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Abstract

Precise and fast static type analysis for dynamically
typed language is very difficult. This is mainly because
the lack of static type information makes it difficult to
approximate all possible values of a variable. Actually,
the existing static type analysis methods are imprecise
or slow.

In this paper, we propose a novel method to improve
the precision of static type analysis for Python code,
where a backward analysis is used to obtain the path-
sensitivity. By doing so, our method aims to obtain more
precise static type information, which contributes to the
overall improvement of static analysis.

To show the effectiveness of our method, we conducted
a preliminary experiment to compare our method im-
plementation and the existing analysis tool with respect
to precision and time efficiency. The result shows our
method provides more precise type analysis with fewer
false positives than the existing static type analysis tool.
Also it shows our proposed method increases the analysis
time, but it is still within the range of practical use.

1 Introduction

Static analysis for dynamically typed languages has the
problem that it is difficult to achieve both of precision
and scalability. This is mainly because the lack of static
type information makes it more difficult to approximate
all possible values of a variable than in statically typed
ones. For example, Monat et al., [1], a state-of-the-
art analysis, is not capable of path-sensitive analysis.
Pyre [2], another state-of-the-art one, has the problem
that annotation must be given manually to achieve inter-
procedural and scalable analysis.

In this paper, we propose a novel method to improve
the precision of static type analysis for Python code,
where a backward analysis is used to obtain the path-
sensitivity. The backward analysis is performed on de-
mand, so the path-sensitive analysis is performed selec-
tively and intensively only where a detailed analysis is
needed, which enables more precise and efficient analy-
sis.

Our proposed method consists of two steps. In the first
step, a flow-sensitive static type analysis is performed for-
wardly (based on the method of TAJS [3]), which roughly
overapproximates the type candidates of a variable. This
overapproximation has the effect of reducing the number
of the subsequent backward analyses. The next step per-
forms the backward analysis for a part of variables, based
on the result of the first step, to check whether there ex-
ists an execution path under a type candidate. When
the execution path does not exist, the type candidate
is discarded. Thus, path-sensitivity can be acquired by
checking the existence (feasibility) of the execution path.
To show the effectiveness of our method, we conducted

a preliminary experiment to compare our method im-
plementation and the existing analysis tool with respect
to precision and time efficiency. The result shows our
method provides more precise type analysis with fewer
false positives than the existing static type analysis tool.
Also it shows our proposed method increases the analysis
time, but it is still within the range of practical use for
real-world medium-sized programs.
The contributions of this paper are as follows:

• We propose a novel precise static type analysis
method with a path-sensitivity.

• We formalize the backward analysis for type analy-
sis.

• We demonstrate the usefulness of our method
through our method implementation and the pre-
liminary experiment.

2 Background

2.1 Static Analysis

Static analysis is a technique of analyzing whether a pro-
gram behaves correctly or not without executing the pro-
gram itself, by approximating the behavior of the pro-
gram. To achieve this, it is essential to approximate the
state of the program in execution. This is because dis-
tinguishing all possible states of a program separately
would result in a state explosion. And the more precise
this approximation is, the more precise the results of the
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1 c l a s s Create :
2 de f run ( s e l f ) : . . .
3

4 c l a s s S e l e c t :
5 de f run ( s e l f ) : . . .
6 de f add where ( s e l f ) : . . .
7

8 de f r un sq l (mode) :
9 # ‘mode ‘ i s ‘CREATE‘ or ‘SELECT‘

10 i f mode == CREATE:
11 s q l = Create ( )
12 e l s e :
13 s q l = S e l e c t ( )
14

15 . . .
16

17 i f mode == SELECT:
18 s q l . add where ( ) # never called for ‘Create‘
19

20 s q l . run ( )

Figure 1: The existing type analysis [1] produces a false
positive result “add where can be called even for the in-
stance of Create” for this code due to insufficient path-
sensitivity.

analysis will be, since it represents the behavior closer
to the actual one of the program. However, precise ap-
proximation consumes a large amount of time and space
resources, resulting in low scalability and the inability to
analyze large codes. In particular, type analysis plays
a very important role in static analysis for dynamically
typed languages. This is because it is easier to make
more precise approximations when the type information
of variables is available. For this reason, when perform-
ing static analysis for dynamically typed language code,
it is common to perform type analysis to determine the
type of a variable. However, the existing methods do not
perform path-sensitive type analysis and hence they are
imprecise.

