an arc-structured graph is its expansion graph is completely defined by the two boundary vertices which belong to both the graph component containing macroarc u and the expansion simpler because the association between a macroarc u and graph of u.

Let $\gamma = (\mathscr{G}, T)$ be an arc-structured graph, $G_i = (V_i, E_i)$ and $G_j = (V_j, E_j)$, $i \neq j$, be two components of γ , and u and v two vertices of γ , $u \in V_i$ and $v \in V_j$. Then a path P_{uv} in γ is a finite sequence of paths $P_{u_kv_k}$ defined

as $P_{uv} = [P_{u_1v_1}, P_{u_2v_2}, \dots, P_{u_nv_n}]$ with $u = u_1, v = v_n$, and $v_i = u_{i-1}, i = 2, \dots, n$ such that (i) $P_{u_kv_k}, k = 1, 2, \dots, n$ is a simple path from u_k to v_k in a graph component G_p .

(ii) If $P_{u_k v_k}$ is a path in G_p and $P_{u_{k+1} v_{k+1}}$ is a path in G_q , $G_q \in \mathscr{C}$, then G_p is either a direct ancestor or a direct descendant of G_q .

(iii) If $P_{u_k v_k}$ and $P_{u_\ell v_\ell}$ are both paths in G_p , then every path $P_{u_k v_d}$, $k+1 \le s \le e-1$ is a path in a graph G_q , which must be either a descendant of G_p or G_p itself. It follows immediately from the previous definition that

if $P_{u_kv_k}$, $P_{u_{k+1}v_{k+1}}$ and $P_{u_{k-1}v_{k-1}}$ are paths of the sequence P_{uv} belonging to G_p , G_q and $G_s \in \mathscr{G}$, respectively, we have that:

(i) if \tilde{q}_q is the parent graph of \tilde{G}_p , then v_k is a boundary

vertex of G_p ; otherwise u_{k+1} is the input vertex of G_q ; (ii) if G_s is the parent graph of G_p , u_k is the input vertex of G_p ; otherwise v_{k-1} is a boundary vertex of G_s . Fig. 5 shows an example of a path in the arc-structured

(ii) if G_p is the parent graph of G_p , u_k is the input vertex of G_p , Fig. 5 shows an example of a path in the arc-structured digraph depicted in Fig. 2. **4. FUNDAMENTAL PROPERTIES OF PATHS** Most properties presented in this section hold for both vertex- and arc-structured graphs. First we introduce the definition of restriction of a path in a structure graph to a graph component G_k of the structure. Let $\gamma = (\mathscr{G}, T)$ be a structured graph, and P_{uv} where $P_i = P_{u_iv_i} i = 1, 2, ..., m$. The restriction $P^{(n)}$ of P_{v} of the graph component G_k is a path in G_k , or is defined as follows. Let $\overline{P} = [P_{j_1}, P_{j_2}, ..., P_{j_q}]$ be an ordered subsequence of P_i ; G_k in a path in a structure. Let $\gamma_i = 1, 2, ..., m$. The restriction $P^{(n)}$ of P of the structure $P_i = P_{u_iv_i} i = 1, 2, ..., m$. The restriction $P^{(n)}$ of P of the structure $P_i = P_{u_iv_i}$, i = 1, 2, ..., m. The restriction $P^{(n)}$ of P of the structure $P_i = P_{u_iv_i}$, i = 1, 2, ..., m. The restriction $P^{(n)}$ of P of the structure $P_i = P_{u_iv_i}$, i = 1, 2, ..., m. The restriction $P^{(n)}$ of P of P_i where $P_i = P_{u_iv_i}$, i = 1, 2, ..., m. The restriction $P^{(n)}$ of P of P_i in G_k . Then $P^{(n)} = \int_0^{-1} P_{j_k}$.

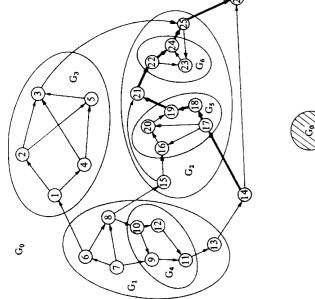
Note that the union of two paths $P_1 = [x_1, ..., x_k]$ and $P_2 = [y_1, ..., y_n]$ belonging to a graph H such that $x_k = y_1$ is defined as the path $P_3 = [x_1, ..., x_k, y_2, ..., y_n]$. From the above definition it follows immediately that every P_{j_d} in P is a path $P_{x_{i_d}y_{j_d}}^x$, where x_{j_d} and y_{j_d} are vertices of the graph G_k to which P_{j_d} belongs. Also, P is a simple path between a pair of boundary vertices in G_k .

