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ABSTRACT
Edge networks connected to the Internet need effective mon-
itoring techniques to drive routing decisions and detect vi-
olations of Service Level Agreements (SLAs). However, ex-
isting measurement tools, like ping, traceroute, and trajec-
tory sampling, are vulnerable to attacks that can make a
path look better than it really is. In this paper, we design
and analyze path-quality monitoring protocols that reliably
raise an alarm when the packet-loss rate and delay exceed a
threshold, even when an adversary tries to bias monitoring
results by selectively delaying, dropping, modifying, inject-
ing, or preferentially treating packets.

Despite the strong threat model we consider in this pa-
per, our protocols are efficient enough to run at line rate on
high-speed routers. We present a secure sketching protocol
for identifying when packet loss and delay degrade beyond a
threshold. This protocol is extremely lightweight, requiring
only 250–600 bytes of storage and periodic transmission of
a comparably sized IP packet to monitor billions of pack-
ets. We also present secure sampling protocols that provide
faster feedback and accurate round-trip delay estimates, at
the expense of somewhat higher storage and communication
costs. We prove that all our protocols satisfy a precise defi-
nition of secure path-quality monitoring and derive analytic
expressions for the trade-off between statistical accuracy and
system overhead. We also compare how our protocols per-
form in the client-server setting, when paths are asymmetric,
and when packet marking is not permitted.

Categories and Subject Descriptors. C.2.2 Computer
Communication Networks: Network Protocols
General Terms. Measurement, Security.

1. INTRODUCTION
Path-quality monitoring is a crucial component of flexi-

ble routing techniques (e.g., intelligent route control, source
routing, and overlay routing) that give edge networks greater
control over path selection. Monitoring is also necessary to
verify that service providers deliver the performance speci-
fied in Service-Level Agreements (SLAs). In both applica-
tions, edge networks need to determine when path quality
degrades beyond some threshold, in order to switch from one
path to another or report an SLA violation. The problem is
complicated by the presence of nodes along the path who try
to interfere with the measurement process, out of greed, mal-
ice, or just misconfiguration. In this paper, we design and
analyze light-weight path-quality monitoring (PQM) proto-

cols that detect when packet loss or delay exceeds a thresh-
old, even when adversaries try to bias monitoring results.
Our solutions are efficient enough to run at line rate on the
high-speed routers connecting edge networks to the Internet.

1.1 The presence of adversaries
Today, path-quality monitoring relies on active measure-

ment techniques, like ping and traceroute, that inject special
“probe” packets into the network. In addition to imparting
extra load on the network, active measurements are vulner-
able to adversaries that try to bias the results by treating
probe packets preferentially. Instead, we want to design pro-
tocols that provide accurate information even when interme-
diate nodes may adversarially delay, drop, modify, inject or
preferentially treat packets in order to confound measure-
ment. Our motivations for studying this adversarial threat
model are threefold:

1. It covers active attacks. Our strong threat model covers
a broad class of malicious behavior. Malicious adversaries
can easily launch routing-protocol attacks that draw packets
to (or through) a node of their choosing [8], or compromise
one of the routers along an existing path through the In-
ternet [22, pg. 14]. Biasing path-quality measurements
allows the adversaries to evade detection, while continuing
to degrade performance or impersonate the legitimate des-
tination at will. In addition, ISPs have both the economic
incentive and the technical means to preferentially handle
probe packets, to hide discrimination against unwanted traf-
fic like Skype [38] or BitTorrent [1], and evade detection of
SLA violations. (In fact, commercial monitoring services,
like Keynote, claim to employ “anti-gaming” techniques to
prevent providers from biasing measurement results [2].) Fi-
nally, adversaries controlling arbitrary end hosts (such as
botnets) can add “spoofed” packets to the stream of traf-
fic from one edge network to another, to confound simplistic
measurement techniques (e.g., such as maintaining a counter
of received packets).

2. It covers all possible benign failures. By studying the ad-
versarial setting, we avoid making ad hoc assumptions about
the nature of failures caused by normal congestion, malfunc-
tion or misconfiguration. Even benign modification of pack-
ets may take place in a seemingly adversarial manner. For
example, an MTU (Maximum Transmission Unit) mismatch
may cause a router to drop large packets while continuing
to forward the small probe packets sent by ping or tracer-
oute [33]. As another example, link-level CRC checks are
surprisingly ineffective at detecting the kinds of errors that
corrupt IP packets [46]. Since the adversarial model is the



strongest possible model, any protocol that is robust in this
setting is automatically robust to all other kind of failures.

3. It is challenging to satisfy in high-speed routers. We
choose to work in a difficult space, where we assume the
strongest possible adversarial model, and yet design solu-
tions for high-speed routers on multi-Gbit/sec links, where
computation and storage resources are extremely limited.
We view it as an important research goal to understand
what can and cannot be done in this setting, to inform prac-
tical decisions about what level of threats future networks
should be designed to withstand. Furthermore, designing
protocols for this adversarial setting is not simply a mat-
ter of adding standard cryptographic tools to existing non-
adversarial measurement protocols. Indeed, naive ways of
combining such protocols with cryptographic tools may be
either insecure or very inefficient (e.g., encrypting and au-
thenticating all traffic).

Despite the strong threat model we consider in this pa-
per, we are still able to design secure PQM protocols that
can be implemented in the constrained environment of high-
speed routers. Our protocols are competitive, in terms of ef-
ficiency, with solutions designed for the non-adversarial set-
ting [19, 23] and for weaker threat models. As such, we be-
lieve that our protocols are strong candidates for deployment
in future networks, even where our strong security guaran-
tees may not be essential.

1.2 Our results
We say that a packet delivery failure (failure for short)

has occurred on a path if a packet sent by the source was
dropped, modified, or delayed beyond a certain timeout pe-
riod, regardless of whether the drop is due to congestion,
malfunction or adversarial behavior. The goal of a PQM
protocol is to detect when the fraction of failures on a path
rises above a certain fraction β (say β = 0.01) of all packets
sent. We emphasize that a PQM protocol does not prevent
failures. A secure PQM protocol achieves its goal even when
there is an intermediate node on the path between source
and destination that can adversarially drop, modify, or in-
ject both data and protocol-related packets to the path in
order to bias the measurement results. Most existing PQM
protocols, such as ping, traceroute, and counter-based solu-
tions [47] completely break down in this setting (we show
why in Section 2.2).

To have efficient solutions that can run on high-speed
routers, we design secure PQM protocols based on two main
classes of data-reduction techniques:

Secure sketch. In Section 5, we present a protocol for
monitoring packet-loss rates that makes extremely efficient
use of communication and storage resources. Our secure
sketch protocol uses `2-norm estimation sketches [3,5,14,48]
to aggregate information about the failures that occur dur-
ing an interval, in which T packets are sent, into a sketch
of size O(log T ) bits; the communication overhead is just a
single report packet per time interval. Assuming that about
107 packets are sent during an 100ms interval, our proto-
col requires between 250–600 bytes of storage at the source
and destination, and a report can easily fit into a single
IP packet. In the course of analyzing this protocol, we pro-
vide an improved formal analysis of the performance of [14]’s
sketching scheme that may be of independent interest.

Secure sampling. In certain settings, an edge-network

may require accurate round-trip delay measurements in ad-
dition to monitoring if the failure rate rises above a thresh-
old. Section 4 describes a secure PQM protocol that achieves
this by measuring performance for a sample of the traf-
fic that is obtained using a cryptographic hash function.
For PQM with threshold β, this sampling-based protocol
requires O(n/β) bits of storage at the source, where n is the
output length of the hash function. We present two variants:
(1) Symmetric Secure Sampling is designed for the setting
where source and destination can devote an equal amount
of resources to the running of the protocol, and (2) Asym-
metric Secure Sampling, which is designed for a client-server
setting where the client contributes the bulk of the resources,
and the server participates in path-quality monitoring with
many clients simultaneously.

Precise definition of security. Evaluating the security
of a protocol is challenging in practice. In many problem
domains, e.g., intrusion detection, the only viable approach
is to enumerate a set of possible attacks, and then show how
the protocol defends against these specific attacks. One way
to do this is to evaluate the protocol on, say, packet traces of
real-world attacks. However, there is always a risk that an
adversary might devise a new attack that we have not con-
sidered or that was not expressed in the trace. Fortunately,
in our problem domain, a more comprehensive security eval-
uation is possible. Namely, instead of enumerating ways the
protocol can break down (i.e., attacks), we can instead give
a precise definition of the functionality we require from the
protocol, and then guarantee that the protocol can carry out
these functions even in the face of all possible attacks by an
adversary with a specific set of powers.

To do this, in Section 2 we precisely define our require-
ments for a secure PQM protocol and the powers that we
give to the adversary. Then, to evaluate the security of our
protocols, we use formal analysis to prove that our protocols
achieve this functionality no matter what the adversary does,
short of breaking the security of the basic cryptographic
primitives (e.g., digital signatures and hash functions) from
which the protocol is constructed. In Section 6 we prove that
any secure PQM protocol (as per Definition 1) would need to
employ the same basic security machinery—secret keys and
cryptographic operations—used by our secure sketching and
sampling protocols.

Evaluating performance. The performance and cost
of any particular implementation of our protocols would de-
pend on memory speed and the particular choice of crypto-
graphic primitives. As such, we count separately the differ-
ent resources—computation, storage and communication—
used by our protocols, bound the resource utilization us-
ing formal analysis, and also show somewhat better bounds
through numerical experiments. Our protocols use crypto-
graphic hash functions in an online setting, where an ad-
versary has very limited time to break the security before
the hash parameters are refreshed; this allows us to use
fast implementations of these hash functions (details in Ap-
pendix A). We emphasize that all except one of our pro-
tocols do not modify data packets in any way, and so they
may be implemented off the critical packet-processing path
in the router. Not marking packets also makes our protocols
backwards compatible with IP while minimizing latency at
the router, allows the parties to turn on/off PQM protocols
without the need to coordinate with each other, and avoids
problems with increasing packet size and possibly exceed-



ing the MTU. For efficiency reasons, we specifically avoid
solutions that require encryption and authentication of all
the traffic sent on the path, as in IPsec. We further dis-
cuss and compare the performance trade-offs for our sketch
and sampling protocols with known solutions like IPsec in
Section 7.

2. THE STATISTICAL SECURITY MODEL
In our model, a source Alice sends packets to a destination

Bob over a path through the Internet. Fixing a particular
time period, which we call an interval, we define a packet
delivery failure to be any instance where a packet that was
sent by Alice during the interval fails to arrive unmodified
at Bob before the the interval ends. An adversary Eve can
sit anywhere on the path between Alice and Bob, and we
empower Eve to drop, modify, or delay every packet or add
her own packets. A path quality monitoring (PQM) proto-
col is a protocol that Alice and Bob run to detect whether
the number of failures during the interval exceeds a certain
fraction of total packets transmitted.