2.2 Path Sensitivity

Path-sensitivity in static analysis means that individual
analysis result is computed separately for each (feasi-
ble) execution path. Although path-sensitive analysis
is more precise, it requires a separate state for each ex-
ecution path, which reduces its scalability as described
in Sec. 2.1. Therefore, to obtain path-sensitivity, some
technique for scalability is also required.

3 Problem Setting

To clarify our problem setting, this section provides our
motivating example (Fig. 1), for which the existing type
analysis [1] produces incorrect analysis result.
Fig. 1 is an example code, for which Monat et al. [1]

produces a false positive analysis due to insufficient path-
sensitivity. In this code, there are two classes: Create

and Select, both of which have run method. In ad-
dition, only Select class has add where method. In
run sql function, instances of these classes are created
according to the value of the argument mode, and the
method run of the instance is called at line 20. However,
at line 17, iff the value of mode is SELECT, that is, iff
the type of sql is Select class, add where method is
called. Note that, according to the condition of the if

statement at line 17, the type of sql at line 18 is always
Select class. Thus, add where method would be never
called for the instances of Create class.
Unfortunately, a state-of-the-art research [1], which

performs static type analysis for Python programs based
on abstract interpretation, cannot correctly analyze this
code and gives a wrong attribute error (false positive),
that is, “add where can be called even for the instance
of Create”. Because the research [1] does not perform
path-sensitive analysis, it merges the two states of the
true/false branch paths after analyzing if statements
and continues its analysis. Therefore, after the analysis
of the if statement at line 10 to 13, the variable sql is
analyzed as an instance of Create or Select class. Here,
the analysis can refine the value of the variable mode from
the conditional expression at line 17, but it cannot refine
the type of the variable sql, since the analysis does not
know the fact that the type of sql is Select iff mode

is SELECT. Therefore, at line 18, the variable sql is an-
alyzed as an instance of Create or Select class, which
results in a (wrong) attribute error because there is no
add where method in Create class.
However, as we have just discussed above, this is a

wrong error that never occurs when the program is exe-
cuted. As we can see from the above example, existing
type analysis tools are unable to perform path-sensitive
type analysis for Python programs, resulting in false pos-
itives.

4 Proposed Method

This section provides an overview of our proposed
method, and an example analysis for the motivating ex-
ample in Fig. 1.

4.1 Overview of Proposed Method

Our proposed method consists of two steps: the forward
analysis and the backward analysis. The forward analy-
sis has the effect that it roughly overapproximates down
the type candidates of a variable, while the backward
analysis has the effect that it obtains a path-sensitivity.
Thresher [4] and so on perform the backward analysis to
obtain path-sensitivity, but the purpose of Thresher is
pointer analysis, not type analysis. So one of the contri-
butions of our proposed method is that it is the first one,
to our knowledge, that performs the backward analysis
for type analysis.

2



Now we define “query” as a constraint created by the
relationship between variables and types, and also de-
fines “witness” as an execution path that leads to a code
location of current interest for a given initial query. The
backward analysis adds constraints to the query, which
must be satisfied to pass through the witness. Then,
when the query becomes unsatisfiable in the repeated
addition of constraints (i.e., when a contradiction arises
in the constraints), we can conclude that there is no ex-
ecution path that produces the relationship between the
variable and the type represented by the initial query,
and for this situation, we say “there is no witness that
satisfies the initial query.” This implies we obtain path-
sensitive type analysis result, since we eliminate infeasi-
ble execution paths in the backward analysis.

4.2 A Concrete Example of Backward

Analysis

This section gives a concrete example of backward anal-
ysis for our motivating example in Fig. 1. We assume
here that, in the forward analysis, we have already ob-
tained the fact that the type of sql at line 18 is Create
or Select class.

4.2.1 Initial Query is “the Type of sql at Line

18 is Create Class

First, we set the initial query to “the type of sql is
Create class.” In fact, there is no execution path where
the variable sql becomes of type Create class at line
18, so the backward analysis reveals that this query is
refuted.

1. The initial query just before line 18 is:

sql 7→ ŝql ∧ ŝql == Create

where sql 7→ ŝql intuitively means the abstract value
of the variable sql is ˆsql , and the constraint ˆsql ==
Create must be satisfied.

