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Abstract—This paper proposes a novel graph matching algorithm and applies it to shape recognition based on object silhouettes. The

main idea is to match skeleton graphs by comparing the geodesic paths between skeleton endpoints. In contrast to typical tree or

graph matching methods, we do not consider the topological graph structure. Our approach is motivated by the fact that visually similar

skeleton graphs may have completely different topological structures. The proposed comparison of geodesic paths between endpoints

of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve

Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results

demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and contour deformations.

Index Terms—Skeleton, skeleton graph, graph matching, shape recognition, geodesic path.

Ç

1 INTRODUCTION

SKELETON (or medial axis), which integrates geometrical
and topological features of the object, is an important

shape descriptor for object recognition [1]. Shape similarity
based on skeleton matching usually performs better than
contour or other shape descriptors in the presence of partial
occlusion and articulation of parts [2], [3], [4], [5]. However, it
is a challenging task to automatically recognize objects using
their skeletons due to skeleton sensitivity to boundary
deformation [6], [46]. Usually, the skeleton branches have to
be pruned for recognition [6], [28], [33], [34], [35], [50].
Moreover, another major restriction of recognition methods
based on skeleton is a complex structure of obtained tree or
graph representations of the skeletons. Graph edit operations
are applied to the tree or graph structures, such asmerge and
cut operations [7], [8], [9], [10], [11], in the course of the
matchingprocess. Probably, themost important challenge for
skeleton similarity is the fact that the topological structure of
skeleton trees or graphs of similar objects may be completely
different. This fact is illustrated in Fig. 1. Although the
skeletons of the two horses (Fig. 1a) and and (Fig. 1b) are
similar, their skeleton graphs (Fig. 1c) and (Fig. 1d) are very
different. This example illustrates the difficulties faced by
approaches based on graph edit operations in the context of
skeleton matching. To match skeleton graphs or skeleton
trees like the ones shown in Fig. 1, some nontrivial edit
operations (cut, merge, and so forth) are inevitable. On the
other hand, skeleton graphs of different objects may have the
same topology, as shown in Fig. 2. The skeletons of the brush
in Fig. 2a and the pliers in Fig. 2b have the same topology, as
shown in Fig. 2c.

This paper presents a novel scheme for skeleton-based
shape similarity measure. The proposed skeleton graph
matching is based on the similarity of the shortest paths
between each pair of endpoints of the pruned skeletons, for
example, see the shortest paths (in red) in Fig. 3. The shortest
paths between every pair of skeleton endpoints are repre-
sented as sequences of radii of the maximal disks at
corresponding skeleton points. We also benefit from the fact
that the skeleton endpoints inherit a cyclic order from the
contours. This is possible, since the skeletons are pruned
based on contour partitioning with discrete curve evolution
(DCE) [34], which guarantees that all endpoints of skeleton
branches lie on the contour. For example, in Fig. 4, all the
endpoints (denoted by 1, 2, . . . , 6) of the horse’s skeleton are
vertices of theDCE simplified polygon (in red). TheDCEwas
introduced in [30] and [31]. An important property of the
DCE-based pruning in [34] is its stability in that it is able to
remove spurious branches while preserving structurally
relevant branches.

The proposed skeleton graph matching method is
described in Section 4. In contrast to the existing approaches
to skeleton similarity, we do not explicitly consider the
topological structure of the skeleton trees or graphs. Instead,
we focus on the similarity of paths connecting the skeleton
endpoints. We use the similarity of the shortest paths
between each pair of skeleton endpoints to establish a
correspondence relation of the endpoints in different graphs.
For example, vertex 1 in Fig. 1a corresponds to vertex 1 in
Fig. 1b since their shortest paths to vertices 2, 3, 4, 5, and 6 are
similar. Finally, the dissimilarity value between graphs is
easily estimated by the distances between the corresponding
endpoints. Thus, the basic idea of ourmethod is to determine
the similarity of complex structures (graphs or trees) by
examining the shortest paths between their endpoints. Aswe
will show in Section 7, the proposed method yields
successful recognition results and is faster than the existing
graph and tree matching methods.