Definition 1. Given parameters 0 < α < β < 1 and
0 < δ < 1, we say a protocol is a (α, β, δ) secure PQM
protocol if, letting T be the number of packets sent during
the interval:

1. (Few false negatives.) If more than βT packet delivery
failures occur then the protocol raises an alarm with
probability at least 1− δ, no matter what Eve does.

2. (Few false positives.) If no intermediate node behaves
adversarially and at most αT failures occur then the
protocol raises an alarm with probability at most δ.

We assume that the T packets sent during an interval are
distinct, because of natural variation in packet contents, and
the fact that even successive packets sent by the same host
have different ID fields in the IP header [19] (note that even
retransmissions of the same TCP segment correspond to dis-
tinct IP packets, because of the IP ID field).

2.1 Properties of our security definition
Our definition is strongly motivated by our intended appli-

cation of enabling routing decisions or SLA violation detec-
tion. The most important security guarantee it provides is
that no matter what Eve does she cannot prevent Alice from
raising an alarm when the failure rate for packets that Alice
sent to Bob exceeds β. As such, our definition encompasses
attacks by nodes on the data path that include (but of course
are not limited to): colluding nodes that work together in
order to hide packet loss, an adversarial node that intelli-
gently injects packets based on timing observations or deep
packet inspection, a node that preferentially treats packets
that it knows are part of the PQM protocol, and a node
that masks packet loss by injecting an equal number of non-
sense packets onto the data path. We emphasize that we
never make any assumptions on the distribution of packet
loss on the path; our model allows for any possible ‘failure
model’, including one where, say, packet loss is correlated
across different packets.

On the other hand, as a routing-decision enabling tool,
we do not require PQM protocols to prevent packet deliv-
ery failures but rather only detect them. Second, rather
than determining exactly how many failures occurred, the

protocol is only required to detect if the number of failures
exceeds a certain threshold. (While solutions that exactly
count failures certainly exist, e.g., see discussion on IPsec in
Section 7, they typically require cryptographically authenti-
cating and/or encrypting all traffic and hence are rather ex-
pensive to operate in high-speed routers.) Third, we do not
require our protocols to distinguish between packet failures
occurring due to adversarial tampering or due to “benign”
congestion or malfunction.

Finally, while our security definition requires that our pro-
tocols do not raise a (false) alarm when the one-way failure
rate is less than α for the benign setting, we do allow for the
possibility of raising an alarm due to adversarial tampering
even when fewer than an α fraction of failures occur. This
is because an adversarial node has the power to arbitrarily
tamper not just with data packets, but also with any pack-
ets that are sent as part of the PQM protocol; thus Eve can
always make a path look worse by selectively dropping all
acknowledgment or report messages that Bob sends to Al-
ice, even if all the original packets that Alice sent to Bob
were actually delivered. (In this paper, we will assume that
any acknowledgment or report messages that Bob sends to
Alice are sent repeatedly to ensure that, with high probabil-
ity, they are not dropped due to normal congestion.) When
this happens, it may very well make sense for the protocol
to raise an alarm, and the router to look for a different path.

2.2 Related works
The literature on path-quality monitoring typically deals

only with the benign setting; most approaches either have
the destination return a count of the number packets he
receives from the source, or are based on active probing
(ping, traceroute, [24,43,44] and others). However, both ap-
proaches fail to satisfy our security definition. The counter
approach is vulnerable to attack by an adversary who hides
packet loss by adding new, nonsense packets to the data
path. Active probing fails when an adversary preferentially
treats probe packets while degrading performance for reg-
ular traffic, or when an adversary sends forged reports or
acknowledgments to mask packet loss. Even known pas-
sive measurement techniques, where normal data packets
are marked as probes, either explicitly as in IPPM [24] and
Orchid [37] or implicitly as in Trajectory Sampling [19] and
PSAMP [23], are vulnerable to the same attacks as active
probing techniques if the adversary can distinguish the probe
packets from the non-probe packets (e.g., see [20] for attacks
on PSAMP).

To obtain path-quality monitoring protocols that work in
the adversarial setting, we have developed protocols that
are more closely related to those used for traffic characteriza-
tion. For example, our secure sampling protocol uses passive
measurement techniques similar to those of [19,23], that are
designed for characterizing traffic mix. Similarly, our secure
sketch protocol draws on `2-norm estimation schemes [3, 5,
14, 48] that are typically uses to characterize data streams.
(See e.g., [50] for a survey of data streaming algorithms used
in networking.) Because our protocols are designed for the
adversarial setting, they require the use of keys and cryp-
tographic hash functions (see sections 3 and 6) in order to
prevent an adversary from selectively adding and dropping
packets in a manner that skews the estimate returned from
the sketch. On the other hand, we can use the special struc-
ture of the path-quality monitoring setting to prove new



analytical bounds which result in provably lower communi-
cation and storage requirements than those typically needed
in traffic characterization applications. Also, at the end of
Section 5.3 we discuss how the new result of [35] for sketch-
ing adversarially-chosen sets could be applied to our setting.

Our results are also related to works in the cryptography
and security literature. In the security literature, traditional
works on providing availability typically give guarantees on
a per-packet basis, resulting in schemes with very high over-
head, see e.g., [18] [40] and later works. While statistical
PQM protocols have been considered in the security litera-
ture [7, 36, 47], ours is the first work in this area to provide
a formal security definition and to prove the security of our
protocols within this model. We argue that such a model
is crucial to understanding the security guarantees provided
by a protocol. Indeed, one of Fatih’s [36] PQM approaches
is based on a simple counter (and is therefore vulnerable
to the attack described above), while Listen [47] is a proto-
col that does not use cryptographic operations, and is thus
vulnerable to attack by an intermediate node that injects
false acknowledgments onto the path. Finally, while Stealth
Probing [7] is secure in our model, it incurs the extra over-
head of encrypting and authenticating all traffic.

3. CRYPTOGRAPHIC PRIMITIVES
Our PQM protocols use several cryptographic primitives,

with different security properties and performance. We de-
scribe the security properties of these primitives below:
A Collision-Resistant Hash (CRH) function is a function H
for which it is infeasible to find a collision, i.e., m 6= m′

fulfilling H(m) = H(m′). Typical choices of H are SHA-1
and (truncated) SHA-256. The output of H(x) is called the
digest of x, and we assume it is 160 bits long.
A PseudoRandom Function (PRF) [21] is a keyed function
hk(·) that maps an arbitrary length string to an n-bit string
using a key k; in our case, n = 64 or 96 suffice. If the key
k is chosen at random, then to an adversary with no knowl-
edge of k the function hk(·) looks totally unpredictable and
cannot be distinguished (except with an exponentially small
probability) from a truly random function (where each in-
put is mapped independently to a uniformly random out-
put). Hence, in our analysis we may treat hk as if it is truly
random. All our protocols require a PRF computation on
the entire contents of every sent packet,1 and all subsequent
processing of the packet relies only on this hash value. In
Appendix A we argue that our online setting allows us to
realize the PRF via fast cryptographic hash functions in both
hardware and software that support multi-Gbit/sec packet
streams.
A PRF can be used to realize a Message Authentication Code
(MAC): using a shared key k, for a message m, one party will
send (m, hk(m)) and the other party can verify that a pair
(m, t) satisfies t = hk(m). The value hk(m), called the tag,
cannot be feasibly forged by an adversary that does not know
k. We denote MACk(m) = (m, hk(m)). Digital signatures
provide authenticity in the public-key setting. Here a private
key SK is used to sign a message m and obtain a signature
σ; we denote this with σ = SignSK(m). A public key PK

1For convenience, we abuse notation and say that whenever
the PRF is applied to a packet, the non-invariant fields of the
packet header are discarded from the input. In the case of
IPv4, this means excluding the ToS, TTL and IP checksum
(see [19, Section II.A]).

is known to all parties and is used to verify the signature;
the VerifyPK(σ) operation outputs a message m for valid
signatures and aborts otherwise. Digital signatures are more
computationally expensive than MACs, so we use them only
for infrequent synchronization data.

Keys. While some of our protocols require parties to share
a pairwise secret key, this does not imply that we must main-
tain an infrastructure of pairwise keys for the Internet. All of
our protocols require participation of only two parties. Par-
ties can derive pairwise keys via, e.g., authenticated Diffie-
Hellman key exchange (as used in TLS/SSL [17]) using Pub-
lic Key Infrastructure such as DNSSEC or some out-of-band
secure channel. Furthermore, an organization owning multi-
ple routers running PQM might have an incentive to assign
pairwise secret keys. Once a pairwise shared master key is
established, keys for specific intervals and runs of the proto-
col can be derived locally at each party using a PRF h′. For
example, we can use ku = h′k(u) where ku is the key for in-
terval u, and k is the master key. Here, because the PRF h′

is used only once per interval, and also needs to be resilient
against many queries, we let h′ be traditional conservative
pseudorandom function such as AES-CBC-MAC.

4. SECURE SAMPLING
In a sampling-based protocol, Alice and Bob agree on a

small set of packets (the probes) for which Alice expects
acknowledgments from Bob. Then, Alice can detect when
the path quality is unacceptable when too many probes are
unacknowledged. These protocols limit the storage and com-
munication overhead because only a small fraction of traffic
is monitored, and also allow Alice to measure round-trip
delay by monitoring arrival time of acks. However, such
protocols are inherently vulnerable to adversaries that pref-
erentially allow probes to travel unharmed, but drop, delay,
or modify other packets. Since most packets are not probes,
such an adversary can disrupt traffic without Alice realizing
that something went wrong. To prevent such attacks, in our
secure sampling protocols that Alice and Bob use a shared
PRF to coordinate their sampling. The cryptographic prop-
erties of the PRF, discussed in Section 3, prevent an adver-
sary from distinguishing probes from non-probes.2 Use of a
PRF in our setting is necessary for security; in Appendix B
we show an example of why a non-cryptographic hash func-
tion (e.g., CRC) is insufficient.

We present three protocols. The Symmetric Secure Sam-
pling protocol is designed for the setting where Alice and
Bob share pairwise secret keys. The two Asymmetric Se-
cure Sampling protocols (one for senders and one for re-
ceivers) use a variant of delayed-exposure techniques (c.f.,
TESLA [41] [10, 12,15] and the references therein) to elimi-
nate the need for pairwise keys, at the cost of some increased
storage at Alice or Bob. The asymmetric protocols are espe-
cially advantageous when one of the parties is a server that
needs to engage in simultaneous PQM sessions with many
clients.

4.1 Symmetric Secure Sampling
2We stress that probes are ordinary data packets that are
part of the data stream and are not explicitly marked. Al-
teration of packets is undesirable for several reasons for ex-
ample: it must be undone by the receiver prior to processing
or forwarding, and it may run into MTU limitations, etc.
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Figure 1: Secure Sampling.

We assume Alice and Bob share a secret (master) key k.
They also know a parameter p, called the probe frequency.
During each interval, our symmetric secure sampling proto-
col operates as follows:

1. Alice and Bob derive an interval-specific secret key by
applying a PRF keyed with the master key k to the in-
terval number u, i.e., (k1, k2) = h′k(u). In Appendix C,
we give a detailed treatment of techniques that can be
used to achieve interval synchronization between Alice
and Bob.