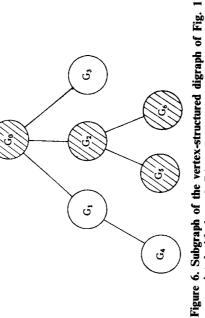
a path in γ and $\mathscr{G}' = \{G_k \in \mathscr{G} \mid \text{there exists at least one path} \\ \underline{P}_i \text{ in } P \text{ which belongs to } G_k\} \text{ be a subfamily of } \mathscr{G} \text{ Then,}$ **Lemma 4.1.** Let $\gamma = (\mathscr{G}, T)$ be a structured graph, P $= \{t \in T \mid \tau(t) \text{ is an element of } \mathscr{G}'\}$ is a subtree of T. ۱۳۳۳ - ۲

Proof. It follows from condition (ii) in the definition of path in a structured graph.

is the non-empty restriction of a path P in γ to a graph $G_k \in \mathscr{G}$. Then $\pi = (\mathscr{P}, \vec{T})$ is a subgraph **Theorem 4.1.** Let \mathcal{P} be a family of paths defined as: $\mathscr{P} = \{ P^{(k)} \mid P^{(k)}$ of γ .

Proof. For every $P^{(k)} \in \mathscr{P}$ there exists exactly one $G_k \in \mathscr{G}$ such that $P^{(k)}$ is a subgraph of G_k . If G_k is not the root graph, let G_j be the parent graph of G_k and u the





reducible component in the graph obtained from G_j by replacing *u* with $P^{(k)}$, since it is a simple path. Finally, we have to prove that, if $P^{(k)} \in \mathcal{P}$ is not the root graph of P, 9 Then $P^{(k)}$ is macroelement of G_i expanded into G_k .

associated with the path P in γ shown in Fig. 4.

, **Р**., $P^{(k)}$ is the expansion graph of a macroelement belonging which is the immediate predecessor of P_{j_s} in $P(P_s \text{ must exist since } P^{(k)} \text{ does not}$ correspond to the root of T); then $P_s = [x_1, x_2, ..., x_s]$. d = 1 to the restriction of P, say $P^{(j)}$, to G_j . Since $P^{(k)} =$ be the element in P predecessor of P_{j_s} in $P(P_s)$ <u>e</u>t

Thus, if γ is vertex-structured, x_s is the macrovertex of the parent graph G_j of G_k which is expanded into G_k . If γ is

is called the subgraph of γ associated with P. Fig. 6 shows the subgraph of the vertex-structured digraph of Fig. 1 Subgraph π as defined in the statement of Theorem 4.1 associated with path P depicted in Fig. 4 expanded into $P^{(k)}$. Hence the theorem.

Lemma 4.2. Let $P = [P_1, P_2, ..., P_m]$ be a path in a structured graph $\gamma = (\mathscr{G}, T)$. Then every subsequence $P' = [P_i, P_{i+1}, ..., P_j], i \leq j$, such that every P_k in P', $i \leq k \leq j$ is an element of P, is a path in γ . Thus, every subsequence P' of P, $P' = [P_i, ..., P_j]$

Thus, every subsequence P' of P, $P' = [P_1, ..., P_j]$ defined as in Lemma 4.2 is called a subpath of P. In the remainder of this section we examine the relationship between the general paths in the completely expanded graph G_{γ} associated with a structured graph γ

Q in G_y is said to be structured if and only if the projection of Q on any $G_k \in \mathscr{G}$ is either empty or a simple path. On A path the other hand, a path in G_{γ} is called a canonical path if and only if it does not necessarily satisfy the structuredness and those obtained by expansion of a path in γ . property stated above. **Lemma 4.3.** Let G_n be the completely expanded graph associated with the subgraph $\pi = (\mathscr{B}, \overline{T})$ of γ defined by a path P in γ . Let $\overline{\gamma} = (\mathscr{G}, \overline{T})$ be the subgraph of γ defined by T and G_γ the completely expanded graph associated with $\bar{\gamma}$. Then G_{π} is a path in $G_{\bar{\gamma}}$. Since π and \overline{y} are defined by the same tree structure, G_{π} is a subgraph of G_{p} . Furthermore, G_{π} is a path in G_{p} , since G_{π} is obtained from π by recursively substituting every macroelement with a path. Hence the Proof. lemma.