The usage of shortest geodesic paths in skeleton graph and
in shape similarity is not new; in particular, many-to-many
matching in Demirci et al. [27] and the Inner-Distance in Ling
and Jacobs [47] use the shortest paths. However, there are
substantial differences in our approach. [27] considers short-
est paths between all skeleton nodes and [47] considers the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 7, JULY 2008 1

. X. Bai is with the Department of Electronics and Information Engineering,
Huazhong University of Science and Technology, Wuhan, Hubei, 430074
P.R. China. E-mail: xiang.bai@gmail.com.

. L.J. Latecki is with the Department of Computer and Information Sciences,
Temple University, 1805 North Broad Street, Philadelphia, PA 19122.
E-mail: latecki@temple.edu.

Manuscript received 21 Sept. 2006; revised 5 Apr. 2007; accepted 1 Aug.
2007; published online 30 Aug. 2007.
Recommended for acceptance by S. Carlsson.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0673-0906.
Digital Object Identifier no. 10.1109/TPAMI.2007.70769.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



shortest paths between all contour points. We only consider
the shortest skeletalpathsbetween skeletonendnodes,which
allows us to avoid the problem of the instability of the
skeleton junction points (in comparison to [27]) and makes
our approach more robust to contour deformations (in
comparison to [47]). Moreover, we use skeletal shortest paths
in a different and novel way to define shape similarity. In our
approach, we use a two-layer structure. In the first layer,
skeletal shortest paths emanating from a given skeleton
endpoint form its shape descriptor. In the second layer, we
compute the similarity of two shapes by matching the shape
descriptors of the skeleton endpoints.

Since similar skeletons may have different number of
endpoints, we have to allow for a partial correspondence of
the endpoints. This is possible with a recently introduced
method for partial similarity of sequences [36], which we
extend and describe in Section 5. By employing this method,
we are able to also match skeletons of object parts to the
skeletons of complete objects andmatch parts to parts, which
is a necessary requirement for robust object recognition.

The proposed skeleton graph matching is based on the
assumption that similar skeletons have similar structure of
their end nodes (measured by the similarity of the shortest
paths to other end nodes). This assumption is significantly
weaker than a standard assumption that a structure of the
whole skeleton graph (based on both end nodes and
junction nodes) is similar. Usually, the structure of both
end nodes and junction nodes is weighted and edited since,

as pointed out above (Fig. 1), it is common that skeletons of
similar shapes have a different structure of junction nodes.
Moreover, as described in Section 2, many approaches to
match skeleton graphs require that the graphs are converted
to trees prior to finding the correspondence. However, as
we will illustrate in Section 7.3, such a conversion may
result in loss of important structural information and,
consequently, negatively influence the object recognition
result. The proposed method computes dissimilarity values
for graphs that do not have to be trees.

The geodesic skeletal paths are represented as sequences
of radii of maximal disks in our approach. Although we do
not explicitly consider the topological structure of the
skeleton graphs, we do not completely ignore this structure.
It is implicitly represented by the fact that overlapping parts
of the geodesic skeletal paths are similar, since their
overlapping parts have the same subsequences of radii.
For our example in Figs. 1a and 1b, it means that paths from
6 to 1 and from 5 to 2 overlap. The fact that the overlapping
segments are slightly different in Figs. 1a and 1b does not
affect the similarity of corresponding sequences of radii in
Figs. 1a and 1b. Therefore, our approach is flexible enough
to perform extremely well on articulated shapes, but it is
not too flexible to confuse dissimilar shapes. This fact is also
confirmed by our experimental results in Section 7.

2 RELATED WORK

The skeleton-based recognitionmethods areusually basedon
the graph or tree representation of the skeletons. Compared
with contour matching or other methods, skeleton matching
has a lower sensitivity to articulation or rearrangement of
parts. However, it involves a higher degree of computational
complexity [2], [15], [37]. Since the skeleton or medial axis is
always organized into an Attributed-Relation Graph (ARG),
the similarity between two objects can be measured by
matching their ARGs. Graph matching is an NPC problem,
thus, some efforts have been made to obtain approximate
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Fig. 1. Visually similar shapes in (a) and (b) have very different skeleton

graphs in (c) and (d).