2. After transmitting each packet d, Alice decides whether
d is a probe. Specifically, she uses k1 and the probe fre-
quency p to run a Probe function that is implemented
using a PRF h keyed with k1 and outputting an integer
in {0, . . . , 2n − 1}, as follows:

Probek1(d) =


Yes, if

hk1 (d)

2n < p;
No, else.

(1)

If Probek1(d) outputs Yes then Alice stores the tag
z = hk2(d) in a table.3

3. Bob receives d′ and computes Probek1(d
′). If it outputs

No then do nothing; if it outputs Yes then transmit
the tag z′ = hk2(d

′) back to Alice.

4. Alice receives the acknowledgment z′ and removes it
from her table (if it is present in her table).

At the end of an interval, Alice raises an alarm if and only
if her table contains more than pT

√
αβ remaining entries.4

Otherwise she does not raise an alarm.

Theorem 2. The symmetric secure sampling protocol is
an (α, β, δ)-secure PQM protocol for α < β ≤ 4α as per
Definition 1, whenever the probe frequency p and number of
packets per interval T satisfy

pT > ln( 1
δ
) 3
(
√

β−
√

α)2
. (2)

3When h uses a modified Wegman-Carter construction (see
Appendix A),the computation of hk2(d

′) can reuse the uni-
versal hash already computed for hk1(d

′), and thus amounts
to a single AES or DES invocation.
4To obtain this threshold, we could have used the mid point
between pαT and pβT . However to get much better param-
eters for our protocols, we can apply maximum likelihood
estimation to obtain the threshold above, since (from proof
of Theorem 2) V , or the number of unacknowledged probes
in Alice’s table, is a binomial random variable. We obtain
the threshold above using maximum likelihood estimation
as (µασβ + µβσα)/(σα + σβ) where µα = pαT is the mean
of V when the loss rate is αT and σ2

α = (1 − p)pαT is
the variance of V when the loss rate is αT , and σβ and
µβ are defined analogously. Then, we get the threshold

pT β
√

α+α
√

β√
α+

√
β

= pT
√

αβ.

When α = β/2 we can use [4, Thm. 19] to obtain a slightly
better bound pT > ln( 1

δ
) 2 ln 2
(
√

β−
√

α)2
, so that when δ = 1%,

we require pT > 75/β.

Proof of Theorem 2. First, we observe that regardless
of any strategy Eve adopts, and independently of all other
packets, the probability each dropped/modified packet is a
probe is p. To see why, recall that we assumed that packets
sent by Alice are unique. If hk1(·) in Probe were replaced by
a truly random function, then every packet would be a probe
independently with probability p. The same must hold for
the real implementation of Probe using hk1 , since otherwise
Eve could distinguish between the PRF and a truly random
function, contradicting the security of the PRF.

For the false positives condition of Definition 1, suppose
the failure rate is less than α. The probability of misdetec-
tion is the probability that a larger than

√
αβ-fraction of

the samples are dropped. Let V be the number of remain-
ing (unacknowledged) entries in Alice’s table. When each
packet is independently sampled with probability p, then if
β < 4α we can find the false positive probability

PFN = Pr[ V > pT
p

αβ | failure rate < α ]

= Pr[ V > pαT (1 +
√

β−
√

α√
α

)| E[V ] = pαT ]

≤ e−
(
√

β−
√

α)2

3 pT (3)

where the equality follows from simple algebra and the fact
that when the drop rate is α, V is a binomial random vari-
able B(αT, p), and the inequality follows from the Chernoff

bound5of [6, Fact 4], which holds when 0 <
√

β−
√

α√
α

< 1 or

α < β < 4α. By our observation above, this inequality still
holds (up to a negligible additive factor) when we sample
probes using a pseudorandom function.

Next, consider the false negatives condition of Definition 1.
First note that Eve cannot forge a valid Ack to a packet that
was not received by Bob, since she only sees the output of
the PRF hk2 on packets that Bob receives, and cannot pre-
dict its value on any other input. Therefore all that Eve can
do is to bias the measurement by preferentially dropping
non-probes. Using [6, Fact 4]Using a Chernoff boundagain,
if probes are sampled independently with probability p then

PFP = Pr[ V > pT
p

αβ | failure rate > β ]

= Pr[ V > pβT (1−
√

β−
√

α√
β

)| E[V ] = pβT ]

≤ e−
(
√

β−
√

α)2

2 pT (6)

where the equality follows from simple algebra and the fact
that when the drop rate is β, V is a binomial random vari-
able B(βT, p), and the inequality again follows from the

Chernoff bound of [6, Fact 4], which holds when 0 <
√

β−
√

α√
β

<

5We use the following Chernoff bounds. Let Xi be i.i.d
indicator variables with mean µ, and let

Pr

"
nX

i=1

Xi ≤ (1− γ)Nµ

#
≤ e−γ2Nµ/C1 (4)

Pr

"
nX

i=1

Xi ≥ (1 + γ)Nµ

#
≤ e−γ2Nµ/C2 (5)

If 0 < γ < 1 then [6, Fact 4] gives C1 = 2 and C2 = 3. If
0 < γ < 1

2
then [4, Thm. 19] gives C1 = C2 = 2 ln 2.



1 or when α < β. As observed above, (6) still holds (up
to a negligible factor) when the probes are sampled using a
PRF. Notice that dropping Acks cannot help Eve, as it only
makes the source more likely to raise an alarm. It follows
from equations (3), (6) and Definition 1 that, given α, β and
δ, such that β < 4α, the protocol is secure whenever (2)
holds.

4.2 Asymmetric Secure Sampling
This section describes variants of the above protocol for

the case where a single router (the server) deals with a large
number of other routers (the clients). Our protocols support
server scalability by minimizing the per-client cost of the
server. In particular, the server will not need to establish
a separate key for every client. We will, however, assume
that the clients can dedicate more resources to the PQM
protocol. We provide two different protocols, depending on
whether the server is receiving from, or sending to, its clients
(of course, the two PQM protocols can be applied jointly to
monitor both directions).

We again divide time into intervals, and the idea is that
the server performs his operations (as either sender or re-
ceiver) with private keys, which we call the salt, unknown
to anyone except himself until the end of the interval, at
which time he releases the salt to all interested clients. The
point is that by the time the server releases the salt it is too
late to cheat; note that even dishonest clients cannot cheat
honest clients because no one except the server knows the
salt until the end of the interval.

Instead of using symmetric keys between each pair of par-
ties, here we assume that the server has a public/private
key pair (PK, SK) where the public key PK is known to
all parties (e.g., through a Public Key Infrastructure). To
ensure that the computationally-expensive public-key op-
erations are used infrequently, we will use cryptographic
delayed-exposure techniques (c.f., TESLA [41] [10, 12, 15]
and the references therein) that require secure clock syn-
chronization. We assume that each client securely synchro-
nizes her clock so that it lags behind the server’s clock by
at most τ seconds, where τ is a constant known to all par-
ties. In Appendix D we present a simple secure protocol for
achieving this synchronization.

4.2.1 Receiving-Server Secure Sampling (RSSS)
We first consider the case where a single server (Bob) is

receiving traffic from multiple clients (each playing the role
of Alice). The following protocol allows every client to mon-
itor the path quality for traffic that it sends to the server,
while the server requires no storage and can use the same
key to engage in PQM with every client. During the u-th
interval, the RSSS protocol operates as follows:

1. (Interval Setup.) Bob, the receiver, randomly chooses
a pair of salt values (s1(u), s2(u)) that he keeps secret
until the very end of the interval.

2. (Packet Transmission.) Packet transmission during
the interval proceeds as follows:

• For each packet d Alice wishes to send, she stores
the digest H(d) in her table. Suppose Alice sends
T packets in total. (This means Alice stores T
digests. In Section 4.3 we discuss how Alice can
independently subsample packets to reduce her
storage requirements.)

Figure 2: Timing for Asymmetric Secure Sampling.

packet digest Ack Probe
z1 = H(d1) Yes
z2 = H(d2) MACs2(u)(B, z2, u, ) Yes
z3 = H(d3) No
z4 = H(d4) No
z5 = H(d5) No
z6 = H(d6) No
z7 = H(d7) No
z8 = H(d8) MACs2(u)(B, z8, u) Yes
z9 = H(d9) No

z10 = H(d10) No
z11 = H(d11) MACs2(u)(B, z11, u) Yes
z12 = H(d12) Yes
z13 = H(d13) No

Figure 3: Alice’s table after at the end of interval u.
Here Alice observes faults for packets 1, 12.

• Upon receiving each packet d′, Bob computes its
digest z′ = H(d′). He then evaluates Probes1(u)(z

′);
if No then he does nothing, and if Yes then
he transmits an Ack of the form MACs2(u)(z

′, u)
back to Alice.

• Each sender (Alice) stores all the Acks received
which included the current interval u.

3. (Salt Release.) Bob maintains the secrecy of the salt
until τ seconds after interval u ends. At that time he
reveals the salt (s1(u), s2(u)) to all clients by sending a
SaltRelease packet containing SignSK(u, s1(u), s2(u))(see
Figure 2).

4. (Security check.) If Alice fails to receive a SaltRe-
lease containing a signature σ within 1 RTT after
the interval u ends, or if VerifyPK(σ) doesn’t return a
tuple (u, s1(u), s2(u)), then Alice raises an alarm. Oth-
erwise, she uses salt s1(u) to run the Probe function on
the packet digests in her table, and salt s2(u) to verify
the Acks in her table. Then Alice counts the number
of packets for which Probes1(u)(z) = Yes and no valid
Ack is stored in her table; call this count V . Finally,
Alice raises an alarm if V > pT

√
αβ.

Notice that our protocol does not require Bob to send out
the salt immediately at the end of the interval. However, we
observe from Step 5 above, that there is a tradeoff between
frequency of salt release messages and storage at Alice; the
longer Bob delays sending out the salt, the longer Alice has
to wait before she can clear her table.

Assume for now that all parties’ clocks are perfectly syn-
chronized. Then Eve cannot cheat within any single interval:

Theorem 3. The RSSS protocol is an (α, β, δ)-secure PQM
protocol for α < β ≤ 4α as per Definition 1, whenever the
probe frequency p and number of packets per interval T sat-



isfy

pT > ln( 1
δ
) 3
(
√

β−
√

α)2
. (7)

When β = 2α we can use a tighter bound of [4, Thm.
19](instead of (7)) to find that when δ = 1%, we require
pT > 75/β.