4.3. **Theorem 4.2.** Let π and \overline{y} be defined as in Lemma Then G_{π} is a structured path in G_{p} . **Proof.** It follows immediately by observing that the projection of G_{π} on any $G_k \in \overline{\mathscr{G}}$ is a path $P^{(k)} \in \mathscr{B}$, since the projection of a subgraph H_i of a component G_i of a structured graph on G_i is the same as H_i . Hence the theorem. **Corollary 4.1.** Let P be a path in a structured graph γ such that the subgraph $\pi = (\mathscr{P}, \overline{T})$ of γ associated with P is a complete subgraph of γ . Then G_{π} is a structured path in G_{γ} . \overline{T}) be the subgraph of γ defined by Since π is a complete subgraph of γ , then also $\bar{\gamma}$ is a mplete subgraph of γ as well. Thus G_{γ} is a subgraph of complete subgraph of γ as well. Thus G_{γ} is a subgraph of G_{γ} . Since G_{π} is a structured path in G_{γ} , G_{π} is a structured páth in G_{γ} . Hence the corollary. Let $\bar{\gamma} = (\bar{\mathscr{G}},$ Proof. F.

g structured graph γ such that every $P^{(k)} \in \mathscr{P}$ is a path. Then there exists a path P in γ such that π is the subgraph of of subgraph a ይ $\pi = (\mathscr{P}, \, \overline{T})$ 4.4. Let γ associated with PLemma

Proof. We give a constructive proof of the lemma based on algorithm PATH described below, which builds up a sequence of paths from the subgraph π of γ defined We give as above.

 \geq $//P^{(k)}$ denotes a component of π ; P_k is the output sequence of paths Algorithm PATH $(P^{(k)}, P_k)$ $\leftarrow P^{(k)};$ ö ÷↓↓ مٌ*مٌ

উ

.**E**

exists a macroarc (x_s, x_j)

there

arc-structured,

let u be the first macroelement in $P^{(k)}$;

while there exists a u do

split P^* into two subsequences, say P'_k and P''_k , such that P'_k is the subpath of P^* having u as last vertex and P''_k the subpath of P^* having u as first vertex; $P_k \leftarrow P'_k \cup P_k$; let $P^{(j)}$ be the expansion graph of $u \text{ in } \pi$; $P^* \leftarrow \tilde{P}'_k;$

PATH $(P^{(j)}, P_j)$

 \leftarrow next macroelement of $P^{(k)}$ 3

 $\leftarrow P_k \cup P_j;$ 4

∩ **P*** end while end PATH $\leftarrow P_{k}$

~
5
1
5
-
Ó
DEC
7
р
s
Ļ.
Ω
5
4
~
4
H
Ξ
\mathbf{Z}
1
<⊂
\sim
<u> </u>
, OR
5
-
FL
DE
Ľ.
_
Ś.
-
4
0
U.
-
~
-
-
2

(iv) holds for a vertex-structured graph, we consider an element $P_j \in P$, $P_j = P_{x_jy_j}$ i.e. a path between vertices x_j , y_j in the graph $G_p \in \mathscr{G}$. If j = 1, then x_j must be a simple vertex, since P_j is the first path of the sequence. Otherwise (if j > 1), if P_{j-1} is a path in a parent or ancestor graph of G_p , then x_j must be a boundary (or an input) vertex of G_p because of the definition of subgraph and algorithm PATH. If P_{j-1} is a path in a child or descendant graph applying algorithm PATH to the root graph of π is a path in γ according to the definition of path in a structured graph. Condition (i) is satisfied since every element of Pis a subpath of some $P^{(k)} \in \mathscr{B} \longrightarrow \mathbb{A}^{-1}$. is a subpath of some $P^{(k)} \in \mathcal{P}$ and, therefore, is a path in the graph component G_k of γ associated with that node of \overline{T} and T which corresponds to $P^{(k)}$ in π . Conditions (ii) and (iii) follow immediately because algorithm PATH is recursively activated every time a macroelement in any component $P^{(k)}$ is encountered. To prove that condition of G_p , then \dot{x}_j must be a macrovertex for the same reasons. Similar arguments apply to prove that y_j can be either a simple vertex, a macrovertex, or a boundary ٩ vertex. Hence the lemma. We

Lemma 4.5. Let π be a subgraph of a structured graph γ defined as in the statement of Lemma 4.4. Then the path *P* associated with π is unique. **Proof.** Suppose that another path P' exists in γ , $P' \neq P$, such that π is the subgraph of γ associated with P'. From the definition of restriction of a path and Theorem 4.1, it follows that every $P^{(k)} \in \mathscr{D}$ is the restriction of both paths P' and P on a graph $G_k \in \mathscr{C}$. Thus both paths reduce to the same path on each $G_k \in \mathscr{G}$. Hence Lemma 4.5.