Fig. 2. Dissimilar shapes in (a) and (b) can have the same skeleton

graphs (c).

Fig. 3. (a) The horse’s skeleton. (b) The shortest paths (in red) between

the pairs of endpoints on the skeleton.

Fig. 4. The skeleton pruned with contour partitioning by DCE [34].



solutions. We review now the most influential solutions
proposed in the context of shape similarity.

Zhu et al. match the skeleton graphs of objects using a
branch-bounding method that is limited to motionless
objects [7]. Liu et al. match ARGs with the A� algorithm.
Before matching the axis trees, the merge or cut operation is
essential [8], [9]. In contrast, the proposed approach does
not require any editing of the skeleton graph.

Shock graph is a kind of ARG proposed by Siddiqi et al.,
which is based on Shock Grammar [16], [17], [18], [19].
Later, Shokoufandeh et al. successfully extend these
approaches to structural indexing in a large database [25].
The distance between subgraphs is measured by comparing
the eigenvalues of their adjacency matrices. Thus, this
method is based on graph topology. It is time consuming
because of the complexity of the Shock Grammar and the
calculation of eigenvalues. Sebastian et al. have presented a
scheme to compute the edit distance between the shock
graphs [14], [15] but because of the expensive computation
due to the complex operation on shock graphs, the method
may fail to deal with occlusion and scene clutter. Torsello et
al. use the length of the corresponding boundary segments
to edit the similarity of shock trees [23], [24].

A different framework is presented in Pelillo et al. [11],
[12], where hierarchical trees are matched based on finding
maximal cliques of the association graphs. Aslan and Tari
posit an unconventional approach to shape recognition using
unconnected skeletons in the course level [21]. Di Ruberto
uses another kind of ARG, called Attributed Skeleton Graph
(ASG) [10]. The ASGs are matched with a graduated assign-
ment algorithm,which converts thematchmatrix (0-1matrix)
into a continuous matrix. This method can deal well with the
occlusion problem, however, since the matching matrix is
obtained using a heuristic rule, the graduated assignment
algorithm can find only a suboptimal matching solution.

In recent work, Demirci et al. transform weighted graphs
into metric trees for accurate matching [26], [27]. However,
a heuristic rule is essential to transform graphs to trees
(loops need to be removed). An additional problem for this
tree matching method is how to select an optimal node as
the root, since different root points may have completely
different topologies for the same skeleton.

Most of the existing approaches cannot deal with loops.
One of few approaches that can deal well with the loop
structure is presented in Hilaga et al. [20]. It is a method
based on topological matching of Reeb graphs representing
3D models. However, this method distinguishes different
shapes only based on topological structure. The proposed
method is able to match graphs containing loops, and it
yields intuitive results that reflect both geometric and
topological shape features.

3 SKELETON GRAPHS

This section describes the initial steps for building the
skeleton graphs. The following definitions apply to con-
tinuous skeletons, as well as to skeletons in digital images
(composed of pixels).

Definition 1. Askeleton point having only one adjacent point is an
endpoint (the skeleton endpoint); a skeleton point having three or
more adjacent points is a junction point. If a skeleton point is not
an endpoint or a junction point, it is called a connection point.
(Here, we assume that the skeleton curve is one pixel wide.)

Definition 2. The sequence of connection points between two
directly connected skeleton points is called a skeleton branch. A
standard way to build a skeleton graph is as follows: both the
endpoints and junction points are chosen as the nodes for the
graph, and all the skeleton branches between the nodes are the
edges between the nodes. For example, Figs. 1c and 1d are graphs
representing the skeletons in Figs. 1a and 1b, respectively.

Definition 3. The endpoint in the skeleton graph is called an end
node, and the junction point in the skeleton graph is called a
junction node.

4 MATCHING THE SKELETON GRAPHS

Wematch skeleton graphs by establishing a correspondence
of their end nodes only, since these nodes are the salient
points on the contour, and all skeleton branches ending on
the contour can be seen as visual parts of the original shape.
Thus, the proposed representation does not involve any
junction nodes.