2. Then, the conditional expression in the if statement
at line 17 is added to the query

sql 7→ ŝql ∧ ŝql == Create

∧ mode 7→ ˆmode ∧ ˆmode == SELECT

3. Then, the confluence of the if statement branches
is reached at line 10. The two paths are analyzed
separately: one through then clause and the other
through else clause. In either case, the constraint
obtained from the conditional expressions in the
clause is added to the query when the analysis leaves
the clause (i.e., when the analysis in the clause is fin-
ished), not when the analysis enters the clause.

3-1 The case through then clause:

(a) The assignment at line 11 does not change the
query.

(b) The conditional expression at line 10 changes
the query as follows:

sql 7→ ŝql ∧ ŝql == Create

∧ mode 7→ ˆmode ∧ ˆmode == SELECT

∧ ˆmode == CREATE

The value of the variable mode cannot be
SELECT and CREATE at the same time, and thus
this query is refuted. Therefore, the analysis
knows there is no witness of passing through
the then clause at line 10 to 13, that satisfies
the initial query “the type of the variable sql

is Create class.”

3-2 The case through else clause:

(a) The assignment at line 10 changes the query as
follows:

sql 7→ ŝql ∧ ŝql == Create

∧ mode 7→ ˆmode ∧ ˆmode == SELECT

∧ ˆsql == Select

The type of the variable sql cannot be Create
and Select class at the same time, and thus
this query is refuted. Therefore, the analysis
knows there is no witness of passing through
the else clause at line 10 to 13, that satisfies
the initial query “the type of the variable sql

is Create class.”

As the result, Create can be removed from the type
of the variable sql just before line 18, since the type of
the variable sql at line 18 turns out to be only Select

class, and thus the analysis eliminates the attribute error
at line 18. So, our proposed method can perform precise
analysis by employing path-sensitive analysis with the
backward analysis.

5 Formal Definition of Analysis

5.1 Formal Definition of Forward Analy-

sis

Our forward analysis is flow-sensitive and path-
insensitive, and is used to roughly overapproximate down
the type candidates. This allows the backward analysis
to be performed at fewer locations, which is expected to
significantly increase the speed of the analysis.
In our proposed method (Fig. 2) , the type (Type) is

defined as a primitive type or a class (Typec) declared in
the program. The forward analysis is intended for type
analysis, but it is also defined to allow primitives as ab-
stract values, since this allows for more precise analysis.

3



primitives p ∈ Prim ::= None|True|False|0

|1|...|1.0|...|”foo”|...

variables x, y, z ∈ Var

attributes attr ∈ Attr

class types τc ∈ Typec ::= class Foo|...

types τ ∈ Type ::= BOOL|INT|FLOAT

|STR|τc

abstract addresses â ∈ Âddr

abstract memories m̂ ∈ M̂em = Var ∪ (Âddr ×Attr)

abstract values v̂ ∈ V̂al = Âddr ∪ Type ∪ Prim

abstract states σ̂ ∈ Ŝtate = M̂em →֒ P(V̂al)

Figure 2: Concrete domain and abstract domain in the
forward analysis.

For example, suppose that there is a variable index to
access a list element. If primitives are not allowed as
abstract values, there is no way to analyze what element
of the list is being accessed. However, if primitives are
allowed as abstract values, there are some cases where
the analysis knows it, e.g., the case there is a conditional
func(l[index]) in the program. Thus, primitives as
abstract values allow for more precise analysis, since it
increases the cases where the element-sensitive analysis
is available.
Now we define the abstract semantics based on ab-

stract interpretation (Fig 3). In Fig 3, we provide the
definitions for typical statements in Python. For the
literal assignments (x = p), the variable x in the left-
hand-side (LHS) is defined as to map to the primitive p

in the right-hand-side (RHS). For the alias assignments
(x = y), the variable x in LHS is defined as to map to
the abstract values mapped by the variable y. Similarly,
for binary-operator assignments (x = y⊕ z), it is defined
as to map to the abstract values calculated in RHS.
For attribute read (x = y.attr), the variable x

