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ABSTRACT

Many rare weather events, including hurricanes, droughts, and floods, dramatically impact human life.

To accurately forecast these events and characterize their climatology requires specialized mathematical

techniques to fully leverage the limited data that are available. Here we describe transition path theory

(TPT), a framework originally developed for molecular simulation, and argue that it is a useful paradigm for

developing mechanistic understanding of rare climate events. TPT provides a method to calculate statistical

properties of the paths into the event. As an initial demonstration of the utility of TPT, we analyze a low-order

model of sudden stratospheric warming (SSW), a dramatic disturbance to the polar vortex that can induce

extreme cold spells at the surface in themidlatitudes. SSWevents pose amajor challenge for seasonal weather

prediction because of their rapid, complex onset and development. Climate models struggle to capture the

long-term statistics of SSW, owing to their diversity and intermittent nature. We use a stochastically forced

Holton–Mass-type model with two stable states, corresponding to radiative equilibrium and a vacillating

SSW-like regime. In this stochastic bistable setting, from certain probabilistic forecasts TPT facilitates esti-

mation of dominant transition pathways and return times of transitions. These ‘‘dynamical statistics’’ are

obtained by solving partial differential equations in the model’s phase space. With future application to more

complexmodels, TPT and its constituent quantities promise to improve the predictability of extreme weather

events through both generation and principled evaluation of forecasts.

1. Introduction and background

The polar winter stratosphere typically supports a

strong, cyclonic polar vortex, maintained by the thermal

wind relation and meridional temperature gradient. A

sudden stratospheric warming (SSW) event is a large

excursion from this normal state, which can take many

different forms. In split-type SSWs, the vortex splits

completely in two. In displacement-type SSWs the

vortex displaces far away from the pole (these can be

considered wavenumber-2 and wavenumber-1 distur-

bances, respectively). Both types are ‘‘major’’ warmings,

as the mean zonal wind reverses. In a ‘‘minor’’ warming,

the zonal wind slows down significantly without com-

pletely reversing (Butler et al. 2015).

SSW is a rare event occurring about twice every

3 years, depending on the definition used (Butler et al.

2015). Its effects can propagate downward into the

troposphere, altering the tropospheric jet stream and

inducing extreme midlatitude surface weather events,

including cold spells and precipitation (Baldwin and

Dunkerton 2001; Thompson et al. 2002). Abrupt cold

spells severely stress infrastructures, economies and

human lives, and every bit of extra prediction lead

time is helpful for adaptation. Unfortunately, numerical

weather prediction struggles to forecast SSW at any

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JAS-D-19-

0278.s1.

Corresponding author: Justin Finkel, jfinkel@uchicago.edu

JULY 2020 F I NKEL ET AL . 2327

DOI: 10.1175/JAS-D-19-0278.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 08/20/22 03:19 PM UTC

https://doi.org/10.1175/JAS-D-19-0278.s1
https://doi.org/10.1175/JAS-D-19-0278.s1
mailto:jfinkel@uchicago.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


lead time longer than about 2 weeks (Tripathi et al.

2016). Understanding SSW is therefore important for

practical forecasting as well as science, but this task

remains difficult. Several different geophysical fields

are often used as indices of SSW onset. One simple

indicator is zonal-mean zonal wind at 608N, which

defines thresholds forminor andmajor warming (Charlton

and Polvani 2007; Butler et al. 2015). Another common

indicator is the 10hPa geopotential height field, which

was used by Inatsu et al. (2015) to estimate a fluctuation–

dissipation relation in its leading empirical orthogonal

functions (EOFs). Many studies have examined SSW

precursors and dominant pathways through simulation

and observation. Limpasuvan et al. (2004), for instance,

catalogued the various wavenumber forcings, heat fluxes

and zonal wind anomalies that accompanied each stage

of SSW events from reanalysis data. While planetary

wave forcing from the troposphere is an accepted proxi-

mal cause of SSW, the polar vortex’s susceptibility to

such forcing, or ‘‘preconditioning,’’ is a nontrivial and

debated function of its geometry (Albers and Birner

2014; Bancalá et al. 2012). Tropospheric blocking is also

thought to be linked to SSW; Martius et al. (2009) and

Bao et al. (2017) found blocking to precede many major

SSW events of the past half century. The diversity and

complex life cycle of SSWs makes it difficult to build a

unified picture of their onset.

In this article, we are interested in developing a de-

tailed understanding of transition events between two

states, at least one of which is typically long lived.

Consider, for example, a particle with position x(t)

moving in the double-well potential energy landscape

V(x) 5 x4/4 2 x2/2 (illustrated in Fig. 1) and forced

by stochastic white noise _W: _x52V 0(x)1s _W. If the

system starts in the left well, it will tend to remain there a

while, but occasionally the stochastic forcing will push

it over the barrier into the right well. The natural pre-

dictor for this event is the committor: the probability of

reaching the right well before the left well.

We denote this function by q(x), which solves the

Kolmogorov backward equation (to be introduced later).

For this simple system the equation takes a form that can

be solved exactly:
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Note that the boundary conditions are implied by the

probabilistic interpretation.

The committor is plotted in the right panel of Fig. 1 for

various noise levels. N.b., the potential landscape pic-

ture is not fully general, but is a useful mental model.

The equations that determine q(x) will be presented in

section 2.

In the case of SSW, the long-lived states are the steady

and disturbed circulation regimes of the stratospheric

polar vortex. Recent work by Yasuda et al. (2017) has

studied SSW in an equilibrium statistical mechanics

framework, with these two stable states as saddle points

of energy functionals. Transition path theory (TPT)

takes a complementary nonequilibrium view, describ-

ing the long-time (steady state) statistics of trajectories

FIG. 1. The committor function for a double-well potential under the dynamics _x52V 0(x)1s _w. (a) The po-

tential functionV(x) and (b) the committor function. The committor has value zero on the left minimum, one on the

right minimum, and one-half at the top of the barrier. The stronger the stochastic forcing, the less the actual

potential shape matters and the more gradual the committor’s slope. For small noise, the dynamics become more

deterministic and the committor approaches a step function, since x(t) will directly approach whicheverminimum is

closer.
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between the two states. For example, TPT introduces a

probability density of reactive trajectories (or ‘‘reactive

density’’) indicating the regions where trajectories tend

to spend their time en route from A to B. The system is

said to be reactive at a point in time if it hasmost recently

visited A and will next visit B. The associated probability

current of reactive trajectories (or ‘‘reactive current’’)

indicates the preferred direction and speed of transi-

tion paths. These detailed descriptors of the mechanism

underlying a rare event can be expressed in terms of

probabilistic forecasts like the committor q(x), the proba-

bility of entering state A before reaching state B from a

given initial condition x (not in either A or B). The

committor is the ideal probabilistic forecast in the usual

variance-minimizing sense of conditional expectations

(Durrett 2013). Any other predictor of a transition de-

rived through experiments and observations, such as

vortex preconditioning and forcing at different wave-

numbers (Albers and Birner 2014; Bancalá et al. 2012;

Martius et al. 2009; Bao et al. 2017) necessarily corre-

sponds to an approximation of the committor.

Ensemble simulation is a commonly used method to

estimate the committor at a single given initial condition

by measuring the fraction of ensemble trajectories that

achieve the rare event. This is challenging because many

simulations are needed to generate enough rare events

for significant statistical power. Recent and ongoing

work aims to channel this computing power more effi-

ciently in weather simulation using importance sampling

and large deviation theory (Hoffman et al. 2006; Weare

2009; Vanden-Eijnden and Weare 2013; Ragone et al.

2018; Dematteis et al. 2018; Plotkin et al. 2019; Webber

et al. 2019). The committor, and other quantities of in-

terest, are fundamentally averages over sample trajecto-

ries. We can also express them as solutions to a concrete

set of partial differential equations (PDEs) using basic

stochastic calculus. TPT provides a framework to exploit

these quantities and enhance our understanding of rare

events, both from simulation data and from the funda-

mental equations of motion.