When clocks are perfectly synchronized, we omit the proof,
since it is almost identical to that of Theorem 2 (because the
salt is kept secret until the end of the interval). Furthermore,
notice that even dishonest senders cannot bias an honest
sender’s measurements, since they learn nothing about the
salt until the interval is over. Now suppose that Alice’s clock
lags Bob’s clock by at most τ seconds. It follows that there
will be period of time of length < τ where Alice is operating
in interval u−1 while Bob has already moved into interval u.
To deal with this, during the first τ seconds of each interval,
Bob uses both the salt of the current interval s(u) and the
salt from the previous interval s(u−1) in order to create his
Acks. While most Internet routers are able to maintain a
clock with accuracy of 21ms or less [34], secure clock syn-
chronization is a non-trivial problem. In Appendix D we
show a simple stateless protocol that allows Alice and Bob
synchronize their clocks to within 1.5 round trip times.

4.2.2 Transmitting-Server Secure Sampling (TSSS)
We now turn our attention to the case where a single

server is sending to multiple clients, and each client wants to
monitor the traffic it receives from the server while imposing
minimal cost on the server. Note that the server is now Alice
and the client is Bob. Here the server keeps a single counter
per client, and modifies the packets it sends by appending a
short MAC tag, that is keyed with same key for each client.

The TSSS protocol proceeds as follows. As before, the
server picks random salt values (s1(u), s2(u)) at the begin-
ning of the interval, and releases them at the end of the
interval. Here, however, the server will keep, for each client
B, a count TA(B) of the number of packets it sends to B
during the interval. The server also authenticates all traf-
fic that she sends using the (client-independent) salt: for a
packet d, the server will compute a packet digest z = H(d)
and then appends the tag hk2(u, z) to the packet that he
sends the client.

The client will randomly sample a p-fraction of the packets
received. For each such packet d′, he stores the correspond-
ing digests z′ = H(d′) and the received tag. At the end of
the interval, the server reveals the salt as above, and also
sends SignSK(TA(B)) to B. Each client B verifies the elec-
tronic signature and checks all its stored packet digests and
tags using this salt. Let TB be the number of valid packets
thus found by B; then B estimates the number of failures as
V = pTA(B) − TB. As before, the client raises an alarm if
V > pTA(B)

√
αβ. Using an argument similar to Theorem 2,

the protocol is secure if β < 4α and

pTA(B) > ln( 1
δ
) 3
(
√

β−
√

α)2
. (8)

4.3 Some sample parameters
Suppose β = 1%, and assume a fully utilized 5 Gbps link

with an average packet of 3000 bits and an average round
trip time (RTT) of 100 msec. Then about T = 107 packets
are sent during an RTT.

Symmetric Secure Sampling. Using the improved bound
from [4, Thm. 19]on Theorem 2 our symmetric sampling

protocol is secure when the probe frequency is p > 75
βT

=

7.5× 10−4. This p is also the communication overhead, i.e.,
the amount of added Ack packets as a fraction of the data
traffic. Using 96-bit packet digests (see Section 3), Alice
needs about pT ∼ 90 KB of storage during a single round
trip time. The amount of storage required for Alice can be
reduced without compromising security by noting that (2)
gives a tradeoff p and T . Alice can decrease her sampling
rate to p′ if she is willing to use a longer interval T ′ = Tp/p′.
Since almost every probe packet tag will be deleted after 1
RTT, this nominally reduces Alice’s storage to p/p′ · 90 KB.
This comes at the cost of reduced PQM temporal resolution,
due to the longer intervals. (Notice that Alice can arbitrarily
decrease her sampling rate without coordinating with Bob
simply by changing the parameter p in her Probe function.)

RSSS. As described above, the Receiving-Server Secure
Sampling protocol requires the sending client to store in-
formation about every packet she sends to Bob for the du-
ration of a interval (which may last from a few milliseconds
to a few RTTs depending on synchronization quality). In
case the intervals last an RTT or more, it is not practi-
cal to expect the sender to keep digests of over 107 pack-
ets in her storage, and so we apply subsampling here to re-
duce the fraction of packets stored: each sender only stores
a q fraction of the packets she sent, where each packet is
stored independently with probability q. In term of mon-
itoring this is essentially the same as reducing the packet
stream by a factor of q, so when β = 2α from the im-
proved version of (7) we can see that pqT > 75

β
suffices,

giving a tradeoff between storage at Alice qT , and probe
frequency and communication overhead p. For example,
suppose that the probe frequency is p = 0.2. Then, by
(7), Alice should store qT ≈ 75

pβ
= 75

0.2 · 0.01
= 3.75 × 104

packet digests (160 bits each), and about p times as many
corresponding Ack tags (96 bits each). Overall, this takes
3.75× 104 · (160 + 0.2 · 96)/8 ≈ 840 KB of storage. Thus, if
intervals last for 1 RTT, so that T ≈ 107, then the subsam-
pling rate must be at least q = 3.7× 10−3.

TSSS. Here, the sending server stores one 32-bit counter per
client, and attaches a 96-bit tag to each message. Following
(8), and using same parameters as above, the client needs
to store qT ≈ 75

β
= 7.5 × 103 digests and tags, for a total

storage of 7.5× 103 · (160 + 96)/8 ≈ 240 KB.

5. SECURE SKETCH PQM
In our secure sketch PQM protocol, Alice and Bob aggre-

gate all traffic Alice sends to Bob into a short data structure
called a sketch. (The difference between a sketch and a sam-
ple is that a sketch, although short, depends on all the traffic
that was sent/received, rather than just small subset of it.)
At the end of the interval, Bob sends his sketch to Alice and
she uses the similarity of the sketches to decide whether the
failure rate exceeded α.

We can apply several sketching techniques [3,5,14,48] for
`2-norm estimation into our framework to give secure PQM
protocols. While sketches have been used before in the net-
working community (to estimate properties of data streams
that are too long to be stored in their entirety; c.f. [14, 48]
and the references in [50]), to the best of our knowledge this
is the first time that they have been applied to the problem of
path-quality monitoring. Furthermore, the special structure
in the PQM problem allows us to obtain new and improved



analytical bounds on the performance of these schemes. It
turns out that the path-quality setting has particular prop-
erties that enable us to achieve better performance for some
of these schemes. In particular, we prove a new bound on
the performance of [14]’s scheme that may be of independent
interest.

In this section we start by explaining the relationship be-
tween `2-norm estimation and path-quality monitoring, and
then present our PQM protocol and discuss its security. We
then show how the protocol works with several known `2-
norm estimation sketches and give settings of parameters
based on both analytical guarantees and numerical experi-
ments. Our results show that the secure sketch protocol is
almost as lightweight, in terms of storage and communica-
tion, as the trivial (but insecure) idea of keeping counters of
the number of packets sent and received.

5.1 PQM as norm estimation
We now show how `2-norm estimation (for which a number

of highly efficient and simple schemes are known [3,5,14,48])
can be used to realize PQM. Suppose that Alice sends T
packets to Bob during some interval. Let U be the total
number of all possible packets (e.g., if packets are 1500 bytes
long then |U | = 21500·8) and let vA be the U -dimensional
vector that has c in the position corresponding to packet x
if Alice sent x during this interval c times (where c is a non-
negative integer). Similarly, let vB be the U -dimensional
vector that has c in the x-th position if Bob received packet
x exactly c times. Let nd be the number of packets that were
dropped during the interval (i.e., sent but not received). Let
na the packets that were added (i.e., received but not sent).

Alice would like to know if more than a β fraction of de-
livery failures occurred, i.e., whether nd ≥ βT . Note that

nd + na =
X

x

˛̨
(vA)x − (vB)x

˛̨
≤

X
x

`
(vA)x − (vB)x

´2
= ‖vA − vB‖ 2

2

(9)

where ‖v‖2 denotes the `2-norm of a vector v (i.e., , ‖v‖2 =pP
x v2

x). Furthermore, note that if both vA and vB only

have entries in 0, 1 then |(vA)x − (vB)x| =
`
(vA)x − (vB)x

´2

for every x, and hence the inequality in (9) becomes an
equality. Because Alice never transmits duplicate packets
(see Section 2), vA is a 0/1 vector, which means that (a)
in the benign case where there are no adds and at most αT
drops, ‖vA−vB‖22 ≤ αT and (b) in the adversarial case, if the
adversary drops at least βT packets then ‖vA−vB‖22 ≥ βT ,
regardless of the number of packet additions. This suggests
the following PQM protocol (assuming Bob can transmit his
vB securely to Alice): check if ‖vA − vB‖22 > αT and if so,
raise an alarm.

Sketches. Obviously, Alice and Bob cannot afford to store
or communicate huge vectors vA, vB, but happily there are
known schemes that enable Alice and Bob to maintain short
sketches wA, wB such that one can estimate ‖vA−vB‖2 from
wA and wB [3,5,14,28,48].6 Moreover, these sketches can be
computed incrementally on a stream of data: we can start
with a sketch w corresponding to the all-zero vector, and

6Estimating the `p-norm for any p ≥ 1 would also suffice
to satisfy the analog of (9), and indeed such sketch schemes
exist(e.g., [26]). However, the presently known schemes for
`2-norm estimation are more efficient.

for each incoming packet update w to reflect the increase in
one of the coordinates of v; the full vector v is never stored
explicitly. Some differences between the typical usage of
these schemes and our setting are:

1. These schemes are probabilistic, typically using a hash
function that is known by all parties involved (e.g., a 4-
universal hash as in [14, 48]). In our setting, however,
if the adversary can predict the outputs of the hash
function, she can add and drop packets in a way that
cannot be detected (e.g., by dropping some packet and
replacing it with a different packet that maps to the
sketch in an identical way). For this reason, we replace
the public hash function with a keyed hash function,
with a secret key is shared between Alice and Bob, and
is refreshed every interval.

2. Because we only need to detect when the failure rate is
above a certain threshold, we can use a far coarser esti-
mation than the typical applications of such sketches,
and can choose parameters for these sketches that re-
sult in very little storage and communication.

3. The fact that Alice does not send duplicate packets
during an interval implies a special structure of the
vectors vA,vB that allowed us to even further improve
the parameters of the sketches, see Theorem 5.

5.2 The secure sketch protocol
Recall that the inputs to a PQM protocol are the thresh-

olds α, β such that it should raise an alarm if more than a
β fraction of the packets are tampered with and not raise
an alarm if less than an α fraction are dropped. Our proto-
col works in separate intervals. We assume Alice and Bob
share a secret (master) key k, and derive an interval key ku

for each interval u (see Section 3). In Appendix C, we pro-
vide a detailed treatment of techniques that Alice and Bob
can use to synchronize their intervals; below we assume that
Alice and Bob agree on an interval of T packets. Within
interval u, our secure sketch protocol operates as follows:

1. Alice runs a sketching algorithm, using the PRF hku(·)
as the hash function, to incrementally compute a sketch
wA of the vector vA induced by the packet it sends.
(Since we using sketches that are computed for stream-
ing data, this amounts to running an update algorithm
that maps each sent packet to the sketch.) Alice and
Bob use shared secret randomness ku for this algo-
rithm, and ku is refreshed using (a PRF keyed with)
the master key at every interval.

2. Bob similarly uses hku(·) to compute sketch wB of the
vector vB induced by the packets he receives.

3. At the end of the interval, Bob sends his sketch wB

to Alice, labeled with interval number u and authen-
ticated using a MAC.