4.1 The Shape-Path Representation

Definition 4. The shortest path between a pair of end nodes on a
skeleton graph is called a skeleton path, for example, see Fig. 3b.

Suppose there are N end nodes in the skeleton graph G

to be matched, and let vi ði ¼ 1; 2; . . . ; NÞ denote the ith end
node along the shape contour in a clockwise direction. Let
pðvm; vnÞ denote the skeleton path from vm to vn. We sample
pðvm; vnÞ with M equidistant points, which are all skeleton
points. Let Rm;nðtÞ denote the radius of the maximal disk at
the skeleton point with index t in pðvm; vnÞ. A vector of the
radii of the maximal disks centered at the M sample points
on pðvm; vnÞ is denoted as

Rm;n ¼ ðRm;nðtÞÞt¼1;2;...;M ¼ ðr1; r2; . . . ; rMÞ: ð1Þ

In this paper, the radius Rm;nðtÞ is approximated with the
values of the distance transform DT ðtÞ at each skeleton
point with index t. Suppose there are N0 pixels in the
original shape S. To make the proposed method invariant to
the scale, we normalize Rm;nðtÞ in the following way:

Rm;n ¼
DT ðtÞ

1
N0

PN0

i¼1 DT ðsiÞ
; ð2Þ

where siði¼1; 2; . . . ; N0Þvaries over allN0 pixels in the shape.

Definition 5. The shape dissimilarity between two skeleton paths
is called a path distance. If R and R0 denote the vectors of radii
of two shape paths pðu; vÞ and pðu0; v0Þ, respectively, the path
distance is defined as

pdðpðu; vÞ; pðu0; v0ÞÞ ¼
X

M

i¼1

ðri � r0iÞ
2

ri þ r0i
þ �

ðl� l0Þ2

lþ l0
; ð3Þ

where l and l0 are the lengths of pðu; vÞ and pðu0; v0Þ, respectively,
and � is the weight factor. In order to make our representation
scale invariant, the path lengths are normalized. We include the
path lengths in (3), since the path length is not reflected in the
sequences of radii (all paths are sequences ofM radii). This way,
our path representation and the path distance are scale invariant.

In order to deal with the similarity of articulated shapes,
the path distance in (3) does not penalize path deformations
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(for example, deformations from straight to curved paths)
that do not change the vectors of radii and path lengths. This
allows us to recognize as similar two deformable objects such
as snakes. It may appear that not penalizing path deforma-
tions can lead to a danger of recognizing as similar different
shapes. However, although it is possible to deform a given
shape (for example, a snake) so that the vectors of radii and
path lengths are constant, it is extremely unlikely to have two
different shapes with differently deformed skeletal paths
having identical vectors of radii and path lengths. Our
excellent experimental results in Section 7 confirm this fact in
that we never classified as similar objects of different shapes.

4.2 Matching End Nodes Using Skeleton Paths

In the skeleton graph, each end node has the skeleton paths
to all other end nodes in the graph. As we will show, the
skeleton paths are a useful shape descriptor.

Let G and G0 denote two graphs to be matched, and let vi
and v0j be some end nodes in G and G0, respectively. Let the
numbers of the end nodes in G and G0 be K þ 1 and N þ 1,
respectively, andK � N . Thematching cost cðvi; v

0
jÞ between

vi and v0j is estimated based on the paths to all other vertices
in G and G0 that emanate from vi and v0j, correspondingly.
First, we order all end nodes in G following the clockwise
contour with the starting node being vi, which we denote as
vi0. (Here, we benefit from the fact that all skeleton endpoints
lie on the contour.) We obtain a sequence of ordered end
nodes vi0; vi1; . . . ; viK inG and, similarly, vj0; vj1; . . . ; vjN inG0.
Then, we compute the path distances between the two
sequences (They represent the paths emanating from vi ¼ vi0
in G and v0j ¼ v0j0 in G0). We obtain a matrix of the path
distances computed with (3):

pdðvi; v
0
jÞ ¼

pdðpðvi0; vi1Þ; pðv
0
j0; v

0
j1ÞÞ pdðpðvi0; vi1Þ; pðv

0
j0; v

0
j2ÞÞ

pdðpðvi0; vi2Þ; pðv
0
j0; v

0
j1ÞÞ pdðpðvi0; vi2Þ; pðv

0
j0; v

0
j2ÞÞ

..