TPT has been applied primarily to molecular dy-

namics simulation to determine reaction rates and

pathways of complex conformational transitions

(E and Vanden-Eijnden 2010; Metzner et al. 2006;

E and Vanden-Eijnden 2006); however, the framework

does not depend on the details of the underlying dy-

namical system. TPTdeals particularly with stochastically

forced systems, such as Brownian dynamics of particles.

Stochastic forcing applies quite generally; while the

climate system is deterministic in principle, nonlinear

interactions between resolved and unresolved scales

inevitably leads to resolution-dependent model errors that

can be approximated as stochastic. Hasselmann (1976)

originally formulated stochastic climate models to capture

the influence of quickly evolving ‘‘weather’’ variables on

the slowly evolving ‘‘climate’’ variables. Stochastic pa-

rameterization remains an active area of research. For

example, Franzke and Majda (2006) had success in cap-

turing energy fluxes of a three-layer quasigeostrophic

model by projecting onto tenEOFmodes and treating the

remainder as stochastic forcing. Kitsios and Frederiksen

(2019) addressed the challenge of designing consistent

numerical schemes for subgrid-scale parameterization.

Deep convection in the atmosphere and turbulence in

the ocean boundary layer are two examples of multi-

scale processes that are especially challenging to resolve.

The aim of this article is to introduce the key quanti-

ties and relations describing the path properties of rare

atmospheric events. Computing those quantities formore

complicated systems than the low-order model studied

here is a significant and, we argue, worthwhile challenge.

We do not address that computational challenge here.

Instead we note that development of approximation

techniques for TPT and related quantities in high di-

mensional settings is an active area of research Thiede

et al. (2019), Bowman et al. (2009), and Chodera and

Noe (2014). These methods incorporate both simulated

and observational data and we outline them briefly in

the conclusions.

The paper is organized as follows. Section 2 de-

scribes the dynamical model we use, building on work

by Ruzmaikin et al. (2003) and Birner and Williams

(2008). Section 3 describes themathematical framework

of TPT, with detailed, but informal, derivations mainly

put in the online supplement. Section 4 explains the

methodology and results particular to this model.

2. Dynamical model

Holton and Mass (1976) studied ‘‘stratospheric vacil-

lation cycles,’’ a certain kind of minor warming in which

zonal wind oscillates on a roughly seasonal time scale.

They posited a mechanism of wave-mean flow interac-

tion, which continues to be an important modeling

paradigm. The quasigeostrophic equations are confined

to a b-plane channel from 608 to the North Pole, and the

streamfunction is perturbed from below by orographically

induced planetary waves, specified through the lower

boundary condition. The Holton–Mass model combines

the zonal-mean flow equations,

›u

›t
2 f

0
y5 0, (2)

f
0
u52

›F

›y
, (3)
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These equations represent zonal [(2)] and meridional

[(3)] momentum balance, conservation of energy [(4)],

conservation of mass [(5)], and a combination of all

these for the perturbations [(6)]. Overbars and primes

represent zonal averages and perturbations. F is the

geopotential height;H5 7 km is the atmospheric scale

height; z 5 2Hln(p/p0) is log pressure; rs 5 r0e
2z/H

is a standard density profile; a 5 a(z) is an altitude-

dependent damping coefficient; and T*5T*(y, z)

is the radiative equilibrium temperature. Holton

and Mass (1976) studied the solution consisting of

single Fourier modes in the zonal and meridional

directions:

u(y, z, t)5U(z, t) sin‘y , (9)

c0(x, y, t)5RefC(z, t)eikxgez/2H sin‘y , (10)

where c0 is the zonal perturbation of c5 (g/f0)F. k 5

2/(a cos608) and ‘5 3/a are the zonal and meridional

wavenumbers, where a is Earth’s radius. These wave-

numbers are commonly observed in real SSWs and

used in theoretical studies (Birner and Williams 2008;

Ruzmaikin et al. 2003; Yoden 1987; Holton and Mass

1976); a split-type SSW is an extreme wavenumber-two

perturbation. The lower boundary condition at z 5 zB
(the tropopause) is

C(z
B
, t)5

g

f
0

h(t) , (11)

where h is a topographically induced perturbation to

geopotential height at the tropopause. Holton and Mass

found that for a certain range of h, this system has

qualitatively different regimes: a steady eastward zonal

flow close to radiative equilibrium, and a weaker zonal

flow with quasi-periodic ‘‘vacillations’’ from eastward

to westward, even under constant forcing. Each vacil-

lation cycle consists of a sudden warming and cooling

over the time scale of weeks. Although these individual

cycles are interesting weather events unto themselves,

in this paper we think of the vacillations as occurring

within a general climate regime that is conducive to

sudden warming, as opposed to the steady flow state,

which is not. Transitions between these two regimes,

which we focus on here, are more accurately described

as climatological shifts than weather events. The study

by Ruzmaikin et al. (2003) varies h on an interannual

time scale, with each single winter season occupying one

of the two stable states and generating its daily weather

accordingly. Hence, for this paper we will use the term

‘‘climate transitions.’’

The original Holton–Mass model discretizes the above

PDE with finite differences across 27 vertical levels,

which is assumed to be close to a continuum limit.

Following several studies at this resolution (Holton and

Mass 1976; Yoden 1987; Christiansen 2000), Ruzmaikin

et al. (2003) did the most severe truncation possible,

resolving only three vertical levels (including fixed

boundaries) for easy analysis and exploration of pa-

rameter space. This reduces phase space to only three

degrees of freedom: U(t), which modulates u as a sine

jet; X(t) 5 Re{C(t)}; and Y(t) 5 Im{C(t)}, where X and

Ymodulate the amplitude and phase of the perturbation

streamfunction:

c0(x, y, t)5 (X coskx2Y sinkx)ez/2H sin‘y . (12)

Carrying the ansatz through the quasigeostrophic

equations, Ruzmaikin et al. (2003) derived the fol-

lowing system:

_X52
1

t
1

X2 rY1 sUY2 jh1 d
w
_h , (13)

_Y52
1

t
1

Y1 rX2 sUX1 zhU , (14)

_U52
1

t
2

(U2U
R
)2hhY2 d

L

_L . (15)

The primary control parameter h represents topo-

graphic forcing and other sources of planetary waves,

such as land–sea ice contrast.WhileRuzmaikin et al. (2003)

also variesL, representing vertical wind shear, we will only

vary h and set L constant. Time derivatives _h and _L are

zeroed, removing transient forcings such as seasonality
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effects. The appendix andRuzmaikin et al. (2003) have a

detailed list of parameters.

Remarkably, this hugely simplified model retains the

qualitative structure of the Holton–Mass model as a

bistable system for a certain range of h between the

critical values h1’ 20m and h2’ 160m, as shown in the

bifurcation diagram of Fig. 2. Blue points represent

the normal state of the vortex, in approximate thermal

wind balance with the radiative equilibrium tempera-

ture field (henceforth called the ‘‘radiative solution’’).

Red points represent a disturbed vortex, with weaker

zonal wind and vacillations. This climatological regime

supports more SSW events, and is henceforth called the

‘‘vacillating solution.’’ We use the same blue-red color

scheme consistently here to represent these two states.

Transitions between them happen on interannual time

scales, affecting each year’s likelihood of SSW events.

The structure of transitions is illustrated in Fig. 3: as

h increases slowly past the bifurcation threshold h2,

the system enters a series of rapid, large-amplitude

oscillations that spiral into the weaker-circulation state.

In Figs. 2 and 3, transitions require crossing the bifur-

cation threshold h2, where the radiative solution ceases to

exist. Birner and Williams (2008) introduced additive

white-noise forcing in the U variable to model unre-

solved gravity waves and found that these perturbations

were sufficient to excite the system out of its normal

state and into a vacillating regime. In Fig. 4 we illustrate

stochastic trajectories of the system for three different

(fixed) values of h. (For numerical reasons we also add a

small amount of independent white noise to X and Y

variables). Even when h is far below h2, transitions

still occur, and in fact the preference for the vacillating

solution branch increases quickly with h.