in LHS is defined as to map to abstract values
(σ̂ getmem#(ây, attr)) mapped by the attribute attr for
all abstract addresses (ây) of objects mapped by the vari-
able y. Similarly, for attribute write (y.attr = x), the at-
tribute attr for all abstract addresses of objects mapped
by the variable y is defined as to map to abstract val-
ues mapped by the variable x. For instance creation
(x = new y()), the variable x in LHS is defined as to
map to the instance of the class object y.
The sequence (s1; s2) is defined as to analyze in

order from s1 to s2, while the conditional branch
(if(x ) s1 else s2 ) is defined as to merge the analysis re-
sults of the two branch paths.
In summary, the above abstract semantics are used

to compute the abstract states of variables and the at-

J.K# : Stmt → (Ŝtate →֒ Ŝtate)

Jx = pK#(σ̂) = σ̂[x 7→ p]

Jx = yK#(σ̂) = σ̂[x 7→ σ̂y]

Jx = y ⊕ zK#(σ̂) = σ̂[x 7→ σ̂y ⊔ σ̂z]

Jx = y.attrK#(σ̂)

= σ̂[x 7→
⋃

ây∈σ̂y

σ̂getmem#(ây, attr)]

Jy.attr = xK#(σ̂) = σ̂[getmem#(ây, attr) 7→ σ̂x]

for ây ∈ σ̂y

Jx = new y()K#(σ̂) = σ̂[x 7→ instance(σ̂y)]

Js1; s2K
#(σ̂) = [[s2]]([[s1]](σ̂))

Jif(x ) s1 else s2 K#(σ̂) = [[s1]](σ̂) ∪
# [[s2]](σ̂)

getmem# : (Âddr ×Attr) →֒ M̂em

instance : Typec → Âddr

⊔ : (P(V̂al)× P(V̂al)) → P(V̂al)

∪# : (Ŝtate × Ŝtate) → Ŝtate

Figure 3: Abstract semantics definition based on ab-
stract interpretation.

tributes of objects in the forward analysis. The rough
type analysis results obtained by this formalization are
then refined by the backward analysis as defined in the
next section (Sec. 5.2).

5.2 Formal Definition of Backward Anal-

ysis

The backward analysis checks each possible execution
path and updates the constraints in the query to refute
the query. This section defines the rules for the updates
for all statements as Hoare logic.
As shown in Fig. 4, the query is represented by two

symbolic values x̂, ŷ, ẑ, ˆattr ∈ V̂ ar

symbolic expressions ê ∈ Êxpr ::= x̂|v̂|p|ê1 ⊕ ê2

|ê1 == ê2

heap constraints H ::= True|x 7→ x̂

|ŷ.attr 7→ ˆattr|H1 ∗H2

pure constraints P ::= True|ê|P1 ∧ P2|

query Q ::= False|H ∧ P |Q1 ∨Q2

Figure 4: Defining domains for backward analysis.

4



Disjunction
〈Q′

1〉 s 〈Q1〉 〈Q′

2〉 s 〈Q2〉

〈Q′

1 ∨Q′

2〉 s 〈Q1 ∨Q2〉

Sequence
〈Q′′

1 〉 s1 〈Q′

1〉 〈Q′

1〉 s2 〈Q1〉

〈Q′′

1〉 s1; s2 〈Q1〉

IfElse
〈Q1〉 s1 〈Q〉 〈Q2〉 s2 〈Q〉

〈(Q1 ∧ x) ∨ (Q2∧!x)〉 if(x ) s1 else s2 〈Q〉

Constant
〈P ∧ x̂ == p〉 x = p 〈P 〉

Alias
〈(y 7→ x̂ ∧ P )〉 x = y 〈x 7→ x̂ ∧ P 〉

Binop
〈y 7→ ŷ ∗ z 7→ ẑ ∧ P ∧ x̂ == ŷ ⊕ ẑ〉

x = y ⊕ z

〈x 7→ x̂ ∧ P 〉

AttrRead
〈y 7→ ŷ ∗ ŷ.attr 7→ x̂ ∧ P 〉

x = y.attr

〈x 7→ x̂ ∧ P 〉

AttrWrite
〈x 7→ ˆattr ∧ P 〉

y.attr = x

〈y 7→ ŷ ∗ ŷ.attr 7→ ˆattr ∧ P 〉

New
h = y 7→ ŷ c =

∨
τ ′

c
∈τc

(ŷ == τ ′
c
)