4. Alice computes an estimate V of ‖vA−vB‖22 and raises

an alarm if and only if V > 2αβ
α+β

.

The decision threshold Γ = 2αβT/(β + α) is used by Al-
ice to decide between cases where nd < αT and nd > βT .
(We derived Γ using maximum likelihood estimation, un-
der the assumption that V is distributed like a Gaussian



random variable. (We obtain this threshold above using
maximum likelihood estimation as (µασβ +µβσα)/(σα +σβ)
where µα = ‖v‖22 = αT is the mean of V when the number
of lost packets is αT and σ2

α = 2
N−1

`
‖v‖42 −

P
x(vx)4

´
=

2
N−1

((αT )2 − αT ) is the variance of V when the loss rate
is αT . Also, σβ and µβ are defined analogously, when the
number of lost packets is βT . Then, we get the thresh-

old
αT
√

(βT )2−βT + βT
√

(αT )2−αTq
(αT )2−αT +

√
(βT )2−βT

≈ T 2αβ
α+β

.) Later we show

that this threshold works well even though V is not exactly
Gaussian.)

Note that our protocol does not require Bob to send Alice
his sketch immediately after the interval ends; sketches from
multiple intervals can be grouped together and sent at the
end of a set of intervals (this only effects the delay before
Alice can decide if she should raise alarm).

Theorem 4. Suppose that the sketch guarantees, when
using a truly random hash function, that with probability at
least 1−δ, the estimate of square norm ‖v‖22 is within (1±ε)

for ε = β−α
β+α

. Then, the secure sketch protocol is a (α, β, δ)-
secure PQM protocol as per Definition 1.

Proof of Theorem 4. First observe that Eve cannot
forge the report that the Bob sends to Alice, since the re-
port is authenticated using a secure MAC (and dropping
the report will only cause Alice to raise an alarm). It fol-
lows that at the end of the interval Alice gets a consistent
version of Bob’s sketch wB. Now, the derived estimate V is
as good as if the sketch used a truly random hash function;
indeed, if Eve could bias V then the pseudorandomness of
the secretly-keyed PRF hku(·) would be violated (note that
no effect of this PRF is visible to Eve until the end of the
interval using ku). Thus, then our assumption about the
sketch scheme guarantees that with probability 1− δ:

1. No false positives: if nd ≤ αT and na = 0, then
‖vA − vB‖22 ≤ αT and the estimate V is at most

(1 + β−α
β+α

)αT = 2βα
β+α

T = Γ.

2. No false negatives: if nd > βT , then ‖vA−vB‖22 > βT

and the estimate V is greater than is (1 − β−α
β+α

)βT =
2βα
β+α

T = Γ.

1. and 2. guarantee that with high probability Alice can
use the decision threshold Γ to decide between cases where
nd < αT and nd > βT .

From the proof, we see that it suffices if the sketch guar-
antees that the estimate is at most (1 + ε)αT for vectors v
that have all entries in {−1, 0, 1} and with norm ‖v‖22 ≤ αT ,
and the estimate is at least (1− ε)r for vectors v that have
at least r ≥ βT entries in ±1 (and possibly other nonzero
entries as well). It turns out this observation is crucial for
obtaining improved parameters for our protocol; see Theo-
rem 5 below.

Hashing every packet. Notice that the PRF that is used to
hash packets into the sketch has a small output range (i.e.,
N instead than a exponentially large space). This suffices
because we only require that an adversary cannot predict the
bin that a packet hashes to with probability greater than 1

N
.

Furthermore, because no information about the bin a packet
hashes to leaks out until the end of the interval (when the
report is sent) and parties refresh their keys for each new in-
terval, the protocol remains secure even if a faster pairwise

independent hash (e.g., [13]) is used instead of a PRF. (How-
ever, using this weaker hash function comes at the cost of
worse sketch parameters N ; in particular, Theorem 5 below
no longer holds.)

5.3 Plugging in `2-norm estimation schemes
In this section we show how to instantiate our PQM pro-

tocol with known sketching schemes, such that the sketch-
ing schemes satisfy the requirements of Theorem 4. We
start with the classic sketching technique [3, 5] based on
the Johnson-Lindenstrauss lemma, and then show how the
sketch of Charikar, Chen and Farach-Colton [14] can im-
prove performance. We show how these schemes compare
in terms of update time per incoming packet and storage
requirements (i.e., the number of bins in the sketch, N , and
the size of each bin). We also derive new bounds for the
storage requirements of these schemes for our setting.

All of the `2-norm estimation schemes we consider have
the following form. They transform a U -dimensional vector
v into a shorter, N -dimensional vector w by choosing a ran-
dom linear map S from some set S and setting w = S(v).
Then an estimator V for ‖v‖22 is computed from w; in the
cases we consider, the estimator will simply be ‖w‖22 .

Due to linearity, we can compute w using streaming ac-
cess to the vector v. That is, we initialize w to be all ze-
roes, and then when we see a packet x we can update the
sketch as w ← w + S(ex), where ex is the U -dimensional
vector with 1 in the xth position and 0 everywhere else.
In general this requires updating all N positions of w, but
if S(ex) is, say, zero everywhere except for one entry for
every x, then we only need to make a single update to
w. Again, linearity implies that wA = S(vA) and wB =
S(vB), we have wA − wB = S(vA − vB). Hence if Al-
ice and Bob want to compute the distance of vA and vB,
they can do so by using the same function S to compute
the respective sketches wA and wB. Then Bob sends wB

to Alice and she runs the estimator on the difference vec-
tor wA − wB. All of the schemes we consider are known
to have estimators V with expectation ‖v‖22 and variance

2
N−1

`
‖v‖42 −

P
x(vx)4

´
.

Classic dimension-reduction sketches. The original
sketch of Johnson and Lindenstrauss chose S to be a projec-
tion into a random N -dimensional hyperplane. Indyk and
Motwani [27] showed that S can be a random N ×U matrix
whose entries are independent Gaussian random variables
with mean 0 and variance 1/

√
N , and Achlioptas [3] (see

also [5]) showed that the entries can simply be chosen as ei-
ther +1√

N
or −1√

N
with probability 1/2 each. 7 In all of these

cases, to ensure that with probability 1− δ the square norm
of w = S(v) is within a (1± ε) factor of ‖v‖22 , we can take

N = O
“

log(1/δ)

ε2

”
; specifically Achlioptas [3] showed that it

suffices to choose

N > 12
ε2

1
3−2ε

ln 1
δ

(10)

To use this scheme in our context, when receiving a packet
d we use a hash function that maps it to a vector b ∈ {±1}N
and add b to the sketch w. To prevent overflow we can take
each bin in the sketch to hold numbers in [−K, +K] where

7He also showed one can choose the entries to be
+

p
3/N ,−

p
3/N , or zero with probabilities 1/6, 1/6 and

2/3 respectively.
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2
β,

β = 1% and threshold Γ = 6667.

K = 2
p

log(4N/δ)T/N . 8(We can change the protocol to
raise an alarm if any bin overflows, since this will happen
with low probability in the benign case.)

CCF sketch. Charikar, Chen, and Farach-Colton [14]
gave a scheme with a faster update time; instead of updating
all N bins each time a new packet arrives, the CCF scheme
only updates a single bin. CCF uniformly draws S from
SCCF, the set of random sparse N × U matrices in which
every column is all-zero except for a single entry which is
±1. In our context, this means that when receiving a packet
d we use a hash function that maps it to a pair (i, b) where
i ∈ [N ] and b ∈ {±1}, and add b to the ith bin in the sketch
w. To prevent overflow we can again take each bin to hold
numbers in [−K, +K] where K = 2

p
log(4N/δ)T/N .

In order to get a (1 ± ε) accuracy with probability 1 − δ
this schemes require a larger N , N = Θ( 1

δε2
), rather than

N = Θ
“

log(1/δ)

ε2

”
of the classic scheme; it turns out no sparse

scheme (that updates only a single bin for each incoming
item) can achieve a better bound when the input can be
arbitrary.9 Thus, in general there is an inherent tradeoff

8We want to find K such that the probability that each bin
overflows is at most δ

2N
. If Xi is an indicator variable that

equals 1 with probability 1
N

and 0 otherwise, then the num-
ber of packets that hash to a (particular) bin is the random

variable X =
PT

i=1 Xi. Then, from the Chernoff bound we

have that Pr [ |X| ≥ K ] ≤ 2 exp(− K2

4VAR[Xi]T2 ) ≤ δ
2N

.

Finally, we get K ≈ 2
q

ln( 4N
δ

) T
N

since VAR[Xi] ≈ 1/N .
9CCF’s [14] sketch can attain better success probability by
using the median of estimates obtained from M indepen-
dent sketches, for some number M . However, this increases
the storage and update time by a factor of M . Also note
that [14] can show, using 4-universal hashing and Cheby-
shev’s inequality, that the number of bins relates to the er-
ror probability as N = O( 1

δ
). However, even if the hash is a

completely random function, it is impossible to get a better
error probability for general vectors (see Appendix E).
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Figure 5: Histogram of estimator for the (a) classic,
and (b) CCF schemes with N = 150, T = 106, α = 1

2
β,

β = 1% and threshold Γ = 6667.

between storage size and update speed. Fortunately, it turns
out that CCF performs well in our setting because Alice
sends unique packets, and so our vectors are not sparse. In
fact, we prove below that in our setting it does suffice to use

N = O( log(1/δ)

ε2
). Our improved bound relies both on the

fact that our vectors v have many non-zero entries and the
fact that we care about deciding whether ‖v‖22 lies above or
below a threshold rather than getting an accurate estimate.

Theorem 5. For every δ, ε > 0, let v be a U-dimensional
vector all of whose entries are in {−1, 0, 1} and w = Sv
where S is an N × U matrix chosen uniformly at random
from the set SCCF. If

‖v‖22 > q = 6
ε2

N(ln N + ln 2
δ
) (11)

N > 24
ε2

(1 + ε)2 ln 2
δ

(12)

then, with probability 1− δ, we have ‖w‖22 ∈ (1± ε)‖v‖22 .

See Appendix E for a tighter and more precise statement of
Theorem 5, as well as its proof.

To apply the theorem into our setting, set ε = β−α
β+α

, set
v = vA − vB, and set q = αT . The false positive condition
is satisfied because we have v ∈ {0, 1}U and ‖v‖2 ≤ αT ,
so with probability 1 − δ, V = ‖w‖2 < 2αβT

α+β
. The false

negative condition is satisfied because we have the number
of drops is r > βT (and packets dropped are unique so they
each correspond to a 1 entry in v), and so, with probability
1− δ, we get that V = ‖w‖2 > 2αβT

α+β
.

Notice the bound requires conditions on both ‖v‖22 and N .
The fact that N , the number of bins in the sketch, must be
large is not so surprising. We need ‖v‖22 to be large because
CCF does not work as well when very sparse vectors v cause
high variance in the number of entries in the bins of w. This
condition on v holds in our setting because the number of
bins in the sketch is much smaller than the total number
of packets. Similar conditions apply in many other sketch
applications, and thus this theorem may be of independent
interest.