Birner and Williams (2008) used direct numerical

simulation and the Fokker–Planck equation to calcu-

late long-term occupation statistics, that is, how much

time on average was spent in each regime and the

mean first passage time before a transition to the

vacillating regime, all for a range of forcing and noise

levels. Our approach differs in both target and meth-

odology.We aim to characterize the transition process

between the two states, to monitor its progress in real

time, as well as to describe statistics of the transition over

many realizations. Methodologically, transition path the-

ory phrases these questions in terms of the generator of the

stochastic process, a differential operator that encodes all

information about the behavior of the process.

FIG. 2. Fixed points of (13)–(15) in the state space (X, Y, U), where X and Y represent the real and imaginary

parts of the streamfunction and U the mean zonal wind amplitude. Fixed points vary as a function of the topo-

graphic forcing parameter h. (a)–(c) Fixed points of X, Y, and U, respectively, on the vertical axis, while h varies

across the horizontal axis. Circles and crosses denote linearly stable and unstable fixed points, respectively. The

range of h between;20 and;160m supports three fixed points, two stable and one unstable. In this range, the blue

points correspond to the radiative solution, while the red points represent the vacillating regime. This corresponds

to a winter climatology that is conducive to sudden stratospheric warming events.
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3. Path properties

TPT characterizes the statistics of transitions between

states. In this section, we introduce the key quantities

needed for TPT as applied to the Ruzmaikin model to

obtain a more complete picture than we get from the

sample paths shown above. For mathematical details,

see the online supplement and background literature

(E andVanden-Eijnden 2006;Metzner et al. 2006; E and

Vanden-Eijnden 2010).

a. Infinitesimal generator

The noisyRuzmaikinmodel can be expressed compactly

as a stochastic differential equation (SDE)—specifically a

diffusion process—in the variable Z5 (X, Y, U) 2 R
3

(or amore general phase spaceV) with a deterministic drift

vector b(z) 5 [b1(z), b2(z), b3(z)] and a 3 3 3 diffusion

matrix s(z):

dZ
t
5b(Z

t
) dt1s(Z

t
)dW

t
. (16)

Here, Wt is a three vector of independent Brownian mo-

tions. We use the Ito convention for stochastic integration.

While s can in principle be any z-dependent matrix, we

make s diagonal and constant: s(z) 5 diag(s1, s2, s3),

creating independent additive noise in the X, Y, and U

variables; s1 and s2 have units of m
2 s21day21/2, while s3

has units of ms21day21/2. Associated with this equation is

the infinitesimal generator L, an operator describing the

evolution of observable functions forward in time follow-

ing a trajectory. Explicitly, if f(�) is a smooth function of

phase-space variables, then

Lf (z):5 d

dt
E[ f (Z

t
)jZ

0
5 z]j

t50
, (17)

where E is an expectation over sample paths.

Ito’s lemma (the chain rule for diffusion SDEs) gives

the Kolmogorov backward equation, which repre-

sents L as a partial differential operator (for details,

see Pavliotis 2014):

Lf (z)5�
i

b
i
(z)

›f (z)

›z
i

1
1

2
�
i,j
(ssT)

ij

›2f (z)

›z
i
›z

j

, (18)

5 b(z) � =f (z)1Tr

�

1

2
ss

T
Hf(z)

�

. (19)

The diffusion matrix (1/2)ssT is also called D for

convenience, which we will use interchangeably. Hf de-

notes the Hessian matrix: [Hf]ij 5›2f/›zi›zj. The gener-

ator provides path statistics as the solution to PDEs, as

illustrated in the following subsections.

b. Equilibrium probability density

This stochastic process admits a time-dependent prob-

ability density r(z, t), which can be derived from the

generator. For example, if the system starts in a known

position Z0 5 z, then r(z0, 0) 5 d(z 2 z0). The density

spreads out from this initial point over time according

to the Fokker–Planck equation, which can be written in

terms of the adjoint of the generator:

›r(z, t)

›t
5L*r(z, t), (20)

5�
i

›

›z
i

(

2b
i
(z)r(z, t)1�

j

›

›z
j

[r(z, t)D
ij
(z)]

)

,

(21)

5= � f2b(z)r(z, t)1= � [r(z, t)D(z)]g. (22)

FIG. 3. Trajectories in (X, Y, U) space, where X and Y represent the real and imaginary parts of the stream-

function andU themean zonal wind amplitude. In this simulation, the topographic forcing h increases linearly from

0 to 200m in 1300 days. (a) The fixed points, with blue, red, and black for the radiative solution A, the vacillating

solution B, and the unstable fixed point between them respectively. The trajectory of U over time is superimposed

in gray. (b) As in (a), but plotted parametrically, in X–U space. Before the bifurcation, the trajectories follow the

existing fixed point; after the bifurcation, they spiral into the new fixed point through a series of ‘‘vacillations.’’
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When D is constant and diagonal, the last term sim-

plifies to= � [= � (rD)]5�iDii›
2r/›z2i . In the case of pure

Brownian motion, dZt 5 dWt, then b5 0 and D 5 (1/2)I,

giving the heat equation ›tr 5 (1/2)=2r
�

=
2
5�i›

2/›z2i
�

.

Assuming that the process is ergodic, the density even-

tually forgets the initial condition and stabilizes into a

long-term (or equilibrium, or stationary) probability

density p(z), which solves L*p5 0. This can be ap-

proximated by either simulating the SDE for a very

long time and binning data points, or directly solving the

stationary PDE L*p5 0, subject to the normalization

and positivity constraints
Ð

V
p(z) dz5 1 and p(z) $ 0.

c. Committor probability

The stationary density is an equilibrium quantity

characterizing the long-term occupation statistics.

But it is insufficient to describe the events of interest

to us, which are transition paths: trajectory segments

beginning inside the radiative state and ending in-

side the vacillating state. Specifically, we define the

sets A and B as ellipsoids around these two fixed

points, respectively. Their size is determined by

contours of a local approximation to the stationary

density p; see supplement for details. We say that a

snapshot Zt of the system is undergoing a transition

(or reaction) at time t if it is on the way from set A

to set B. This involves information about both its

future and its past, for which we introduce the for-

ward and backward committor probabilities in this

section.

The forward committor q1 (denoted qwhen context is

clear) describes the progress of a stochastic trajectory

traveling from set A to set B, as follows:

q1(z)5PfZ
t
next hitsB beforeAjZ

0
5 zg , (23)

q1(z 2 A)5 0, q1(z 2 B)5 1: (24)

The boundary conditions on A and B follow naturally

from the probabilistic definition. If the system begins in

set A, by path continuity it will certainly next find itself

FIG. 4. Stochastic trajectories of the system for various fixed values of the parameters h (topographic forcing) and s3

(amplitude of stochastic forcing). (a)–(c)U(t) for three different forcing levels: h5 45, 35, and 25m, respectively, with

s3 5 0.5m s21 day21/2. In keeping with the bifurcation diagrams, the blue, black, and red lines mark the radiative,

unstable, and vacillating solutions, respectively. Note that their relative positions vary slightly with h, as fixed points

depend on parameters.As h increases from left to right, the system spends increasinglymore of its time in the vacillating

state. (d) A parametric plot of the transitions through (X, U) space, for h 5 35m [another view of (b)]. The transition

happens seven times, and hence (d) shows seven different transition paths superimposed on each other. Most of the

transitions followa similar characteristic curve throughX–U space,with a rapiddecrease inU followedby adecrease inX.
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in A, with zero chance of hitting B first. Starting in set B

the opposite is true. The committor therefore obeys

the boundary value problem (see online supplement for

derivation)

8

<

:

Lq1(z)5 0 z 2 (A<B)c

q1(z)5 0 z 2 A

q1(z)5 1 z 2 B

. (25)

This equivalence of a conditional expectation with re-

spect to a Markov process like the committor and the

solution to PDE involving the generator of the process

is generally referred to as a Feynman–Kac relation

(Karatzas and Shreve 1998) and is well studied. The

PDE in (25) is most naturally posed on an infinite do-

main, but as a numerical approximation we solve it in a

large rectangular domain and impose homogeneous

Neumann conditions at the domain boundary. A limit-

ing example is the noise-dominated case, where b(z) is

negligible and D 5 I. The Kolmogorov backward equa-

tion then becomes Laplace’s equation:

Lq1(z)5=
2q1(z)5 0: (26)

If posed on the interval [0, 1], with A5 {0} and B 5 {1},

the solution is q1(z)5 z. The linear increase from set A

to set B reflects the greater likelihood of entering B

when beginning closer to it. This limit is reflected in

Fig. 1, which shows the committor of the double-well

potential approaching a straight line for large s values.