〈h ∧ ˆattr == undef ∧ c ∧ x̂ == ŷ〉
x = new y()

〈h ∗ x 7→ x̂ ∧ P 〉

Figure 5: Defining analysis rule for the backward anal-
ysis.

kind of constraints: heap constraints and pure con-
straints. Heap constraints (e.g., sql 7→ ŝql in Sec. 4.2)
are used to relate a variable in the program (e.g., sql in

Fig. 1), to a symbolic value (e.g., ˆsql in Sec. 4.2), while

pure constraints (e.g., ˆsql == Create in Sec. 4.2) are
used to represent the constraints on symbolic values like
“the variable sql must be of type Create.” Some pure
constraints (e.g., ˆmode == CREATE shown in Sec. 4.2)
come from the analysis of conditionals like if statements.

Fig. 5 defines the analysis rules for the backward
analysis as Hoare logic similar to the definitions in
Thresher [4]. However, because this is the backward
analysis, unlike ordinary Hoare logic, it is necessary to
read the rules in the direction of post-constraints to pre-
constraints. So, for a rule of the form 〈Q〉 s 〈Q′〉 ,
given a post-constraint Q′ and a statement s, Q can be
deduced from Q′, if executing statement s from a state
satisfying Q produces a state satisfying Q′.

The first three rules in Fig. 5 are independent of the
kind of statements. The rule Disjunction analyzes each

query represented by OR (∨) individually. The rule
Sequence indicates that backward analysis can be per-
formed one statement at a time, starting with the last
statement. Finally, the rule IfElse analyzes each path
one by one when the path branches. As shown by the
rules Disjunction and IfElse, the backward analysis ana-
lyzes each path one by one when a case split occurs, so
it is necessary to analyze these branches more efficiently,
and this is future work.
The remaining six rules in Fig. 5 define the rules corre-

sponding to the kind of statements. The common point
to all these six assignment rules is that the mapping from
the LHS variable (the assigned variable) to the symbolic
value (e.g., x 7→ x̂) is erased in the pre-constraint, since
the mapping is the result of the assignment, and thus
the mapping is useless in the pre-constraint. The rule
Constant for constant assignments adds the constraint
(x̂ == p)1 that the symbolic value must be equal to the
primitive value on RHS. The rule Alias for variable as-
signments (x = y) replaces the symbolic values mapped
by the variable on RHS with the symbolic values (x̂)
mapped by the variable on LHS (so, the pre-condition
includes y 7→ x̂). The rule Binop for binary-operator
assignments adds the constraint (x̂ == ŷ ⊕ ẑ) that the
symbolic value of the variable in LHS after assignment
must be equal to the calculated result of binary-operation
in RHS before assignment. The rules AttrRead and Attr-
Write both replaces the symbolic value similar to the rule
Alias. Finally, the rule New adds the two constraints.
One is x̂ == ŷ that the types in LHS and RHS must be
equal, and the other is that the new object’s attribute is
undef ( ˆattr == undef ).

6 Implementation and Prelimi-

nary Experiment

6.1 Implementation

We implemented our proposed method in Java based on
Ariadne2 and Thresher3. Ariadne is a Python extension
of WALA4, which is a static analysis framework mainly
for Java programs.
Note here that there are some Python programs that

Ariadne does not support, so the following preprocessing
was performed on the Python programs when used in the
experiment (Sec. 6.2):

• Adding import statements for mock modules

1At a glance, this rule seems wrong, as the value of the variable
x before assignment is generally not p. However, this rule is correct
and sound technically, since this rule works to refute the query by
adding the constraint x̂ == p to the pre-constraint, which actually
holds in the post-constraint. Similar techniques are used in other
rules.

2https://wala.github.io/ariadne/
3https://github.com/cuplv/thresher
4https://wala.sourceforge.net/wiki/index.php/Main_Page
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• Replacing list comprehensions with for-loops

• Replacing for-else statements with while-else

statements

• Explicitly specifying with an extra keyword ar-
gument that an actual argument is with the
asterisk (*), as Ariadne just ignores the star
information. (e.g., func(*a) ⇒ func(*a,

PYPSTA STARED ARG=a))

• Replacing some compound assignment operators
with not compound assignment operators, while pre-
serving the behavior (e.g., a//=3; ⇒ a=a//3;)

Although the formalization given in Sec. 5 is intra-
procedural one, our implementation can perform inter-
procedural analysis. Our implementation handles the
function calls as follows:

• Function calls in the forward analysis:

– When a function is called, the control of anal-
ysis is transferred to the inside of the function
for further analysis. The abstract values of for-
mal parameters become the abstract values of
actual arguments in the analysis results at the
time of the function call.