Theorem 4.3. Let Q be a structured path in G_{γ} . Then, there exists a path P in γ such that the completely expanded graph G_{π} associated with the subgraph π of γ associated with P is the same as Q.

Proof. From the definition of structured path we have that the projection of Q on any $G_k \in \mathscr{G}$ is either empty or is a simple path Q_k . Let $\mathcal{P} = \{Q_j | Q_j \text{ is the non-empty projection of } Q \text{ on } G_j \in \mathcal{G}\}$ and

 $- \{t_i \in T \mid \text{the projection of } Q \text{ on } G_i \in \mathscr{G} \text{ such that}$ $\tau(G_i) = t_i$ is not empty}. Ь

 \overline{T} is a subtree of T, since Q would not be connected otherwise. Now the pair $\pi = (\mathscr{P}, \overline{T})$ is a subgraph of G since

arc (i) Each $Q_j \in \mathscr{P}$ is a subgraph of a $G_j \in \mathscr{G}$. (ii) Each $Q_j \in \mathscr{P}$ is reducible to a macroelement since of vertex and the conditions path satisfies reducibility. æ

(iii) $Q_j \in \mathscr{P}$, different from the root of π , is the expansion graph of an element belonging to its parent graph. This follows from the definition of projection, because Q is connected.

Thus G_n is the same as Q because of the definition of recursive expansion. Hence the theorem.

હુરુ between a pair of vertices x and y is a subset of the Lemma 4.6. The set of the structured paths in of the canonical paths between the same pair.

Lemma 4.7. Let P be a path in a structured graph γ between a pair of vertices x and y in the same components $G_k \in \mathscr{G}$. Let $\pi = (\mathscr{D}, \overline{T})$ be the subgraph of γ defined by P, then \overline{T} is a subtree of T, the root of which corresponds Let P be a path in a structured graph Lemma 4.7. to G_k .

Lemma 4.8. Let $P = [P_1, P_2, ..., P_m]$ be a path in a structured graph γ and $\pi = (\mathscr{P}, \overline{T})$ the subgraph of γ defined by P. Then, for every $G_j \in \mathscr{G}, G_j$ leaf graph of $\overline{\gamma} = (\overline{\mathscr{G}}, \overline{T})$, there exists only one $P_i \in P$ such that the restriction $P^{(j)}$ of P to G_j is the same as P_i . **Lemma 4.8.** Let $P = [P_1, P_2, P_3, P_3]$

Proof. It follows immediately by observing that each leaf graph G_j does not contain any macroelement in γ .

Theorem 4.6. Let $y = (\mathscr{G}, T)$ be a structured graph and u, v two simple vertices of G_y belonging to the same component $G_k \in \mathscr{G}$. If a path between u and v exists in $G_k \in G_k$ then there exists a structured path between them in G_y . **Proof.** Let P_{uv} the path between u and v in G_k . There a structured path Q_{uv} between u and v in G_y can be constructed by starting from P_{uv} and recursively replacing every macroelement belonging to P_{uv} with a path between the corresponding boundary vertices, which must exist because of the definitions of vertex and arc reducibility. Hence the theorem.

Algorithm BUILD_PATH described below constructs a path P in G_{γ} between a pair of vertices belonging to a component G_k of a vertex-structured graph γ from a path P. in G. between the same pair P_k in G_k between the same pair.

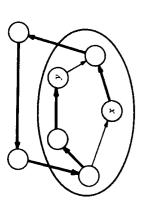
b.com/comin/article/5/6/223/256330 ph and P_k , G_k , P) Algorithm BUILD_PATH (P_k , G_k , P) P is the resulting path in a graph component G_k of γ ; P is the resulting path in G_{γ} ; at the first activation $P \leftarrow \emptyset //$ $P \leftarrow \emptyset //$ let w be the first macrovertex in P_k ; het we the first macrovertex in P_k ; het Q_j be the exists a w do let a and b be respectively the predecessor and successor of w in P_k ; het G_j be the expansion graph of w in γ_i ; het a_w and b_w be respectively the boundary vertices of G_j corresponding to w; $P \leftarrow P \cup Q_1$; het P_j be a path between a_w and b_w in G_j ; $P \leftarrow P \cup Q_1$; het P_j be a path between a_w and b_w in G_j ; $P \leftarrow P \cup P_1$; het w be the next macrovertex in P_k ; $P \leftarrow P \cup P_1$; $P \leftarrow P \cup P_2$; het w be the next macrovertex in P_k ; $Q \leftarrow Q_2$; het w be the next macrovertex in P_k ; $Q \leftarrow Q_2$; $P \leftarrow P \cup P_1$; $P \leftarrow P \cup P_1$; $P \leftarrow P \cup P_2$; $P \leftarrow P \cup P_1$; $P \leftarrow P \cup P_2$; $P \leftarrow$