TZ Sketch. Thorup and Zhang [48] gave a variant of
the CCF scheme where, instead of updating a bin in the
sketch with a randomly chosen element in {±1}, the bin is
always updated with a +1. (While the update algorithm
in TZ is as in the Count-Min sketch [16], the analysis there
is different.) However, their scheme requires a larger bin
size (roughly twice the number of bits/bin) than CCF. Also,
our numerical experiments indicated that the estimator V
for the TZ scheme is more spread out than that of CCF, so
that the number of bins required N for TZ must be slightly
larger than that required for CCF.

Adversarial sketch model. Mironov et.al. [35] re-
cently found schemes that allow Alice and Bob to sketch
adversarially-chosen sets without using any shared random-
ness (i.e., keys), and then use a secure channel to exchange
sketches. Their result is useful for the client-server setting,
where a server wants to engage in a sketching protocol with
multiple clients without using a shared key for each, and
then uses a report authenticated using a public key, c.f.,
Section 4.2. However, an adversarial-sketch protocol that
does not use shared randomness (keys) to create the sketch,

needs at least O(
√

T ) storage [35], and is thus much less
efficient than O(log T )-storage keyed sketches that we con-
sidered here.

5.4 Some sample parameters and experiments
Suppose the detection threshold is β = 0.01, the false

alarm threshold is α = β/2 and that about T = 107 packets
are sent during an interval. Then, if we want a confidence
of 1 − δ = 99%, we can use (10) to find that PQM proto-
col based on the classic scheme requires N = 214 bins with
b = 14 bits per bin (for an array size of ∼ 525 bytes). For the
CCF scheme, we can apply the refined version of Theorem 5
in Appendix E for the same α, β, δ, to find that we can use
N = 300 counters of b = 14 bits if we take intervals con-
taining at least T = 109 packets. As we discuss below, our
numerical experiments suggest that even better parameters
are achievable for the CCF protocol. They indicate (though
do not conclusively prove) that even for T = 107 we can use
N = 150 bins with 14 bits per bin, to get a total sketch size
of roughly 200 bytes. Indeed, CCF seems like the best of
the schemes we considered, since it has a faster update time
than the classic scheme (and less bits per bin than TZ).

Figure 4 is a histogram of the classic and CCF estimators
V for (from left to right) the benign case where nd = αT
(here we want the estimator to be below the threshold Γ
so that Alice does not raise an alarm), and for three cases
where nd = βT so we want Alice to raise an alarm: a case
where Eve does not add any packets, a case where Eve adds
(β−α)T distinct packets, and a case where Eve adds (β−α)T
total packets where each packet is duplicated twice. No-
tice that the threshold Γ clearly distinguishes between cases
where nd = βT and the benign cases where nd = αT . Also,
notice if Eve adds packets to the link, she only increases the
probability that Alice raises an alarm, as predicted by (9).
(Indeed, in Appendix E we prove a theorem that gives evi-
dence that Eve cannot improve her chances of tricking Alice
into not raising an alarm when nd > βT by adding packets
to the data path.) (Notice that if Alice and Bob also kept
simple counters TA and TB , and exchanged them at the end
of the interval, Alice could take TA − TB = nd − na. Re-
call also that the expectation of the estimator in the sketch
scheme is ≥ nd + na. This suggests that we could combine
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packets per interval and threshold Γ = 666.7.

the counter and sketch approach to obtain even better pa-
rameters for the sketch, or even to detect if packets where
added/modified on the path.) Figure 4 suggests that taking
N = 300 suffices for CCF even if we have shorter interval
lengths of T = 106. In Figure 6 we show the probability
that Alice raises an alarm vs the number of bins N in the
CCF sketch, in each of the four cases we described above.
Even when we consider short interval lengths of T = 105 our
experiments suggest that using a CCF array with N = 150
bins suffices for a statistical confidence of δ = 1%.

6. NECESSITY OF CRYPTOGRAPHY
All of our protocols require keys between participating

nodes, and cryptographic computations. We now show that
this overhead is inherent by arguing that any PQM protocol
satisfying Definition 1 requires a key infrastructure and the
invocation of cryptographic operations. These results also
immediately imply that any PQM protocol that does not use
keys or cryptography, e.g., Listen [47], is insecure according
to Definition 1.

Keys are necessary. To see this, we argue in the contra-
positive: suppose Bob has no secrets from Eve. Then, since
Eve occupies a node on the path between Alice and Bob,
she receives the same information that Bob receives and can
compute the same responses. It follows that Eve can simply
run the PQM protocol on her own (responding to Alice with
the appropriate acks or reports), and then drop all the pack-
ets going to Bob. This breaks security because Alice has no
way to know that anything went wrong. Notice further that
this suggests that Alice needs Bob’s participation in order
to run a secure PQM protocol.

Cryptography is necessary: We now argue that the keys
must be used in a “cryptographically-strong” manner. Note
that our previous result that keys are necessary does not
imply that cryptography is necessary; for example [19] uses
secret keys in a non-cryptographic way and obtains a pro-
tocol that is not secure by our definitions. To show that
cryptography is necessary, we show that any secure PQM
protocol is at least as complex as a secure keyed identifica-
tion scheme (KIS), which is known to be equivalent to many
cryptographic tasks like encryption and message authentica-
tion [25]. Intuitively, our result follows from the fact that
in order for Alice to believe Bob, she must be assured that
all the information she is getting indeed came from Bob in
a way that Eve cannot impersonate. Our reduction can be
found in Appendix. F



7. COMPARISON OF PROTOCOLS
Because we want PQM protocols that can be deployed in

high-speed routers, we have focused on efficiency consider-
ations; namely, we evaluated our protocols’ efficiency in (a)
communication overhead, (b) computation of cryptographic
operations, and (c) use of dedicated storage in the router.
We now explore a wider space of design objectives for eval-
uating our PQM protocols, discuss how our three protocols
perform under these objectives, and compare them with two
existing solutions for PQM: Stealth Probing [7] and IPsec.
We argue that obtaining PQM protocols that perform well
for one particular objective often involves trading off some
other objective.

7.1 A broader space of design objectives
Marking packets. We prefer protocols that do not modify
any packets sent by the source edge-network, e.g., by packet
marking or encryption. This approach has the advantage
of allowing the PQM protocol to be backwards compatible
with IP, not increasing packet size, minimizing latency in the
router, and allowing the source to turn the PQM protocol on
and off without having to coordinate with the destination.
Furthermore, avoiding packet marking also means we can
implement the PQM protocol in a monitor located off the
critical packet-processing path in the router.

Estimating delay. We prefer protocols that allow Alice
to estimate round-trip delay, without making assumptions
about the clock synchronization between Alice and Bob.

Feedback latency. We prefer protocols that perform well
for small interval lengths, so that Alice need only send a
small number of packets before she has sufficient informa-
tion to decide whether or not to raise an alarm. In gen-
eral, due the high variance in network conditions, it is better
to avoid making routing decisions using measurement made
over short timescales [42]. However, an PQM protocol that
provides fast feedback empowers the edge network to react
quickly when situations are particularly dire (i.e., when a
path fails completely). Furthermore, fast feedback can be
used to detect transient faulty conditions, and can be used
when enforcing SLAs to ensure that repeated, short peri-
ods of poor performance are not detected because the PQM
protocol uses large interval lengths.

Client-server vs peers. We consider both (a) the peer set-
ting, where the source and destination can devote equivalent
computational resources to the protocol, (e.g., a corporation
that wants to ensure availability between a pair of sites in
geographically-disparate locations), and (b) the client-server
setting, where one party can devote more resources to the
protocol (e.g., a client wanting to ensure that his packets
are correctly delivered at a web server).

Symmetric vs. public keys. Per our negative results in Sec-
tion 6, all of our protocols require some sort of cryptographic
key infrastructure. However, there are many settings, (e.g.,
when a client has only a very short connection with a web
server), where we prefer to design protocols that do not re-
quire a handshake protocol between each source-destination
pair in order to generate a symmetric key. Furthermore,
when one edge network runs PQM protocols with multiple
other edge networks, it is extremely useful to have proto-
cols that allow an end-point run concurrent PQM protocols
using a single key (e.g., a public key). This way, the edge
network need not lookup a key each time he sends/receives a

packet. Such protocols are also particularly useful for broad-
cast communications.

Detecting traffic discrimination. Recently, there have been
cases of ISPs that degrade performance for certain classes of
unwanted traffic like Skype [38] or BitTorrent [1]. Thus, we
prefer protocols that can be adapted to determine if a path
is selectively dropping specific classes of traffic.

Symmetric vs asymmetric paths. Our PQM protocols are
designed to ensure that Alice raises an alarm when the per-
formance of the forward path (from Alice to Bob) degrades
unacceptably. However, consider a situation where the per-
formance of the forward path is acceptable, but Alice still
raises an alarm because the adversary was tampering with
messages sent on the reverse path (from Bob back to Al-
ice). Our protocols do not protect against such situations;
indeed, to design PQM protocols that give this guarantee,
we would either need to assume that source and destination
have an out-of-band communication channel that cannot be
attacked by the adversary, or consider running PQM pro-
tocols over multiple alternate paths. Notice that when the
forward path and reverse paths are identical, i.e., symmetric
paths, Eve has no incentive to drop acknowledgments and
reports; doing this simply makes the path she occupies look
worse. In contrast, with asymmetric paths, an adversary
occupying only the reverse path may have an incentive to
drop acknowledgments and reports, perhaps to confuse the
source into thinking that the forward path is faulty.

However, some of our PQM protocols contain clues that
Alice can often use to distinguish between situations where
the forward path is actually faulty, and when an adversary
on the reverse path is simply dropping reports.

Monotonicity. We say that that a protocol is monotone
if Helen cannot trick the source into detecting faults on the
data path simply by adding packets to the path. To see why
this important, consider an adversary, Helen, that does not
occupy a node on the data path and thus cannot drop or
delay packets, but can inject packets onto the data path.
Helen might have an incentive to trick Alice into raising an
alarm this in order to force the Alice to switch her traffic
to a different path. In practice, no protocol is completely
monotone, since Helen can always cause a denial-of-service
attack by flooding the path with nonsense packets. However,
we typically want to avoid protocols where Helen can trick
the source into detecting a failure (when all packets were
delivered) because of additional packet injections.

7.2 Evaluating the tradeoffs
We now discuss how each of our three protocols fits into

the tradeoff space we described above. This discussion is
summarized in Table 1.

Secure sketching. Our secure sketch protocol makes ex-
tremely efficient use of storage and communication. Fur-
thermore, these requirements are (roughly) independent of
the threshold chosen, and so can be used even to detect very
small degradations in path performance. On the other hand,
the secure sketch protocol does not allow us to easily mea-
sure round trip time, since packets are aggregated into one
sketch. It requires both the sender and the receiver to main-
tain keys and (small) storage, which might be a problem in
the client/server setting where a server is communicating
with many clients, and does not want to maintain per-client
storage for the purposes of running PQM protocols. Finally,



the sketch protocol is not monotone: it will raise an alarm
if many packets are added into the path, even if no packet
is actually dropped. This could be an issue if an adversary
that does not sit on the path is able to inject packets into
the path.