– When the callee function returns, the control of
analysis is transferred to the caller’s function
call location. If there is a return value, the
function’s return abstract value becomes the
abstract value of the return expression.

• Function calls in the backward analysis:

– When a function is called, the function call lo-
cation is pushed to the stack, and then the con-
trol of analysis is transferred to the inside of
the function and the analysis is continued from
the function tail. If there are multiple function
tails, the analysis is performed separately for
each function tail.

– When the function entry point is reached:

1. If the stack is not empty, the control of the
analysis is transferred to the function call
location popped from the stack for further
backward analysis.

2. If the stack is empty, the analysis is per-
formed separately for all possible callers
obtained from the call graph.

In the experiment, the stack height was limited to 3.
This is the same height as that used in Thresher [4].
To analyze the programs that use the standard library,

we created and used summaries of the standard library,
based on the typeshed project 5. The typeshed project

5https://github.com/python/typeshed

is Python standard library and built-in functions with
type annotations. This has also been used in previous
studies such as Pyre [2]. However, the granularity of the
abstract states obtained from the summaries is a “type”,
which is coarser than that of the abstract values defined
in the forward analysis, so the precision of the analysis
may be reduced. To avoid this, we created handwritten
summaries for some functions in the standard library and
built-in functions.
To speed up the backward analysis, some optimiza-

tions are performed such as simplifying constraints in
the middle of the analysis and skipping statements that
do not affect the constraints.

6.2 Preliminary Experiment

Our preliminary experiment aims to answer the following
research questions:

• RQ1: How precise are the analysis results of our pro-
posed method compared to the existing methods?

• RQ2: What is the difference in analysis time of our
proposed method compared to existing methods?

The environment used in the experiment is: Windows
10 Home, Intel Core i7-1065G7 CPU@1.30GHz (4-cores)
and 32GB RAM.
Monat et al., [1] is employed as a comparison study

for both of RQ1 and RQ2. We used two kinds of bench-
marks: synthetic programs and real-world applications.
The synthetic benchmarks are ones that the authors cre-
ated, the ones used in Monat et al., [1] and Ariadne.
The real-world benchmarks are the ones used in Monat
et al., [1]. However, some real-world benchmarks in [1]
were not supported by [1]. In such a case, we modified
them so as to be analyzed in [1].

6.2.1 RQ1: How precise are the analysis results

of our proposed method compared to the

existing methods?

This experiment examines the number of false positives
in each analysis result. Here, since all benchmarks do not
produce errors at runtime, all errors detected by static
analysis become false positives. So, we just count the
number of errors detected in the analysis.
Also, since some errors (KeyError, IndexError, Val-

ueError) are not counted in [1], and there are many po-
tential errors that cannot be avoided for sound static
analysis, we excluded the errors in the result of the ex-
periment.
Table. 1 shows the result of the experiment, where

program names with an asterisk (*) indicate synthetic
benchmarks. The column “refuted” indicates the number
of false positives generated by the forward analysis that
could be analyzed as wrong errors by the backward anal-
ysis. Numbers in parentheses indicate the number of false

6
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Table 1: Precision in the experiment

LOC our method [1]
FP (refuted) FP

dict.py* 9 0 1 1
mutation.py 10 0 0 0

for.py* 10 1 0 1
branch.py* 12 0 1 1
sql.py* 29 0 1 1
loop.py* 29 0 1 0

fannkuch.py 54 0 0 0
float.py 60 8(8) 0 8(8)

coop con.py 65 0 0 0
spectral.py 74 0 0 1
craft.py 132 0 0 0
nbody.py 156 0 0 1
chaos.py 309 0 14(14) 0

richards.py 423 2(2) 25(374) 2(2)
unpack seq.py 457 0 0 0

positive where the same false positive is counted twice for
two different call-contexts (context-sensitive false pos-
itives). In our method, the backward analysis is per-
formed at least these numbers of times.