end BUILD_PATH. $Q \cup Q \to Q$

Theorem 4.7. Let $\gamma = (\mathscr{G}, T)$ be a vertex-structured graph, *u* and *v* two simple vertices belonging to $G_k \in \mathscr{G}$ and Q a path in G_y between vertices u and v. If the projection conditions on the existence of a structured path in G_{γ} .

In the following two theorems we develop sufficient

of path Q on a graph $G_j \in \mathscr{G}$ being not empty implies that either $G_j = G_k$ or G_j is a descendant of G_k , then there exists a structured path in G_y between u and v. **Proof.** A structured path between u and v can be constructed from Q as follows. For every $G_j \in \mathscr{G}, G_j \neq G_k$, such that the projection Q_j of Q on G_j is not empty, let



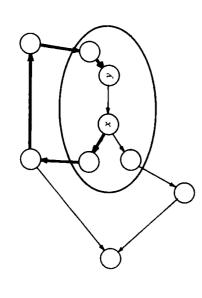


Figure 7. In both examples there exists a canonical path from x to y in the completely expanded graph, but no structured path joining them.

belonging to G_j . If G_j does not contain either u or v, then u_j must be a boundary vertex (an input vertex if γ is directed) and similarly w_i must be a boundary vertex (an output vertex if γ is a digraph). Thus the whole subpath vertices in their expansion graph) can be replaced with the and w_i denote the first and last vertex of Q, respectively, Q between u_i and w_i (or the corresponding boundary Existence of such a path follows from the traversability expansion of an internal path connecting u_i to property. Hence the theorem. ď 'n.

A stronger result for undirected arc-structured graphs holds, as shown in Lemma 4.9 below.

Let $\gamma = (\mathscr{G}, T)$ be an undirected arc-structured graph and Q a path between a pair of vertices u and v in G_{γ} such that

u and *v* belong to the same $G_k \in \mathscr{G}$ Ξ

Q on a graph $G_j \in \mathscr{G}$ being not đ or as G_k that G_i is either the same of (ii) the projection descendant of G_k . empty implies

Then Q is a structured path in G_{γ} .

projection of Q on the parent graph G_i of G_k or on one of the siblings of G_i cannot be empty, which is a Suppose that Q is not structured. Then the cannot be empty, contradiction. Hence the lemma. Proof.

In general, however, the existence of a canonical path in G_y between a pair of vertices does not guarantee that there exists a structured path between the same pair, as shown by the two examples in Fig. 7.

The constructive proof of Theorem 4.7 suggests an structured path in the a with G_{γ} associated algorithm which computes a graph expanded completely

vertex-structured graph γ from a given canonical path, which satisfies the conditions stated in Theorem 4.7.

Algorithm CP_TO_SP (y, P)

ø canonical path in G_{γ} satisfying the conditions expressed graph and Pa vertex-structured $\gamma = (G, T)$ is in Theorem 4.7//

 G_j is let u_j and v_j be the first and last vertex respectively in P_j which belong to G_j ; for every $G_j \in \mathscr{G}$ such that the projection of P on not empty or a simple path do

be the subpath of P between u_j and v_j ; let P_i

PATH1 (G_j, u_j, v_j, P_j) ; replace P_j with P_j' in P;

end CP_TO_SP. end for

Algorithm PATH1 (G_i, u_i, v_i, P')

 $v_i;$ $P' \leftarrow$ path in G_i between u_i and $w \leftarrow$ first macrovertex of P';

while there exists a w do

let G_q be the first-level expansion graph of w in γ ; let x_w^{\downarrow} and y_w be the two boundary vertices of G_q corresponding to the predecessor x and successor y, respectively, of w in P'; PATH1 (G_n, x_m, v_m) $w \leftarrow \text{next}$ macrovertex in P' $(A \cap A \cap A) = (G_q, X_w, y_w, P'')$ replace w in P' with P''. end while; end PATH1 In the case of undirected graphs, the existence conditions for structured paths are less restrictive, as established by the following lemma.