Secure sampling. Our secure sampling protocols are best
suited for situations where Alice needs immediate feedback
and accurate measurements of round-trip delay (which she
can easily obtain, even in the absence of synchronized clocks,
by timing the arrival of acks). Furthermore, the protocols
are monotone in the sense that if an adversary adds pack-
ets to the path or spoofs acks, Alice can simply ignore all
the acks that do not correspond to the packets that she
sent. Symmetric Secure Sampling is best suited when Al-
ice and Bob are peers that have equal resources to devote
to the protocol. Furthermore, the protocol is best when
we do not want to make any clock synchronization assump-
tions, or when we want fast feedback (which can be obtained
by adjusting the probe frequency p appropriately, see Sec-
tion 4.3). Asymmetric Secure Sampling is best suited for
the client-server setting, where the server wants to run PQM
protocols with many clients without using dedicated storage
and using only a single key for all clients.

However, the sampling protocols (save for the TSSS proto-
col of Section 4.2.1) have a disadvantage in the asymmetric
path setting— when the forward (Alice to Bob) path is not
the same as the reverse (Bob to Alice) path. The reason is
that since only a p-fraction of sent packets are acknowledged,
each dropped ack looks like 1

p
dropped packets. Thus, in the

asymmetric path setting, an adversary on the reverse path
can arbitrarily increase the source’s estimate of the failure
rate on the forward path by dropping acks. In contrast, in
the secure sketch protocol only a single authenticated re-
port packet is sent on the reverse path, and so if it does
not arrive Alice can deduce that the problem is in the re-
verse rather than the forward path (unless the forward path
is completely blocked and Bob is not even aware of Alice’s
existence). This issue also means that the sketch protocol
is better suited for SLA-compliance monitoring applications,
especially in the asymmetric paths setting (where the report
packet could even be sent out-of-band). When PQM is used
to inform routing decisions in the asymmetric setting, Alice
and Bob can always coordinate switching their forward and
reverse paths once an alarm is raised.

IPsec. IPsec is a standard for symmetric-key encryption
and authentication of packets at the network layer. How-
ever, it requires invoking a cryptographic operation, modify-
ing, and adding tags to every packet sent on the path, which
could be quite expensive when operating at multi Gbit/sec
rates. Also, IPsec currently does not include a standard for
providing authenticated acknowledgments and so needs ad-
ditional machinery, like Stealth Probing [7], in order to pro-
vide secure PQM at the network layer. On the other hand,
if we perform PQM at a higher layer, we can use TCP over
IPsec (so that we have authenticated acknowledgments for
every single packet sent) or even SSL. These protocols pro-
vide very strong security guarantees; they not only provide
confidentiality, but also allow a source to detect if a failure
occurs for every single packet it sends. But given the high
cost associated with these guarantees, these protocols are ar-
guably, more appropriate when confidentiality and integrity
are necessary for other reasons, or when PQM functionality
is required at the end-host, rather than in the high-speed

Secure Sampling Secure
Sym Asym Sketching

Storage/Communication10 90KB 240–840KB 0.2–0.6KB
Peer setting X X
Client-server setting X
No clock sync X coarse X
Estimates delay X X
Fast feedback X
Monotonicity X X

Table 1: Tradeoff space for our protocols.

routing setting that we focus on here.

Stealth Probing. Stealth Probing [7] is a network layer pro-
tocol that provides statistically-secure path-quality monitor-
ing (satisfying Definition 1) by designating specific packets
as ‘probes’ that must be acked by the destination, and then
masking the choice of probe by encrypting and authenticat-
ing all traffic using IPsec. This protocol shares many of the
traits of our symmetric secure sampling protocol. However,
it incurs the extra overhead of encrypting all traffic, and
is probably best suited when confidentiality is required in
addition to PQM in the peer setting.

Note that all our protocols can be tuned to measure the
performance on a particular subset of the traffic, for the pur-
poses of detecting whether some intermediate nodes treat
certain packets (such as Skype [38] or BitTorrent [1]) differ-
ently than others. The same is true for IPsec based solutions
such as Stealth probing. In fact, the latter solutions make
selective (mis)treatment of packets by the adversary much
harder, as they encrypt all traffic.

8. CONCLUSION
In this paper, we have designed and analyzed efficient

path-quality monitoring protocols that give accurate esti-
mates of path quality in a challenging environment where
adversaries may drop, delay, modify, or inject packets. Our
protocols have reasonable overhead, even when compared
to previous solutions designed for the non-adversarial set-
tings, and all except TSSS do not modify data packets in
any way. In fact, one possible deployment scenario for our
protocols is to start by deploying protocols that use hash
functions with publicly-known keys, to monitor path quality
in manner that is robust to non-adversarial failures such as
congestion, misconfiguration, and malfunctions. Then, the
same router support could be leveraged, using secret keys,
to operate in an adversarial setting as needed. Another pos-
sibility is to use our protocols with publicly known keys, but
combine them with IPsec for paths where protection against
adversarial nodes is required; this will be secure, albeit at a
higher overhead than using our protocols on their own.

In our ongoing work, we are investigating the target ap-
plications of our protocols: driving routing decisions and
detecting violations of Service-Level Agreements. Accurate
techniques for determining when performance degrades be-
yond a threshold will offer significant improvements for edge
networks balancing load over multiple paths through the In-
ternet. In addition, we are exploring how to compose multi-
ple instances of our PQM protocols—running over multiple
paths simultaneously—to determine whether the adversary
resides on either the forward or reverse path, or to localize
the adversary to particular nodes or links [9]. We believe

10Storage and communication are given for an interval of
T = 107 packets with β = 0.01, α = β/2, and 1− δ = 99%.



that our PQM protocols, and our associated models of their
properties, are valuable building blocks for designing future
networks with predictable security and performance.
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APPENDIX
A. FAST CRYPTOGRAPHIC HASHING

The most common way to (heuristically) realize pseudo-
random hash functions (PRFs) is using a full-fledged crypto-
graphic hash functions such as SHA-1 in HMAC mode [29],
or AES in a MAC mode. Their typical performance in a
software implementation is 10–20 cycles per message byte,
which suffices for many applications. To support multi-
Gbit/sec packet streams we suggest a more efficient function
for hashing packets. This is possible since in our setting the
adversary is presented with an online problem: if Eve does
not break the secret key within a small time interval un-
til the key is refreshed, and based on the limited number
of examples she sees during that interval, then she cannot
compromise the measurement at all. (Indeed, in some of
our protocols we voluntarily send the key in plaintext once
the interval is over, see Section 4.2). Furthermore, in all of
our protocols, cryptographic hash computation can be done
after packet transmission and thus does not affect latency.
Moreover, the hash computation on different packets can be
arbitrarily parallelized and pipelined.

Our efficient pseudorandom hash function is based on a
modified Wegman-Carter construction [49] [32, Sec. 2.8.3].
Namely, for a key k = (κ1, κ2), we set hk(x) = Eκ1(gκ2(x))
where E is a block cipher and g is an ε-almost universal
hash function [13, 45, 49]. This construction can be realized
based on any Wegman-Carter MAC, such as UMAC [32] [30],
VMAC [31] or Poly1305-AES [11], by modifying their final
stage as above.11 Beside its higher performance, this con-
struction also relies on weaker cryptographic assumptions
than HMAC, and is unaffected by the recently-discovered
vulnerabilities of SHA-1. The realization based on UMAC
or VMAC is highly parallelizable and lends itself to efficient
and low-power hardware implementation [51, 52]. It is also
very suitable for vectorized software implementations: on
modern CPUs, it can typically be computed at a speed of
between 1 and 6 cycles per message byte (for long and short
messages respectively) [30] [31]. Performance can be further
improved by replacing AES (in UMAC, VMAC or Poly1305-
AES) with a weaker block cipher such as DES; this would
still require enormous resources to break within the time
limit imposed in our online setting.

Our construction of the pseudorandom hash function has
the limitation that its pseudorandomness only holds as long
as hk(·) is invoked �

√
2n times where n is the size of g’s

output (see [32, Sec. 2.8.3]). In our PQM protocols this
suffices, since �

√
2n packets will be hashed between key

changes.

B. SECURITY FAILS WITHOUT PRFS
To see that using a non-cryptographic hash is insufficient

in our sampling protocols (similar arguments apply for our
sketch protocols), suppose that the Probe function of equa-
tion (1) was implemented using a CRC keyed with a se-
cret modulus, as in [19], instead of a PRF. Approximate the
CRC function as hk(x) = x mod k, and consider the fol-
lowing attack: Eve starts by observing the interactions on
the channel, and records the list of packets that were not ac-
knowledged. Then, whenever she sees a new packet that is
within a small additive distance of old packet that was not
acknowledged, she drops the packet. Thus, Eve can drop
non-probe packets with high probability, and she can bias
the estimate V well below the true failure rate. This attack
is possible because the CRC does not use its “secret key” in
a “cryptographically-strong” manner (see our result on the
necessity of cryptography, Section 6).

C. INTERVAL SYNCHRONIZATION
In our secure sketch (Section 5) and symmetric secure

sampling protocols (Section 4.1), we assume that Alice and
Bob agree on the set of packets belonging to a particular
interval, and process these packets using the same interval
key ku (and, in Section 5, map the same set of packets to the
same sketch.) One possible way to achieve this is to have
Alice send Bob a special ‘interval marker packet’ each time
she begins a new interval. When Bob receive this packet,
he knows he should start using a fresh interval key (and, in
Section 5, a fresh sketch). This approach does not make any
synchronization assumptions about Alice and Bob’s local

11Before modification, these MACs rely on an extra nonce
r which must be unique for each invocation, and define
hk(x, r) = Eκ1(r) + gκ2(m) or hk(x, r) = Eκ1(r)⊕ gκ2(m).



clocks; it also works even if the path between Alice and Bob
is subject to variable latency.

Of course, in the benign case, out-of-order arrival could
cause packets in an interval u to arrive after the interval
marker packet for u (and thus be interpreted by Bob as part
of interval u+1). Fortunately, out-of-order arrival should not
cause any false alarms as long as the number of packets arriv-
ing out of order before the interval marker is a small fraction
of αT , where α the false-alarm threshold. This indeed holds
in practice: if we take T = 107 and interval length to be
100ms, then αT ∼ 105, and as shown in [39, Sec. III.A] and
subsequent works, ‘packet lag’ (i.e., the number of packets
that arrive earlier than the out-of-order packet) in the Inter-
net is typically no more than a few packets. (Also, because
we focus on PQM protocols that operate at the network
layer, at this layer TCP retransmissions do not look like
out-of-order packets.) Furthermore, if Eve drops or delays
the marker packet for interval u, then she only increases the
changes that Alice raises an alarm (since doing is equivalent
to adding many packets to interval u and dropping many
packets in interval u + 1).