Prediction is naturally much harder in high-dimensional

systems such as stratospheric models. A number of

physically interpretable fields, such as zonal wind and

geopotential height anomalies, seem to have some pre-

dictive power for SSW, but prediction by any single such

diagnostic is suboptimal. Insofar as they are successful,

these variables approximate certain aspects of the

committor. For example, the committor might increase

monotonically with the quasi-biennial oscillation index.

Furthermore, statistical correlations potentially obscure

the conditional relationships needed. For example,

Martius et al. (2009) and Bao et al. (2017) examined

tropospheric precursors to SSW events in reanalysis rec-

ords, finding that blocking events preceded most major

SSWs, potentially by enhancing upward-propagating

planetary waves. (We use ‘‘precursor’’ only to mean an

event that sometimes happens before SSW.) Blocking

influences SSW through height perturbations at the

tropopause, which would enter the Ruzmaikin model as

low-frequency variations in lower boundary forcing h.

Since we fix h constant, the blocking precursor is outside

our scope here. However, farther down the dynamic

chain are other measurable precursors such vertical

wave activity flux and meridional heat flux, which are

also found to have predictive power (Sjoberg and Birner

2012). However comprehensive the model, we would

naturally expect the true committor probability to exhibit

similar patterns to canonical precursors of that model such

as blocking (for a troposphere-coupled model) and heat

flux (for a stratosphere-only model). However, there is an

important difference: while a precursor P may appear

with high probability given that a SSW is imminent, the

committor specifies the probability of a SSW given an

observed pattern. As acknowledged in Martius et al.

(2009), many blocking events did not lead to SSW events,

meaning that PfSSWjblockingg 6¼PfblockingjSSWg.
Such distinctions highlight the need for a precise

mathematical formulation that provides and distin-

guishes both kinds of information.

While q1 describes the future of a transition, the back-

ward committor q2 describes its past. It is defined as

q2(z) :5 PfZ
t
last visitedA rather thanBjZ

0
5 zg ,

(27)

q2(A)5 1, q2(B)5 0: (28)

Here, q2 solves the time-reversed Kolmogorov back-

ward equation ~Lq2 5 0, where ~L is the time-reversed

generator, which evolves observables backward in time.

See supplement for a detailed description of ~L and its

relationship the forward generator L.
We now describe the fundamental statistics character-

izing transition events as identified by TPT and explain

how they can be expressed in terms of quantities such as

q1, q2, and p. The probability density of reactive tra-

jectories rR(z), the probability of observing the systemZt

at the location z during a transition, is proportional (up

to a normalization constant) to the product p(z)q2(z)

q1(z). This density is large in regions of phase space that

are highly trafficked by reactive trajectories. This is

how TPT gives information about precursors, indi-

cating regions of phase space that are usually visited

by the system over the course of a transition path.

Thedirection and intensity of this traffic is specifiedby the

reactive current. To develop this concept, we start by intro-

ducing the probability current J, a vector field that satisfies a

continuity equation with the time-dependent density r:

›r

›t
5L*r52= � J .

If r were the density and y the velocity field of a fluid, J

would be ry. One can think of J as an instantaneous

(in time and position) average over all possible system

trajectories, though a precise mathematical description

requires some care. In equilibrium, when r 5 p is no
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longer changing, = � J5 0, or equivalently

þ

C

J � n dS5 0

where C is any closed surface.

The reactive current JAB is also an ‘‘average velocity,’’

but restricted to reactive paths. Unlike J, JAB is not

divergence-free, with a source in A and a sink in B

(where transition paths start and end). We define JAB

implicitly via surface integrals. If C is any surface en-

closing set A but not set B, with outward normal n, then

the flux

þ

C

JAB � n dS is the number of forward transitions

per unit time, also called the transition rate RAB; see E

and Vanden-Eijnden (2010) for details. The supplement

describes another expression in terms of the generator.

The result is (Metzner et al. 2006)

J5pb2= � (pD) , (29)

J
AB

5 q1q2J1pD(q2
=q1

2 q1
=q2) , (30)

where again p is the stationary density. This expression

has intuitive ingredients. Multiplying J by q1q2 condi-

tions the equilibrium probability current on the trajec-

tory being reactive, meaning en route from A to B. The

q2=q1 2 q1=q2 reflects the fact that trajectories from

A to Bmust ascend a gradient of q1, going from q1 5 0

to q1 5 1, while descending a gradient of q2.

Just as JAB(z) describes the average reactive velocity,

a streamline zt of JAB(z) (solving _zt 5 JAB(z), with z0 5

a 2 A and zT 5 b 2 B for some T . 0) is a kind of

‘‘average’’ transition path. Although the streamline will

not be realized by any particular transition path, it will

have common geometric features in phase space with

many actual path samples. At low noise the reactive

trajectories will cluster in a thin corridor about the

streamline. The streamline is a more dynamical descrip-

tion of precursors: whereas regions of high reactive

density are commonly observed states along reactive

trajectories, streamlines of reactive current are com-

monly observed sequences of states along reactive tra-

jectories. The study by Limpasuvan et al. (2004), for

example, described a sequence of events in a prototyp-

ical SSW life cycle based on reanalysis including vortex

preconditioning, wave forcing, and anomalous heat

fluxes at various levels in the troposphere and strato-

sphere. The sequence described there likely corresponds

to a streamline of the reactive trajectory.

The committor also quantifies the relative balance of

time spent on the way to each set. If more probability

mass lies in the region where q1 . 1/2, set B is globally

more imminent, whereas more mass where q1 , 1/2

indicates set A is. A single summary statistic of immi-

nence is the average committor during a long trajectory,

E[q1(Zt)], computed as a weighted average against the

equilibrium density:

E[q1(Z
t
)]5E

p
[q1(Z)]5

ð

V

q1(z)p(z) dz5 : hq1i
p
.

(31)

An average below (above) 1/2 would indicate more time

spent on the way to A (B).

Another statistic, the forward transition rate, captures

the frequency of transitions betweenA andB rather than

the overall time spent in each. We earlier defined RAB

as the number ofA/B transitions per unit time. Since a

B/ A transition must occur between every twoA/ B

transitions,RAB5RBA5:R. The inverse of the transition

rate is the return time, a widely used metric for changing

frequency of extreme events under climate change sce-

narios (Easterling et al. 2000). However, the forward and

backward transitions may differ in important character-

istics like speed. To capture this asymmetry, we need a

dynamical analog to the equilibrium statistic hq1ip. The
typical quantity of choice is the rate constant kAB, which is

larger if A/ B transitions happen faster than B/ A

transitions. We therefore normalize by the overall time

spent having come from A, which is hq2ip:

k
AB

5
R

hq2i
p

5
R

ð

q2(z)p(z) dz

. (32)

This rate constant, defined in Vanden-Eijnden (2014),

parallels the chemistry definition. If XA and XB are two

chemical species, with [�] denoting concentration, the

forward and backward-rate constants kAB and kBA are

defined so that

R5 [X
A
]k

AB
5 [X

B
]k

BA
. (33)

In the language of transition path theory, [XA] is the long-

term probability of the system existing most recently in

state A, which is hq2ip. Rates are also expressible in

terms of expected passage times. Thinking of [XA] as the

total probability of having last visited set A, 1/kAB 5

[XA]/R estimates the total transition time between en-

teringA (having last visitedB) and next reenteringB. It is

these inverse quantities we display in the results section.