. ..
.

pdðpðvi0; viKÞ; pðv
0
j0; v

0
j1ÞÞ pdðpðvi0; viKÞ; pðv

0
j0; v

0
j2ÞÞ

0

B

B

B

B

B

@

. . . pdðpðvi0; vi1Þ; pðv
0
j0; v

0
jNÞÞ

. . . pdðpðvi0; vi2Þ; pðv
0
j0; v

0
jNÞÞ

..

. ..
.

. . . pdðpðvi0; viKÞ; pðv
0
j0; v

0
jNÞÞ

1

C

C

C

C

C

A

:

ð4Þ

To compute the dissimilarity value between the two end
nodes vi and v0j, we extended the partial similarity of
sequences method introduced in [36]. The extendedmethod,
which is described in Section 5, is called optimal subse-
quence bijection (OSB). The main property of OSB is the fact
that it can skip outlier elements of matched sequences,
which in our case means skipping some of the skeleton
endpoints. For example, endpoint 7 in Fig. 5 must be skipped
in order to establish the correct correspondence of the other
skeleton endpoints. By applying OSB to the matrix in (4), we
obtain the dissimilarity of two end nodes vi and v0j:

cðvi; v
0
jÞ ¼ OSBðpdðvi; v

0
jÞÞ: ð5Þ

For two graphs, G and G0, with end nodes vi ði ¼
0; 1; 2; . . . ; KÞ and v0j ðj ¼ 0; 1; 2; . . . ; NÞ, we compute all the

dissimilarity costs between their end nodes and obtain a
new matrix:

CðG;G0Þ ¼

cðv0; v
0
0Þ cðv0; v

0
1Þ . . . cðv0; v

0
NÞ

cðv1; v
0
0Þ cðv1; v

0
1Þ . . . cðv1; v

0
NÞ

..

. ..
. ..

. ..
.

cðvK ; v
0
0Þ cðvK ; v

0
1Þ . . . cðvK ; v

0
NÞ

0

B

B

B

@

1

C

C

C

A

: ð6Þ

Finally, we compute the total dissimilarity cðG;G0Þ
between G and with the Hungarian algorithm on CðG;G0Þ.
For each end node vi inG, the Hungarian algorithm can find
its corresponding end node v0j inG0. SinceG andG0 may have
different numbers of end nodes, the total dissimilarity value
should include thepenalty for endnodes that didnot find any
partner. To achieve this, we simply add additional rowswith
a constant value const to (6) so thatCðG;G0Þbecomes a square
matrix. The constant value const is the average of all the other
values in CðG;G0Þ. The intuition for using the Hungarian
algorithm is thatwewant to have aglobally consistent one-to-
one assignment of all end nodes with possibly assigning
some end nodes to const, which represents a dummy node.
This means that we seek a one-to-one correspondence of the
end nodes in the skeleton graphs (with possibly skipping
some nodes by assigning them to a dummy node).

Observe that our approach does not require any corre-
spondence of junction nodes. This is extremely important,
since as illustrated in Fig. 1, in many cases, the correspon-
dence of junction nodes is impossible to establish directly,
and therefore, graph or tree editing approaches are needed if
the correspondence of junction nodes is required. It is also
important to observe that it is impossible to change the
structure of junction nodes with skeleton pruning without
eliminating some important end nodes. On the other hand,
skeleton pruning is able to reduce the set of end nodes to
structurally relevant nodes by eliminating spurious end
nodes, see [34]. To summarize, the proposed skeleton graph
matching is based on the assumption that similar skeletons
havea similar structureof their endnodes that ismeasuredby
the similarity of the shortest paths to other end nodes. This
assumption is significantly weaker than the standard
assumption that a structure of both end nodes and junction
nodes is similar. Usually, the structure of both end nodes and
junction nodes is weighted and edited, since as pointed out
above (Fig. 1), it is common that skeletons of similar shapes
have a different structure of junction nodes.