struca structured path in G_{γ} Let $\gamma = (\mathcal{G}, T)$ be an undirected between any pair of vertices of G_{ν} . tured graph. Then there exists Lemma 4.10.

subgraph γ_i of γ having root at G_j , say G_{γ_i} and the restriction of Q to G_j , say $\overline{Q}_{u_j v_j}$, which will be a path between two vertices u_j and v_j of Q. Then $\overline{Q}_{u_j v_j}$ should be replaced in Q by a path $Q_{u_j v_j}$ in G_{γ_j} such that $Q_{u_j v_j}$ can have a non-empty projection only on G_j and on some of its descendants. If Q_j is the union of two or more disjoint paths, then let w_j and z_j be the first and the last **Proof.** Suppose that there exists in G_{y} a pair of vertices $v, w \in V_{y}$ such that no structured path between v and w exists in G_{y} . Since G_{y} is connected, then there exists a canonical path $Q + Q_{uv}$ in G_{y} , which is not structured. on G_j is not empty and also not a simple path. Two cases may occur: Q_j is a cycle or Q_j is the union of two or more disjoint paths. If Q_j is a cycle, then consider the completely expanded graph defined by the complete Thus, there exists $G_i \in \mathscr{G}$ such that the projection Q_i of Qbetween w_j and z_j in G_y with a path in G_y between the same pair which has a non-empty projection only on G_j and on some or all of its descendants. Hence the lemma. of \hat{Q}_i . Replace the subpath of Qvertex, respectively,

interesting the completely expanded graph. Let $\gamma = (\mathscr{G}, T)$ be a structured graph. A path P in γ between a pair of vertices The result stated of the properties related to the existence of structured paths in \hat{T}) be definitions of cycle and path in a structured graph. is an immediate consequence some and v is a cycle if and only if u = v. graphs have structured Lemma 4.11 Acyclic 2

CPJ 29

subgraph of γ associated with C. Then the restriction $C^{(k)}$ of C to any component G_k of γ is a cycle if and only if \underline{G}_k is the root graph of the graph $\overline{\gamma} = (\overline{g}, \overline{T})$ defined by **Lemma 4.11.** Let C be a cycle in γ and $\pi = (\mathcal{P}, \overline{T})$ the Έ.

A structured graph γ is said to be acyclic if and only if every $G_i \in \mathscr{G}$ is acyclic. **Theorem 4.8.** Let $\gamma = (\mathscr{G}, T)$ be a structured graph and G_{γ} be the corresponding completely expanded graph. The γ is acyclic if and only if G_{γ} is acyclic.

Proof

contains a cycle, which is a contradiction. Secondly, there exist at least two graphs G_i and $G_j \in \mathscr{G}$, and thus G_j contains a cycle, which is a contradiction. Secondly, there exist at least two graphs G_i and $G_j \in \mathscr{G}$ such that the cycle contains elements of both G_i and G_j . Then, let G_k be the nearest common ancestor of G_i and G_j such that the restriction of the cycle to G_k is not empty. But such a restriction is a cycle, which is a contradiction. (2) If G_γ is acyclic then γ is acyclic. Suppose that γ contains a cycle C. Then, at least one $G_i \in \mathscr{G}$ contains a (1) If γ is acyclic, then G_{γ} is acyclic. Suppose that G_{γ} contains a cycle. Two cases exist. First, all elements of the

cycle $C^{(0)}$. By recursive expansion of the macroelement in $C^{(0)}$, we obtain a cycle containing only simple elements, which is a cycle in G_{γ} . Thus we have a contradiction. Hence the theorem. **Lemma 4.12.** Let $\gamma = (\mathscr{G}, T)$ be a structured graph. If γ is acyclic, then (i) any subgraph of γ is acyclic and (ii) any subgraph of G_{γ} is acyclic.

an undirected arc-structured graph. Then a path in G_y between a pair of distinct vertices is structured if and only if its projection on any $G_i \in \mathscr{C}$ contains no cycle. vertex-structured or ø γ be Lemma 4.13. Let

of a path Q in G_{γ} on any $G_{i} \in \mathscr{G}$ contains no cycle, then the path is structured. Suppose that Q is not structured. This means that there exists $G_{j} \in G$ such that the projection Q_{j} of Q on G_{j} is neither empty, nor a simple path. If Q_{j} contains a cycle, we have a contradiction. Otherwise, if Q_{j} is the union of two or more disjoint paths, We have only to prove that if the projection then G_j cannot be the root graph of γ , and also the projection of Q on an ancestor of G_j must contain a cycle involving a macroelement, which leads to a contradiction. Hence the lemma. Proof.