These quantities together make an informative descrip-

tion of the typical transition process from A to B. We

now proceed to analyze the transition path properties of

the Ruzmaikin stratospheric model.

4. Methodology

Spatial discretization

The quantities of interest described above (p, q1, q2,

and JAB) emerge as solutions to PDEs involving the
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generator L, which must be approximated by spatial

discretization. In the supplement we describe a finite

volume scheme to directly discretize the adjoint L* as a

matrix, which we name L*, on a regular grid in d di-

mensions. Here we use the same domain and noise levels

as Birner and Williams (2008): 20.06 # X # 0.04,

20.05 # Y # 0.05, 0 # U # 0.8 in units non-

dimensionalized in terms of the radius of Earth and the

length of a day.We tile this with a grid of 403 403 80 grid

cells. We choose a noise constant s3 in the U variable in

the range 0.4–1.5. This is a similar range to observed

atmospheric gravity wave momentum forcing (Birner

and Williams 2008). For numerical reasons, we also add

small noise to the streamfunction variables X and Y, in

proportion to the domain size. Specifically, as U spans a

range of 0.8 and X, Y span a smaller range of 0.1, we

choose s1 and s2 to be s3 3 (0.1/0.8). This adjustment

does change our results with respect to Birner and

Williams (2008), causing more transitions in both di-

rections at lower h than if only the U variable were

perturbed. While gravity wave drag forces the zonal

wind, eddy interactions and other sources of internal

variability can perturb the streamfunction as well, and

it is not uncommon to represent these effects stochas-

tically (DelSole and Farrell 1995). There are surely

more accurate representations of noise, but this impor-

tant issue is not our focus. We retain these perturbations

for numerical convenience, but stress that the general

principles of the TPT framework are independent of any

specific form of stochasticity. In the forthcoming ex-

periments, we will refer only to s3 with the under-

standing that s1 and s2 are adjusted proportionally. The

discretization we use has strengths and limitations.

Given the matrix L* on this grid, the discretized gener-

ator L is just the transpose. To ensure certain properties

of solutions, such as positivity of probabilities, L should

ideally retain characteristics of the infinitesimal gen-

erator of a discrete-space, continuous-time Markov

process: rows that sum to zero, and nonnegative off-

diagonal entries. Such a discretization is called ‘‘real-

izable’’ (Bou-Rabee and Vanden-Eijnden 2015). One

can check that our discretization always satisfies the

former property, and so is realizable provided small

enough grid spacing (dX, dY, dU). In our current ex-

ample, the spacing is not nearly small enough to guar-

antee this (matrix entries were just as often negative as

positive), but results are still accurate, as verified by

stochastic simulations to be described in the results

section. While we could have used one-sided finite

differences to enforce positivity, this would have de-

graded the overall numerical accuracy of the solutions.

We opted instead to zero out negatives, which were

always negligible in magnitude.

The discretized Kolmogorov backward equation is

Lq1 5 0, augmented with appropriate boundary condi-

tions. The definition of A and B is a design choice that

should satisfy three conditions: 1) they are disjoint, 2) A

contains the radiative fixed point andB the fixed point of

the vacillating regime, and 3) both sets are relatively

stable in the chosen noise range. We choose A and B to

be ellipses with orientations determined by the covari-

ance of the equilibrium density of the linearized sto-

chastic dynamics about their respective fixed points, as

described in the online supplement. The choice of the

sizes of A and B is a subjective decision that alters the

very definition of a reactive trajectory; hence, different

sizes emphasize different features of the transition path

ensemble, especially in oscillatory systems like this one.

We made A and B large enough to enclose the many

loops that often accompany the escape from A and the

descent intoB, so that we can focus on the relatively rare

crossing of phase space. More sophisticated techniques

exist for shrinking the two sets while erasing resulting

loops (Lu and Vanden-Eijnden 2014; Banisch and

Vanden-Eijnden 2016); for simplicity, we forgo these

techniques for the current study.

Careful discretization is important for constructing

the dominant pathways discussed above, that is, the

streamlines zt satisfying _zt 5 JAB. Standard integration

techniques such as Euler or Runge–Kutta will accumu-

late errors, not only from Taylor expansion but also

from the discretized solution of q1, q2, andp. These can

be severe enough to prevent zt from reaching set B. To

guarantee that full transitions are extracted, we in-

stead solve shortest-path algorithms on the graph in-

duced by the discretization, as described in Metzner

et al. (2009). The supplement contains more details on

this computation.

5. Results

Webegin this section by describing the kinematic path

characteristics of the process in its three-dimensional

phase space, according to the quantities described

above. Following this purely geometrical description,

we will suggest some dynamical interpretations and

compare with previous studies. Finally, we will map sta-

tistical features as functions of background parameters.

The Ruzmaikin model is attractive for demonstrating

use of the tools introduced in section 3 due to its low-

dimensional state space, in which PDEs can be solved

numerically using standard methods such as our finite

volume scheme. We tested the committor’s accuracy

empirically by randomly selecting 50 cells in our grid

(this is 0.04% of the grid) and evolving n5 60 stochastic

trajectories forward in time from each, stopping when
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they reach either set A or set B. The fraction of trajec-

tories starting from z that first reach B is taken as the

empirical committor at point z and is denoted ~q1, which

we compare with the predicted committor q1 from the

finite volume scheme. Figure 5 clearly demonstrates the

usefulness of the committor for probabilistic forecasting.

The left column displays the committor calculated

from finite volumes, averaged in the Y direction, for

two different forcing levels h. The right column shows a

scatterplot of ~q1 versus q1 at the 50 randomly selected

grid cells. We expect the points to fall along the line

~q1
5 q1 with some spread proportional to the standard

deviation of the binomial distribution,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1(12 q1)/n
p

.

Approximating this as a Gaussian, we have plotted red

curves enclosing the 95% confidence interval, which

indeed contains approximately 95% of the data points.

Statistical sampling error can explain the observed

level of deviation, although discretization error (from

solving the PDE and from time-stepping) may also

contribute.

Figure 5 also shows how q1 responds to increasing h,

even far below the bifurcation threshold: the committor

values throughout state space become rapidly skewed

toward unity (meaning redder in the picture). This

means that even slight perturbations can kick the system

out of state A toward state B. Another indicator is the

‘‘isocommittor surface,’’ the set of points z such that

q1(z) 5 1/2; that is, the system has equal probability of

next entering set A or B. In the left-hand column this

is the set of gray points (averaging out the variable Y).

For low forcing, this surface tightly encloses set B,

meaning the system must wander very close before a

transition is imminent. For high forcing values, the iso-

committor hugs set A more closely, meaning that small

perturbations from this normal state can easily push the

system into dangerous territory. In Fig. 6, the isocommittor

is shown as a set of gray points in a 3D plot viewed from

various vantage points. In the low-U region, the iso-

committor resembles a spiral staircase, reflecting the

spiral-shaped stable manifold of the fixed point in set

FIG. 5. The committor gives the probabilistic forecast of the system, and this plot is an empirical demonstration of

its predictive capacity. Here, noise is fixed at s35 0.5m s21 day21/2, while topographic forcing (a),(b) h5 25m and

(c),(d)h5 30m. (left) The forward committor q1 solved by the finite-volume method, averaged in the Y direction.

The ellipses labeledA and B are projections of the actual sets onto theX–U plane, whereX andU are the real part

of the streamfunction and the mean zonal wind amplitude. Committor values range from 0 (blue) to 1 (red), with

the white contour showing the surface q1 5 1/2. (right) Comparison of the PDE solution of the committor with a

Monte Carlo solution from running many trajectories. For 50 randomly chosen grid points [sampled uniformly

across the committor range (0, 1)], we launched 60 independent stochastic trajectories and counted the fraction that

reached setB first. We call this the empirical committor, ~q1. (b),(d) Plots of ~q1 vs q1 for these 50 random grid cells.