There are false positives in both of our proposed
method and Monat et al., [1] method for three programs,
and, for all the three cases, the number of false positives
of our proposed method are equal to those of Monat et
al., [1] method. For most programs used in the experi-
ment, using only the forward analysis, not the backward
analysis, gave sufficiently high precise results. Because
of this, there are few programs that are refuted by the
backward analysis. Nevertheless, the result shows that
the backward analysis for both synthetic and real-world
programs refutes extra false positives and thus the back-
ward analysis improves the precision.

The reason for the false positive in for.py* is because
our proposed method analyzed the path that never ex-
ecutes the inside of the loop, even though it could be
statically known that the inside of the loop is always
executed at least once. To correctly analyze this, for ex-
ample, we must add a constraint such that “the number
of elements is greater than zero on the path through the
inside of the loop” for the objects (lists, etc.) to be iter-
ated in the for statement. However, this is not defined
in the current backward analysis rules and this is also
future work.

Also in float.py, both our proposed method and [1]
gave a false positive. Fig. 6 is the code snippet from
float.py. Each element of the variable points is initial-
ized with None at line 2, and then all elements become
instances of the Point class in the loop at line 3 to 4.
However, our current analysis (and also Monat’s analy-
sis) only knows that the variable i is of type int, and
cannot know that all elements of the list are updated.
Thus, the analysis thinks the list variable points can

1 de f benchmark (n) :
2 po ints = [ None ] ∗ n
3 f o r i i n range (n) :
4 po ints [ i ] = Point ( i )
5 f o r p in po ints :
6 p . normal ize ( )
7 r e turn maximize ( po ints )

Figure 6: Example code where our proposed method gave
a false positive

contain None as an element, and it gives a wrong at-
tribute error (false positive) for the normalize attribute
access at line 6, since None does not have the attribute
normalize. Intuitively, it is statically known that the
variable p cannot be of type None, but the analysis does
not know this due to the lack of some rules in the back-
ward analysis. For this case, we need the rule that gen-
erates the constraint on the variable i and p such as “the
variable i has the values of the range of range(n), i.e.,
a series of integers from 0 to n-1 with no duplicates.”
The one of cause of the false positives in richards.py is

an exception. The analysis cannot statically know that
the exception is never raised on all possible paths. Such
errors are a limitation of our proposed method as a static
analysis. Of course, if the code that can raise an excep-
tion is a dead code, the backward analysis can refute it.
In chaos.py and richards.py, many types are refuted

in the backward analysis. This is because the methods
that gave an error are called in many contexts, and the
backward analysis is done for each of those contexts.
The current rules in the backward analysis do not sup-

port some syntax rules, such as the accessing of container
data types, loops, etc, which are generally not statically
resolvable. However, there are some cases where they
are statically resolvable like Fig. 6. So we need to refine
the rules in the backward analysis so as to generate more
detailed constraints for these syntax rules. This is future
work.

6.2.2 RQ2: What is the Difference in Analysis

Time of the Proposed Method Compared

to Existing Methods?

Table. 2 shows the result of the experiment of analy-
sis time, where the average time of three runs for each
benchmark program is listed. The programs used in the
experiment are all the real-world ones, since the synthetic
ones are all too small. For all programs, the analysis time
of our proposed method is more than that of Monat et
al., [1]. In particular, the backward analysis on programs
such as richards.py took significantly more analysis time
than other programs, since the backward analysis is per-
formed so many times for richards.py as shown in Ta-
ble. 1. However, we consider the analysis time is still
within the range of practical use even for the programs
that requires a lot of times of the backward analysis (177
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Table 2: The result of the experiment of analysis time
for real-world programs

LOC our method(s) [1](s)
mutation.py 10 1.05 0.021
fannkuch.py 54 1.25 0.077

float.py 60 7.92 0.083
coop con.py 65 1.18 0.032
spectral.py 74 1.37 0.22
craft.py 132 1.40 0.43
nbody.py 156 1.50 0.028
chaos.py 309 12.83 2.77

richards.py 423 177.72 6.25
unpack seq.py 457 9.19 5.35

seconds in Table. 2).