Our asymmetric secure sampling protocols (Section 4.2-
4.2.2) use a different approach for interval synchronization.
Here, the end of the interval is determined when the server
sends out the ‘salt release message’. Thus, there is no need
to have the client send the server an ‘interval marker packet’.
We do, however, require Alice to be coarsely synchronized to
Bob’s clock, so that an adversary cannot replay old salt re-
lease messages (and use the old salt to form Acks that trick
the client into accepting an interval for which she should
have raised an alarm).

D. SECURE CLOCK SYNCHRONIZATION
In settings where the sender and receiver do not share a

clock, the following simple protocol can be used to securely
synchronize Alice’s clock to Bob’s clock to within 1.5 round
trip times (RTT) (e.g., τ = 150 ms). Notably, this proto-
col does not require either Alice or Bob to keep any state
beyond their keys and local clocks. The protocol also does
not require Alice and Bob to trust one another, and does
not affect Alice’s global clock that is used when interacting
with other parties.

Simple synchronization protocol. Suppose Alice has
some local secret key kA (she does not need to shared this
key with anyone).

1. At time tA (on Alice’s clock) Alice sends Bob the mes-
sage MACkA(tA).

2. Bob receives this message at time tB (on Bob’s clock)
and responds with digitally signed message
ξ = SignSKB

(tB , MACkA(tA)).12

3. Alice accepts Bob’s message ξ if VerifyPKB
(ξ) returns

(tB , MACkA(tA)), the MAC is correct, and Alice’s cur-
rent local time t′A fulfills t′A < tA + τ . If Alice accepted
Bob’s message, she computes ∆B = τ − t′A, and from
now on, whenever interacting with Bob she offsets her
clock by a factor of ∆B .

12While computing and verifying digital signatures typically
takes on the order of 3ms, and is thus insignificant as com-
pared to the 150ms interval consider here. Furthermore,
this time delay is constant and known and can be subtracted
from ∆B .

If, after many attempts, Alice fails to receive a valid response
to her synchronization message, then she decides to raise an
alarm. After Alice accepts, her local clock (after being offset
by ∆B) is within τ seconds from Bob’s regardless of Eve’s
actions. Indeed, a sufficient condition is that any accepted
message ξ was sent by Bob when his local time was t′B and
Alice’s local time was after t′A. Violating either of these
would contradict the security of the digital signature and
MAC schemes.

E. DETAILS FOR SECTION 5
First we prove a precise version of Theorem 5.

Theorem 6. For any vector v ∈ RU , choosing the N×U
matrix S uniformly from SCCF and setting w = Sv, we have
that for all η, ε > 0 and all q, r > N

1. If v ∈ {−1, 0, 1}U , and ‖v‖22 ≤ q, then for γ = ε−η
1+ε

:

Pr
ˆ
‖w‖22 > (1 + ε)q

˜
≤ Ne−

η2

2 ln 2
q/N+e−(γ2/2−γ3/3)N/2

2. If the number of entries in v that are ±1 is r, then

Pr
ˆ
‖w‖22 < (1− ε)r

˜
≤ Ne−

η2

2 ln 2
r/N + e

−(
ε−η
1−η

)2N/6

Theorem 5 is a direct consequence of this theorem with the
setting η = 1/25 and the observation that the first item is a
weaker bound than the second.

Proof. The main observation we make is that, with high
probability, the ±1 entries of v are distributed evenly among
the coordinates of w. Conditioned on this happening. we
can then apply the analysis of Achlioptas [3]. Let us define
for i ∈ [N ] the set Qi = {x ∈ U | h(x) = i} where h is the
hash function. Consider the first item . Let E1 denote the
event that ∃i ∈ [N ], |Qi| < (1− η)q/N . Then

Pr[E1] ≤ N Pr[|Qi| < (1− η)q/N ] ≤ Ne−
η2

2 ln 2
N

which is a straightforward application of a union bound
followed by a Chernoff bound. Condition on ¬E1. Set
D = (1 + η)q/N and let Yx be an unbiased ±1 random
variable for each x ∈ [U ]. We write:

Pr[‖w‖22 > (1 + ε)q] = Pr[

NX
i=1

0@ 1
D

X
x∈Qi

Yxvx

1A2

> (1 + ε)q/D2]

Set c2
i =

P
h(x)=i v2

x/D, which gives

≤ Pr[

NX
i=1

c2
i

0@ X
x∈Qi

1
D

Yx
vx
ci

1A2

> (1 + ε)q/D2]

≤ Pr[
NX

i=1

0@ X
x∈Qi

1
D

Yx
vx
ci

1A2

> (1 + ε)q/D2]

where we use ci ≤ 1 because of the condition ¬E1.
Set Yi to be the vector of all Yx for x ∈ Qi, and let ui the

vector with entries vx√
Dci

for x ∈ Qi (notice that ‖ui‖2 = 1),



we can rewrite the above as

Pr[‖w‖22 > (1 + ε)q] ≤ Pr[

NX
i=1

〈 Yi√
D

,ui〉2 > (1 + ε)q/D2]

= e−t(1+ε)q/D2
NY

i=1

E[e
t〈 Yi√

D
,ui〉2 ]

(∗)
≤ e−t(1+ε)q/D2

(1− 2t/D)−N/2

≤ e
− ε−η

1+η
N
2 (1 + ε−η

1+η
)N/2 ≤ e−(γ2/2−γ3/3)N/2

The above follows a typical derivation of the Chernoff bound,
where we use an optimization constant t = D

2
ε−η
1+ε

and where

inequality (∗) is derived using Lemma 5.2 of [3]. In the final
expression γ = ε−η

1+η
.

In the other direction, the bad event E2 is when there
exists i such that the number of ±1 entries in v (of which
there are r) that hash to i is less than (1 − η)r/N , and

by Chernoff this is also at most N exp
“
− η2

2 ln 2
r/N

”
. Then

conditioned on ¬E2, we can derive the second item using a
similar analysis and using Lemma 5.2 of [3].

Numerical results: To get our numerical results, we
use the above theorem with the setting η = 1/25, ε =
β−α
β+α

= 1/3 (if β = 2α), which says that the probabil-

ity of false positive/negative is bounded by δ as long as
q > 867N(ln N + ln 100

δ
) and N > 65 ln 100

99δ
.

Bound does not apply to CCF in general: We cannot
hope for the error probability to decay exponentially in N in
general: consider the vector y = 1010ex + 1010ex′ where ex

is the vector with 1 in coordinate x and zero elsewhere, and
x 6= x′. Then ‖y‖22 = 2 · 1020, but with probability 1/2N a
sketch of y will be 0.

Adds never help for Gaussian CCF: Let SGCCF be
the distribution of all N × U matrices where each column
has exactly one non-zero entry (chosen at random) and that
entry is distributed as a Gaussian with zero mean and vari-
ance 1 (i.e., N(0, 1)). This is the same as normal CCF
except we multiply each entry by a Gaussian variable in-
stead of a ±1 variable. Then the following theorem shows
that adding packets can never help the adversary escape de-
tection; intuitively, the theorem says that the probability of
the adversary being detected only increases when she injects
additional packets. In the following v may be interpreted as
a vector of all the drops and y as a vector of all the adds.

Theorem 7. For all ε > 0, v ∈ {0, 1}U , and any y ∈ RU

which is non-zero only on coordinates where v is zero, for a
random S drawn from SGCCF, we have

Pr[‖Sv‖22 < (1− ε)‖v‖22 ] ≥ Pr[‖S(v + y)‖22 < (1− ε)‖v‖22 ]
We conjecture the same is true for the CCF sketch we con-

sidered in this work. This is evidence that our simulations
show the “worst case” behavior of the protocols, and so the
parameters we propose can handle any malicious behavior
on the part of the adversary.

Proof. The key point is that the sum of Gaussians re-
mains a Gaussian. Again setting Qi = {x | h(x) = i}, we
have:

Pr[‖S(v + y)‖22 < (1− ε)‖v‖22 ]

= Pr[

NX
i=1

0@ X
x∈Qi

Zx(vx + yx)

1A2

< (1− ε)‖v‖22 ]

where each Zx ∼ N(0, 1). The sum
P

x∈Qi
Zx(vx + yx) is

distributed identically to Zi

qP
x∈Qi

(v2
x + y2

x) where Zi ∼
N(0, 1) and we use the fact that v,y are non-zero on disjoint
coordinates. So we have that the above is equal to

= Pr[

NX
i=1

Z2
i

X
x∈Qi

(v2
x + y2

x) < (1− ε)‖v‖22 ]

Since
P

x∈Qi
(v2

x + y2
x) >

P
x∈Qi

v2
x, we have that this is at

most

≤ Pr[

NX
i=1

Z2
i

X
x∈Qi

v2
x < (1− ε)‖v‖22 ]

= Pr[

NX
i=1

(
X

x∈Qi

Zxvx)2 < (1− ε)‖v‖22 ]

= Pr[‖Sv‖22 < (1− ε)‖v‖22 ]

F. NECESSITY OF CRYPTOGRAPHY
In a Keyed Identification Scheme (KIS) a challenge-response

protocol in which the two parties share a secret key, and Al-
ice wants to verify Bob’s identity. To do this, Alice typically
sends Bob a challenge, that Bob must respond to using his
secret key. A KIS is secure if Percy, an impersonator who
eavesdrops on the interactions between Alice and Bob but
does not know the secret key, cannot impersonate Bob by
come up with a correct response to the challenge (with prob-
ability better than just randomly guessing the response).

We us a reduction to prove that any PQM scheme that
is secure according to Definition 1 is at least as complex as
KIS. First, we show that given any secure PQM protocol,
we can construct a secure KIS. The construction is simple:
the challenge in the KIS are the T packets that Alice sends
to Bob during an interval of the PQM protocol. The correct
response in the KIS is the acks/reports that Bob sends to Al-
ice during an interval of the PQM protocol. Next, we show
that if the PQM scheme used in the above construction is
secure according to Definition 1, then our KIS construction
is also secure. We do this in contrapositive, by showing that
if there existed an efficient adversary Percy that breaks the
security of this KIS construction, then Percy can be used
to construct an adversary Eve that breaks the security of
the PQM protocol. To do this, we show how Eve can break
the security of the PQM protocol if she is given access to
Percy: First, whenever Percy wants to eavesdrop an inter-
action between Alice and Bob, Eve lets Percy observe an
interval of the PQM protocol. Next, when Percy is ready to
impersonate Bob, Eve gives the T packets that Alice sends
to Bob to Percy as his KIS challenge, but now, instead of for-
warding Alice’s packets on to Bob, Eve drops T packets and
instead responds to Alice with Percy’s KIS response. The
proof follows from the fact that Alice will not raise an alarm
(and therefore Eve breaks the security of the PQM proto-
col) whenever Percy produces a successful response the the
challenge in the KIS (and therefore breaks the security of
the KIS).