The middle red line is the curve ~q1
5q1, and the envelope around it is the 95% confidence interval for sampling

errors, based on a Gaussian approximation to the binomial distribution.
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B. Different initial positions with the same stream-

function phase, differing only slightly in theU direction,

can have drastically different final destinations. These

spiral surfaces are responsible for the blue lobes in the

lower part of Fig. 5, but they disappear at higher noise.

Figures 7 and 8 display numerical solutions of the equi-

librium density p and reactive density rR } pq1q2 for two

forcing levels.Whilep indicateswhereZt tends to reside, rR
indicates where Zt resides given a transition fromA to B is

underway. As h increases, even far below the bifurcation

threshold, p responds strongly, shifting weight toward state

B. On the other hand, the reactive density displays similar

characteristics for all h values. In the X–U plane, the two

lobes of high reactive density surrounding A indicate that

zonalwind tends to remain strong for awhile before dipping

into the weaker regime. Viewing the same field in theX–Y

plane (Fig. 8) reveals a halo of intermediate density about

set A. While many different motions would be consistent

with this pattern, the coming figures verify that the early

stages of transition have circular loops in the X–Y plane,

meaning zonal movement of the streamfunction’s peaks

and troughs. The exact streamfunction phase corresponding

to the (X, Y) position is calculated as follows. Recall the

streamfunction is c0
5RefC(t)eikx cos(‘y)g, where C 5

X 1 iY. In polar coordinates, C5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 1Y2
p

eif, where

f 5 tan21(Y/X). The full streamfunction is

c0
}RefCeikxg 5Ref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 1Y2
p

ei(f1kx)g

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 1Y2
p

cos(f1 2l) ,

where l is longitude.

The angle from the origin in the X–Y plane indicates

the zonal streamfunction phase, and circular motion

indicates zonal movement. (This ‘‘looping’’ motion is

indeed shared by the transition path samples shown in

Figs. 9 and 10, to be described later.)

The darkest (most-trafficked) region of this loop is

the sector (p/4) & f & (p/4). The relationship between

(X, Y) and l indicates c0 is maximized at longitudes l5

{2f/2, p 2 f/2}. As the maximum reactive density oc-

curs around f 5 3p/8, the streamfunction peaks are at

FIG. 6. The committor 1/2 surface is the set of all points in state spacewhere theq15 1/2, and setsA andB have equal

probabilities of being visited next. Here the surface is rendered as a set of points and viewed fromvarious vantage points

in state space (the online supplement shows a video with rotation). The topographic forcing is fixed to h5 25m and the

noise level to s35 0.5m s21 day21/2. The blue and red clusters mark setsA andB respectively, centered around the two

stable fixed points. The gray points show the location of the surface q1 5 1/2. The most striking feature is the ‘‘spiral

staircase’’ structure in the low-U region of phase space. For any given streamfunction phase, the likelihood of heading

toward stateA orB depends sensitively onU, in an oscillatory manner. Even at very low values ofU, there are narrow

channels that are likely to lead back to set A rather than set B. This accounts for the blue regions in the lower part of

Fig. 5. These disappear, however, at higher noise, when set B overtakes the lower half of the picture.
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{23p/16, 13p/16}’ {3268, 1468}.What is the significance of

this phase relative to the lower boundary forcing?Recalling

the forcing form Re{C(zB, t)e
ikx} 5 hRe{ei2l} } cos(2l),

the bottom peaks are located at l 5 {0, p}. Hence, the

bulk of the transition process happens when the per-

turbation streamfunction at themidstratosphere lags the

lower boundary condition by 3/16 6 1/16 of a wave-

length.Meanwhile, theX–U plane reveals what happens

to the zonal wind speed during the SSW transition. The

high-reactive density region discussed above coincides

with the crescent-shaped bridge of high density between

the sets in Fig. 7. This suggests that in an SSW, the zonal

wind weakens while the streamfunction stays in that

particular phase window.

The pictures of reactive density suggest that reac-

tive trajectories tend to loop around set A, physically

meaning the streamfunction tends to travel in one di-

rection before slowing down, but they technically con-

vey no directional information to explicitly support this

claim. For this, we turn to the reactive current. We

computed the discrete-space effective current matrix f1ij ,

directly from the finite-volume discretization and nu-

merical solutions of p, q1 and q2. Physically, this matrix

represents the flux of a vector field from grid cell i to cell

j. From this we calculated themaximum-current paths as

described in Metzner et al. (2009) and displayed the

results in Fig. 9 for a forcing level of h 5 30m (other

levels are qualitatively similar). Both the X–U and X–Y

views are shown. Superimposed on these paths are seven

actual reactive trajectories that occurred during a long

stochastic simulation, to demonstrate features that are

captured by the dominant pathways. The dominant path

fromA toB indeed contains a half loop in theX–Y plane

in the clockwise direction, which means an eastward

phase velocity.With a smaller setA, this dominant path

would contain more of these loops. However, during

the next transition stage, the streamfunction slows to a

halt at the phase angle f 5 p/2, doubles back and

travels westward as zonal wind loses strength. The

smear of high density in the neighborhood f ; 3p/16

therefore comprises not only a precipitous drop in

zonal wind (which happens at the edge of that region)

but also a backtrack, this time with weaker background

zonal wind. This behavior is borne out by the trajectory

samples, which vacillate in the upper-middle section of

the X–Y plot. These paths are displayed as space–time

FIG. 7. (a),(c) Equilibrium densities p(z) and (b),(d) reactive densities rR(z) 5 p(z)q1(z)q2(z) for two different

forcing levels: (a),(b)h5 25mand (c),(d)h5 35m.p(z) is the long-termprobability density of finding the systemat point

z at any given time; rR(z) is the same probability, but conditional on also being reactive at that time, meaning having last

visitedA andnext destined to visitB.Darker color indicates higher density. These densities are summed in theYdirection

to give amarginal density as a function ofX andU. The red and blue ellipses show the projected boundaries of setsA and

B, respectively. These reactive densities capture the patterns of transition path samples shown in Fig. 4, but through

continuous fields instead. At low forcing levels, most of the equilibrium density is concentrated around set A, whereas

higher forcing shifts some of the mass to set B. Meanwhile, the characteristic curved shape of transition paths in phase

space is borneout by the reactive densities,with a sickle-shapedhigh-density regionbridging the gapbetween setA andB.
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diagrams of the streamfunction in Fig. 10. In Fig. 10a,

the dominant path’s two loops correspond to two

troughs moving east past a fixed longitude before the

slowdown. The random streamfunction trajectories

shown in Figs. 10b–g do not follow this representative

history exactly, but they do combine elements of it:

steady eastward wave propagation followed by slow-

down and reversal. Each stage can have multiple

false starts. Notably, the slowdown consistently hap-

pens at the same phase, with peaks at;1208 and 3008E,

at roughly the same phase as found from the density

plots. In fact, the figures show a brief slowdown every

time the streamfunction passes this phase. This can

be thought of as a representation of blocking events

that often accompany sudden stratospheric warmings.

The third transition path shown is an exception to the

general pattern, making a final turn toward the east in-

stead of to the west. This outlier of a reactive trajectory

can also be seen in Fig. 9, as the single green trajectory

that decreases inX before decreasing inU instead of the

other way around.

This kinematic sequence of events has a dynamical

interpretation with precedent in prior literature. A

critical ingredient of SSW is meridional eddy heat flux,

which in this model takes the form y0F0
z } hY (see the

online supplement for a detailed derivation). This term

shows up explicitly as a negative forcing on U in (15),

showing that a reduced equator-to-pole temperature

gradient in turn weakens the vortex via the thermal wind

relation. The association of heat flux with SSW has

been demonstrated in reanalysis (Sjoberg and Birner

2012) and in detailed numerical simulations of internal

stratospheric dynamics, even with time-independent

lower boundary forcing (Scott and Polvani 2006). This

relationship favors the phase f 5 p/2 as the most sus-

ceptible state for SSW onset, which is exactly picked out

by the dominant transition pathway in Fig. 9.