As shown in Sec. 6.1, there are some syntax rules not
supported by Ariadne, so we needed to preprocess (i.e.,
modify) such Python codes for the experiment, but we
found that the analysis generates false positives for some
preprocessed codes due to this preprocessing (although
they are refuted in the backward analysis). So the more
syntax rules Ariadne supports, the less preprocessing we
need to do, which leads to even fewer false positives in
the forward analysis. This reduces the number of the
backward analysis, resulting in faster analysis.

Of course, a further reduction of the analysis time is
necessary, as a lot of times of the backward analysis is
the root cause of the analysis time increase. For example,
sharing the constraints among different backward analy-
ses may make it easier to merge multiple path informa-
tion, which may result in shorter analysis time. This is
future work.

7 Related Work

7.1 Type Analysis

Monat et al. [1], Pyre [2], mypy [5], pytype [6], etc. are
tackling the problem on static type analysis and static
type checking for Python. The article [7] is the previous
report by the authors of [1] and gave a detailed descrip-
tion of the abstract interpretation. Monat et al. [1] is
almost mostly precise based on Python semantics, but
it has the problem that it does not perform the path-
sensitive analysis as described in Sec. 3. Flow [8] is
a static type analysis method for JavaScript, and the
study [2] is the type analysis tool for Python based on
Flow [8]. The study [2] is path-sensitive, but there are
some limitations, for example, manual type annotations
are required and its precision is not enough. A detailed
comparison of mypy and pytype is given in the article [9].
In particular, mypy cannot correctly analyze the code
without annotations, and pytype cannot correctly ana-
lyze the code in Fig. 1 due to the lack of path-sensitivity.

7.2 Static Analysis for Dynamically

Typed Languages

In addition to the studies [1] and [7], Fromherz et al. [10],
PySA [11], PyCG [12] and NoCFG [13] are also static
analysis tools for Python code. The study [1] is based
on [10], which performs the static analysis using the ab-
stract interpretation based on TAJS [3]. However, the
study [10] is path-insensitive. PySA is a static taint
analysis tool based on the technique of Pyre, but it has
the problem that it cannot correctly analyze the code
without annotations as well as Pyre, and it is path-
insensitive. PyCG and NoCFG are static call graph gen-
erators for Python code. NoCFG utilizes the type infer-
ence in the call graph generation. Both analyses in PyCG
and NoCFG are flow-insensitive and path-insensitive,
and thus their analyses are imprecise.
TAJS [14, 3] and TAJSVR [15] are static type anal-

ysis tools for JavaScript code. TAJS is widely used as
a framework of the static type analysis for JavaScript,
but it has the problem that it is not scalable and path-
insensitive. The study [14] uses the techniques like
the parameter-sensitivity and the loop specialization to
more precisely analyze the abstract values of the vari-
ables. These techniques can be applied to the forward
analysis of our proposed method to improve the pre-
cision. TAJSVRis based on TAJS, and improves the
field-sensitivity for JavaScript objects by the backward
analysis. However, the result of type analysis is path-
insensitive, since it is based on TAJS. This problem may
be resolved by the path-sensitive type analysis in our
proposed method.

7.3 Static Analysis using Backward

Analysis

Like our proposed method, Thresher [4], TAJSVR [15]
and SUPA [16] use the backward analysis to improve the
precision. Thresher refines the result of pointer analysis
by the formalization based on Hoare logic (our proposed
method also uses a similar formalization based on Hoare
logic). SUPA aims to perform fast flow-sensitive pointer
analysis, and also uses the backward analysis to refine
the pointer information. They are the same as our pro-
posed method in that they use the backward analysis,
but differ in their intended purposes: the pointer anal-
ysis in Thresher and SUPA, and the type analysis for
dynamically typed languages in our proposed method.

8 Conclusion

This paper proposed a novel method to improve the pre-
cision of static type analysis for dynamically typed lan-
guages. To improve precision, our proposed method per-
forms a path-sensitive analysis with the backward anal-
ysis. The backward analysis analyzes the paths one at a
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time on demand, which enables fast path-sensitive anal-
ysis.
The preliminary experiment shows our proposed

method improved the precision, compared to the exist-
ing static type analysis tool. Also it shows our proposed
method increases the analysis time, but it is still within
the range of practical use.
Our future work includes even higher precision by

defining the detailed rules in the backward analysis for
container data types and loops, and even shorter anal-
ysis time by sharing the constraints among different
backward-analyses.
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