Lemma 4.14. Let γ be a vertex-structured or an undirected arc-structured graph. Then, a cycle C in G_{γ} is structured if and only if there exists exactly one $G_k \in \mathscr{G}$ such that its projection on G_k is a simple cycle and its projection on any other $G_i \in \mathscr{G}$, $G_i \neq G_k$, does not contain **4.14.** Let γ be any cycle.

Proof. A proof similar to that of Lemma 4.13 can be easily constructed.

A structured graph $\gamma = (\mathscr{G}, T)$ is said to be weakly acyclic if and only if every $G_i \in \mathscr{G}$, which is not a leaf graph, is acyclic. It follows immediately that an acyclic structured graph is weakly acyclic.

an undirected arc-structured graph. Then, if y is weakly acyclic, every path in the completely expanded graph G_y **Theorem 4.9.** Let $\gamma = (\mathscr{G}, T)$ be a vertex-structured or is structured. THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

562

is not structured. Thus a graph $G_i \in \mathscr{G}$ exists such that the projection P_i of P on G_i is neither empty nor a simple **Proof.** Suppose that there exists a path P in G_v which path. Two cases occur.

Then, if G_i is a leaf graph, P_i is the same as P, and therefore P is a cycle in a leaf graph. Thus *P* is structured. Otherwise, we have a contradiction. (1) P_i contains a cycle.

(2) P_i is the union of two or more disjoint simple paths. Then, the projection of P on an ancestor of G_i , say G_j , between two boundary vertices of G_i containing no vertex of G_i . Thus G_j contains a cycle involving the macroelement expanded into G_i , which is a contradiction. Hence the must contain a cycle, since a subpath of P must exist theorem.

simple path in G_{j} . There exists at least one graph $G_i \in \mathscr{GO}$ such that the projection of P on G_i contains a cycles involving a macroelement a vertex-structured or an undirected arc-structured graph. Let P be an unstructured Let γ be involving a macroelement. 4.15. emma

Proof. Suppose that such a graph G_i does not exist p This means that the projection of P on any graph $G_j \in \mathscr{G}_{\mathrm{od}}^{\mathrm{ph}}$ must be empty, a simple path or a simple cycle containing no macroelement. In all these cases, P is structured. Thus, we have a contradiction. Hence the lemma.

we have a contradiction. Hence the lemma. We have a contradiction. Hence the lemma. Theorem 4.10. Let γ be a vertex-structured or anomundirected arc-structured graph. Then every path on $G_{\gamma \text{ interval}}$ is structured if and only if every $G_i \in \mathscr{G}$ does not contain any cycle involving macroelements. any cycle involving macroelements.

Proof. If every path in G_{γ} is structured, then no G_{i} contains any cycle involving macroelements. Suppose that there exists $G_{j} \in \mathscr{G}$ which contains a cycle C involving that there exists $G_{j} \in \mathscr{G}$ which contains a cycle C involving a macroelement u. An unstructured path P exists in G_{γ} between the two boundary simple vertices, say w and v, belonging to the expansion graph G_{i} of u or to one contains to the expansion graph G_{i} of u or to one descendant of G_{i} and defined by the two arcs of C incident [0, 0]in u. Such a path is obtained by recursively expanding the providents, different from u, which belong to C and c_{S} have a contradiction. If every $G_{i} \in \mathscr{G}$ does not contain any of treating w and v as extreme vertices of P. Therefore, we have a contradiction. If every $G_{i} \in \mathscr{G}$ does not contain any cycle involving macroelements, then every path in G_{γ} is determined to the output of T and T structured. If there exists an unstructured path in G_{μ} , we have a contradiction because of the result stated by $\frac{1}{2}$ Lemma 4.15. Hence the theorem.

In the case of directed arc-structured graphs more ¹² restrictive conditions must be imposed to ensure that every path in G_{γ} is structured.