However, immediately after the wind starts weaken-

ing atf5p/2, where the streamfunction lines up with its

lower boundary condition, the phase velocity reverses,

giving rise to the westward lag of 3p/16 we observed in

the reactive density. A similar phase lag has also been

observed in more detailed numerical studies. For exam-

ple, Scott and Polvani (2006) observed a lag of p/2 across

the whole stratosphere (p/4 at themidlevel), quite similar

to our result. They found that vortex breakup was pre-

ceded by a long, slow build-up phase in which the vortex

became increasingly vertically coherent, only to be ripped

apart by an upward- and west-propagating wave. In an

experiment with slowly increasing lower boundary forc-

ing, Dunkerton et al. (1981) saw a phase lag across the

whole stratosphere that increased from ;1008 to ;1808

FIG. 8. As in Fig. 7, but projected onto the X–Y plane, which is the complex plane that characterizes the

perturbation streamfunction. The center of set A, approximately at X 5 Y 5 0, corresponds to a zonally

symmetric streamfunction with no perturbation. Counterclockwise motion of trajectories around A repre-

sents an eastward phase velocity of the streamfunction, which is the dominant modality in the radiative re-

gime. The region of high density above setA shows the phase in the streamfunction at which zonal wind is most

likely to begin to weaken.
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(508 to 908 between the lower boundary and the mid-

stratosphere) over the course of the warming event. They

attribute this phase tilt to the zonal wind rapidly reversing

and carrying the streamfunction along. The weakening

zonal wind simply removes the Doppler shift from the

Rossby wave dispersion relation, v5Uk2bk/(k2
1 ‘

2),

allowing the waves to revert to their preferred westward

phase velocity. This balance is also clear in (13) and (14):

ignoring the damping and forcing terms, the dynamics

read [ _X, _Y]5 [(sU2 r)Y, 2(sU2 r)X]. For weak U,

rotation in theX–Y plane is counterclockwise and phase

speed is westward.

Let us reemphasize the probabilistic interpretation of

reactive density. We have found that transitions from A

to B are accompanied by anomalous increases in merid-

ional heat flux. In other words, PfHigh heat fluxjSSWg
is high. As noted earlier, this does not imply that

PfSSWjhigh heat fluxg is also high. The identified stream-

function phase is not a ‘‘danger zone’’ in the sense that a

trajectory entering this region is at higher risk of falling

into stateB; the committor alone conveys that information.

Rather, a trajectory is highly likely to pass through that

region given that it is reactive. Notably, reactive trajectories

are unlikely to take a straight-line path fromA toBwithU,

X, and Y changing linearly. This unrealistic path would

represent a zonally stationary streamfunction growing

steadily in magnitude, while zonal wind falls off gradu-

ally. At higher noise levels, however, the system would

be increasingly dominated by pure Brownian motion,

and such a path would become more plausible.

We now turn to a quantitative comparison of com-

mittors and transition rates for different forcing and

noise levels. These trends illustrate the effects of modeling

choices and global change on the climatology of SSW.

Planetary wave forcing h varies across days and seasons

as well as different planets. The strength of additive noise

s3 (which determines the full diffusion matrix s by pro-

portionality) is a modeling choice intended to represent

gravity wave drag. Different stochastic parameterizations

will vary in their effective s3 value, and it is important

to understand the sensitivity of SSW to model choices

(Sigmond and Scinocca 2010). Furthermore, long-term

climate change may cause both parameters to drift, alter-

ing the occurrence of SSW-induced severe weather events.

FIG. 9. Paths of maximal current superimposed on transition path samples. All four figures shown the same path,

but from different vantage points. While the reactive probability density (Figs. 7 and 8) says where transition paths

spend their time, the reactive current is a vector field of the transition paths’ local average directionality. The path

shown in a color gradient from blue to red is a streamline of this vector field, representing an ‘‘average’’ transition

path. The path is colored blue where the local committor is less than 0.5, and red otherwise. Note that the path can

cross back and forth. The transition from red to blue, where the path first crosses the threshold q1 5 1/2 and enters

the probabilistic B basin, is marked by a sudden drop in theU variable—a deceleration in zonal wind. At the same

time, the path’s rotations about A reverse direction, from clockwise to counterclockwise, corresponding to a re-

versal in phase velocity of the streamfunction. This path accurately captures geometric tendencies of actual tran-

sition paths; five random samples of reactive trajectories are superimposed in green, the bulk of which cluster

around the maximum current path. (a),(b) Cross sections in X–U and X–Y space, respectively. (c) A three-

dimensional view. The parameters are h 5 30m and s3 5 0.5m s21 day21/2. Figure 10 shows the corresponding

space–time diagrams of the streamfunction.
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The measure of the relative ‘‘imminence’’ of a vacil-

lating solution versus a radiative solution, as described

in the background section on committors, is the equi-

librium density-weighted average committor, denoted

hq1ip. Figure 11a shows this quantity for 25# h# 45m

and 0.4# s3 # 2.0m s21day21/2. Two trends are clearly

expected from the basic physics of the model. First, as

seen in Figs. 7 and 8, hq1ip should increase with h.

Second, in the limit of large noise and infinite domain

size, the dominance of Brownianmotion will smooth out

the committor function and make hq1ip tend to an in-

termediate value between zero and one. On the other

hand, as noise approaches zero, the dynamical system

becomes increasingly deterministic, and the ultimate

destination of a trajectory will depend entirely on

which basin of attraction it starts in. The boundary, or

separatrix, between these two basins is the stable mani-

fold of the third (unstable) fixed point. In the case of a

FIG. 10. Streamfunctions over time corresponding to the trajectories shown in Fig. 9. As c0
} (X coskx2Y sinkx),

the X and Y variables represent the phase of the streamfunction, whose movement we plot over time as a space–

time diagram. (a) The dominant transition path. The phase velocity is initially eastward, matching with the

clockwise rotations in theX–Y plane, as shown in Fig. 9. The waves then slow down and reverse direction, matching

with the counterclockwise turn and zonal wind drop in Fig. 9. The vertical axis plays the role of time, but the

dominant path technically conveys only geometrical information. Hence, we measure it in discrete steps. (b)–(d)

The streamfunctions over time corresponding to four of the green transition path samples in Fig. 9, chosen ran-

domly. Most exhibit the same slowdown and reversal behavior exemplified by the dominant path. The exception is

(e), which turns to the east at the end of its path. This corresponds to the stray green trajectory visible in Fig. 9a,

which enters set B from above and in the clockwise direction. Sample (d) undergoes some winding before the

slowdown but does slow down every time it reaches the same phase.
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potential system, of the form _x52=V(x), this boundary

would be a literal ridge of the function V. Our system

admits no such potential function, but this is a useful

visual analogy. The committor function becomes a step

function in the deterministic limit, with the discontinuity

located exactly on this boundary. The addition of low

noise moves the committor 1/2 surface away from the

separatrix, possibly asymmetrically: one basin will shrink,

becoming more precarious with respect to random

perturbations, while the other will expand, becoming a

stronger global attractor. Which basin will shrink is not

evident a priori, so we compute the averaged committor,

hq1ip, as a summary statistic that will increase when the

basin of B expands.

Figure 11a plots the trends in hq1ip as a function of

h (along the horizontal axis) and s3 (along the vertical

axis). The two basic hypotheses are verified: hq1ip in-

creases monotonically as h increases, and hq1ip ; 1/2

as s3 increases, no matter the value of h. The less

predictable behavior is in the range h 5 35m, 0.75 #

s3 # 1.0m s21 day21/2, where hq1ip displays non-

monotonicity with respect to noise, at low noise levels.

As s3 increases, the average committor increases from

;0.4 to ;0.6, and then decreases again. The four

FIG. 11. Behavior of the committor as a function of forcing h and noise s3. (a) The average committor (weighted

by equilibrium density):
Ð

q1(x)p(x) dx evaluated for a range of h and s3 values. (b)–(e) Images of the committor

for h5 30m and s3 5 0.5, 0.75, 1.0, and 1.25, respectively. The blue lobes in the lower part of the images, a shadow

of the spiral structure from Fig. 6, thin out and disappear with increasing forcing h.
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committor plots at the bottom of 11 illustrate the trend

graphically. At low noise, theA basin includes winding

passageways leading from the small-U region back

to A. Small additive noise closes them off, effectively

expanding theB basin. As noise increases and Brownian

motion dominates the dynamics, committor values ev-

erywhere relax back to less-extreme values, reflecting

the unbiased nature of Brownian motion.

Despite the coarse grid resolution, the first-order ef-

fect of noise is clear. At the low and high margins of h,

where falling into state A and B respectively is virtually

certain, an increase in noise decreases this virtual cer-

tainty, and the trend continues at larger noise to atten-

uate hq1ip to its limit of 1/2. The middle h range,

however, behaves differently. Whereas h 5 35m ap-

pears to balance out the basin sizes at low noise, a slight

noise increase tends to kick the system out of theA basin

and toward B, more so than the other way around.

At higher noise, the committor relaxes back to 1/2.

Examining the committor fields, it is clear that the

isocommittor surface location does not move back

and forth; rather, it moves towardA, and then the rest

of the field flattens out.

Figure 12 shows trends in the return times of SSW

with varying h and s3. There are several different return

times of interest. The first, shown in Fig. 12a, is the total

expected time between one transition event and the

next, whose reciprocal is the rate RAB, the number of

transitions per unit time. The return time is a symmetric

quantity betweenA andB, since every forward transition

is accompanied by a backward one. Among the param-

eter combinations, (h, s3) ’ (35m, 0.75ms21day21/2) is

the one that minimizes return time, or equivalently

maximizes the transitions per unit time. h 5 35m is a

FIG. 12. Behavior of return times as a function of forcing h and noise s3. (a) The average period between the start of

one transition event and the start of thenext.Redheremeansmany transitions per unit time, for bothA/B andB/A.

We call this the return time, and calculate it as the reciprocal ofR, the number of forward (or backward) transitions per

unit time. There is clearly a parameter set: (h, s3)’ (35m, 0.75m s21day21/2) that optimizes the number of transitions

per unit time. Below this noise level, internal variability is scarcely enough to jump between regions. Above this noise

level, setsA andB are no longermetastable, and excursions are so wide and frequent that passing from setA to setB is a

very spatially restricted event. (b),(c) Forward and backward transition times, respectively. More specifically, (b) shows

the expected passage time TAB, the interval between the end of a B/ A transition and the end of the next A/ B

transition, and (c) shows the analogous backward passage time TBA. Note the scales are logarithmic, and here red

simply means faster transitions, regardless of which direction is being considered.
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forcing level that approximately balances out the time

spent between the two sets, making transitions relatively

common. At lower noise, transitions are exceedingly

rare, and at higher noise the two states cease to be long

lived. However, this symmetric quantity does not cap-

ture information about the relative speed of transition

fromA toB versus fromB back toA. Figure 12b shows a

different passage time, which is the average time be-

tween the end of a backward (B/A) transition and the

end of the next forward (A/ B) transition, which we

call TAB. This is computed as the reciprocal of the rate

constant kAB, as described in the previous section. In other

words, the stopwatch begins when the system returns toA

after having last visited B, and ends when the system next

hits B. This metric is asymmetric: a smallerA/ B return

time indicates that the forward transition is faster than the

backward transition. Figure 12b shows the complementary

B/A return timeTBA. Unsurprisingly, an increase in h

causes a decrease inTAB and an increase inTBA regardless

of the noise level. The noise level has a less obvious effect.

Whereas TBA decreases monotonically with increasing

noise, regardless of h, the forward time TAB is minimized

by amidrange noise level ofs3’ 0.75ms21day21/2. This is

another reflection of the bias toward stateB that is effected

by adding noise to a very low baseline.

6. Conclusions

Transition path theory is a framework for describing

rare transitions between states. We have described TPT

along with a number of its key ingredients like the for-

ward and backward committor functions. While it has

been applied primarily to molecular systems, we believe

it offers valuable insight into climate and weather phe-

nomena such as sudden stratospheric warming, primarily

through committors, reactive densities, and reactive

currents. Of interest apart from its role in TPT, the

committor defines an optimal probabilistic forecast,

borne out by direct numerical simulation experiments. The

reactive densities and currents describe the geometric

properties of dominant transitionmechanisms at lownoise.

In applyingTPT to a noisy, truncatedHolton–Massmodel,

we find that transitions tend to begin with a drop inmean

zonal wind and a reversal of the streamfunction’s phase

velocity at a particular streamfunction phase. This is

consistent with the significance of blocking precursors to

SSW as found in Martius et al. (2009), insofar as this

idealized model can represent them. We also find that

noise has a nonmonotonic effect on the overall prefer-

ence for a vacillating state, measured by the average

committor. At a forcing of h 5 35m, where the iso-

committor surface (essentially the basin boundary of the

deterministic dynamics) divides the space approximately

in half, we find that raising the noise tilts the balance de-

cisively toward the vacillating solution. Still larger noise

evens the whole field out. The transition rate constant

shows a similar dependence on h and s3.

In future work, we plan to scale these methods to

more realistic and complex models as well as observa-

tional data, where predicting SSW remains an active

area of research. In this high-dimensional setting, the

generator may be unknown or computationally intrac-

table. Any state space with more than ;5 degrees of

freedom is beyond the reach of a finite-volume dis-

cretization, because the number of grid cells increases

exponentially with dimension. However, there is a ge-

neric insight that physical models evolve on very low-

dimensional manifolds within the full available state

space. A growing body of research in molecular dy-

namics (Thiede et al. 2019), fluid dynamics (Giannakis

et al. 2018; Froyland and Junge 2018), climate dynamics

(Giannakis and Majda 2012; Sabeerali et al. 2017), and

general multiscale systems (Harlim and Yang 2018;

Berry et al. 2015; Giannakis 2015, 2019) exploits the

intrinsic low-dimensionality to represent the infinitesimal

generator more efficiently. While here we represented

the generator as a finite-volume or finite-difference op-

erator on a grid, one can also write it in a basis of globally

coherent functions, such as Fourier modes, or more

generally harmonic functions on a manifold. Given only

data, without an explicit form of the dynamics, this

manifold and the basis functions can be estimated from

(for example) the diffusion maps algorithm, and the

generator’s action on this basis can be approximated

from short trajectories. These ideas can be applied to

computing the dynamical statistics that have been the

focus of this paper (Thiede et al. 2019). We hope that

these techniques will enable more efficient observation

strategies for targeted data assimilation procedures with

the goal of tracking the progression of specific extreme

events, including hurricanes and heat waves as well as

sudden stratospheric warming.
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APPENDIX

Numerical Constants

Below are the numerical coefficients used in the

reduced-orderRuzmaikinmodel, with very similar values

to Ruzmaikin et al. (2003) and Birner and Williams

(2008). The relationship with physical parameters is

described in the appendix of Ruzmaikin et al. (2003).

Note that our notation differs slightly: following Birner

andWilliams (2008), we write the topographic forcing in

terms of h rather than C0 5 gh/f0, a difference that re-

sults in numerical factors of ;1000 depending on the

convention used:

t
1
5 122:6, (A1)

t
2
5 30:4, (A2)

r5 0:63, (A3)

s5 1:96, (A4)

j5 1:75, (A5)

d
w
5 70:84, (A6)

z5 240:54, (A7)

U
R
5 0:47, (A8)

h5 9:133 104 , (A9)

d
L
5 4:913 1023 , (A10)

_L5 0: (A11)
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