Theorem 4.11. Let $\gamma = (\mathscr{G}, T)$ be an arc-structured graph. Then, if every $G_i \in \mathscr{G}$ satisfies the following condition:

for every macroarc (x, y) in G_i there does not exist any path in G_i joining x to y or y to x, then every path in G_y is structured.

the projection of P on G_j is the union of two disjoint paths P_{ux_j} (or P_{x_ju}) and P_{y_jv} (or P_{vy_j}), where x_j and y_j denote, respectively, the input and output vertex of G_j , and the restriction of P to the parent graph G_k of G_j is a path from x_j to y_j (or from y_j to x_j). Therefore, P does not satisfy the condition stated in the theorem, which is a **Proof.** Suppose that an unstructured simple path P exists in G_{γ} . Then there must exist a graph $G_{j} \in \mathscr{G}$ such that contradiction. Hence the theorem.

cost Then a path of Similarly, a structured path in G_y of minimum cost is called a structured shortest path. Let CSP denote a canonical shortest path in G_y between a pair of vertices and SSP a structured shortest path between the same pair. function defined over the arcs of $\tilde{\gamma}$. Then a path minimum cost in γ is said to be a shortest path in а graph and cstructured $=(\mathscr{G}, T)$ be a 3 Let Then

 $c(CSP) \leq c(SSP)$ in G_{γ}

(or an undirected arc-structured) graph. If γ satisfies the condition stated in Theorem 4.10 then a shortest path in **Corollary 4.2.** Let $\gamma = (\mathscr{G}, T)$ be a vertex-structured G_{γ} is structured **Corollary 4.3.** Let $\gamma = (\mathscr{G}, T)$ be an arc-structured graph. If γ satisfies the condition stated in Theorem 4.11, then the shortest path between any pair of vertices of G_{γ} is structured

CONCLUSION ŝ

In this paper we study the properties of paths in a structured graph. The concept of path in a structured

REFERENCES

- M. Ancona and L. De Floriani, Structured graphs and their applications, *Proc. Second IASTED Applied Modeling and Simulation Symp., Paris, 1982, 155–159.* M. Ancona and L. De Floriani, Computational algorithms
 - - 3
- for hierarchically structured project networks; *Operations Research Letters*, 1 (5), 170–176 (1982).
 M. Ancona, L. De Floriani, O. Trebino and A. Zamana, A system for structured graph definition, *Rivista di Informatica* 14 (4), 361–377 (1984) (in Italian).
 M. Ancona, L. De Floriani and J. S. Deogun, *Structured Graphs: Formalism, Properties and Algorithms*, Technical Report no. 158, Istituto per la Matematica Applicata del C.N.R. Genova, Italy (1984).
 J. Hagouel and M. Schwartz, Graphs partitioning with 4
 - Proceedings MELECON 83, Athens, 1983, A5.04–5. M. Haradaand T ν S.
- M. Haradaand T. K. Kunii, A design process formalization, Proceedings COMPSAC 79, Chicago 1979, pp. 367–373.
 F. Harary, Graph Theory, Addison-Wesley, Reading, ý.
 - Addison-Wesley, Reading, F. Harary, *Urup...* Mass., 1977. ~
- A. Iizawe, T. L. Kunii and S. Kawai, A Graph-Based Hardware Design Specification System, Technical Report 81-20, Department of Information Science, University of Tokyo, Japan (1981). ø

g the are representation of a graph model at variable detail levels, canonical ones in the graphs represented by a structured graph are studied in detail. Algorithms to construct a path in a structured graph, and to compute a structured path provides and paths paths of structured graph from a given canonical one, are presented. properties between structured the and ø Since defined the relationships investigated. is. graph

Future developments of this work include an implementation of algorithms for finding structured paths in directed graphs at any level of detail within a system for graph manipulation based on vertex-structured digraphs with specific applications in the design and analysis of computer networks and VLSI systems.

Acknowledgements

This work has been supported by the Italian National Research Council. The authors are grateful to Sandra Burlando for her help in typing this manuscript.

- of Operations theory. Methods Netzplan K. Kaerkes, б.
 - 10. П.
- M. J. Quinn and N. Deo, *Parallel Algorithms and Data* M. J. Quinn and N. Deo, *Parallel Algorithms and Data*
 - Structures in Graph Theory, Research Report CS-82-098, 12.
- *Chicago, 1983*, pp. 93–99. M. Silva, On the concept of macroplace and its use for Petri Washington State University (1982). C. V. Ramamoorthy and W. T. Tsai, An adaptive hier-archical routing algorithm, *Proceedings COMPSAC*33, 13
 - nets analysis, RAIRO Automatique 15 (4), 335-345 (1981), (in French). 4
 - Prentice-Hall, Networks, A. S. Tanenbaum, Computer Englewood Cliffs, N. J. (1980). S. S. Yao and P. C. Grabow, 15. 16.
- A model for representing oranhs IEEE Trans. on programs using hierarchical graphs, IEEE Software Engineering SE-7 (6), 556-573 (1981).