The fact that the Hungarian algorithm does not preserve
the order of matched sequences does not influence the final
score, since we can change the order only for similar end
nodes. However, the similarity of end nodes is computed in
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Fig. 5. The corresponding end nodes between the two skeleton graphs

are linked with lines.



the context of all other end nodes. Therefore, changing the
order is likely due only to symmetry, in which case, the final
dissimilarity score is unaffected. The Hungarian algorithm
has a computational advantage in comparison to order
preserving assignment algorithms. When using an order
preserving algorithm, we would need to enumerate over
different starting nodes. This is not necessary for the
Hungarian algorithm. The Hungarian algorithm is the most
popular for finding amaximummatching in a bipartite graph
and is a common formulation for globally optimal matching.
Examples include Kim and Kak [49], Siddiqi et al. [18] and,
more recently, Belongie et al. [5], to name just a few; these
techniques are also unable to enforce global ordering and are
confused by object symmetries. A different way to approach
the matching problem by allowing many-to-many mapping,
as proposed in [27], is also possible.

We give now a simple example illustrating our matching
approach. Fig. 5 shows skeletons of two different horses
with the corresponding end nodes linked by lines. We
indexed the nodes so that the corresponding nodes have the
same index except for node 7 that does not have a partner
and, consequently, corresponds to a dummy node with the
correspondence value of const. The matrix CðG;G0Þ is
shown in Table 1. The matching costs between most similar
end nodes are marked with red numbers. The last row
represents the dummy node.

5 OPTIMAL SUBSEQUENCE BIJECTION

The new algorithm, called Optimal Subsequence Bijection
(OSB), works for elastic matching of two sequences of
different lengths m and n. More specifically, for two finite
sequences of end nodes of skeletons a ¼ ða1; . . . ; amÞ and b ¼
ðb1; . . . ; bnÞ in this paper. The goal is to find subsequences a0 of
a and b0 of b such that a0 best matches b0. Skipping (not
matching) someelements ofaand b is necessary, becauseboth
sequences may contain some outlier elements. However,
skipping toomany elements of sequence a increases a chance
of accidental matches. To prevent this from happening, we
introduce apenalty for skipping elements. Thepenalty can be
expressed asmatching to someadditional element b1.Hence,
we extend sequence b by one more element b1.

Our goal is to find the best possible correspondence of
sequence a to a subsequence b0 of b. We define a correspon-
dence f : f1; . . . ;mg ! f1; . . . ; n;1g as amonotonic injection

for the restricted range of function f : f1; . . . ;mg !
f1; . . . ; ng, that is, a function f such that fðiÞ < fðiþ 1Þ
< 1, where ai ismapped to bfðiÞ for all i 2 f1; . . . ;mg, andwe
allow a many-to-one mapping to 1. The assignment fðiÞ ¼
1 means that we skip the element i in the sequence a. The
sets of indices ðikÞ and ðfðikÞÞ such that fðikÞ < 1 for ik 2
f1; . . . ;mg define the subsequences a0 of a and b0 of b, such
that f restricted to ðikÞ is a bijection. This explains the phrase
“subsequence bijection” inOptimal Subsequence Bijection
(OSB). However, we still need to define what optimal means
here.We assume that the distance function d is given that can
compute the dissimilarity value between any elements of
a and b, that is, dðai; bjÞ is given for ði; jÞ 2 f1; . . . ;mg �
f1; . . . ; n;1g.We do not have any restrictions on the distance
function d and, therefore, any distance function is possible. In
this paper, we use the path distance pd defined in (3) as the
distance d. Although inmost applications dðai; bjÞ is given for
ði; jÞ 2 f1; . . . ;mg � f1; . . . ; ng, the distances to the addi-
tional element dðai; b1Þ should be carefully selected. Usually,
dðai; b1Þ is a constant for all i 2 f1; . . . ;mg that determines
the cost of skipping any given element in sequence a. We call
this constant jumpcost. In this paper, dðai; b1Þ ¼ jumpcost is
computed as

jumpcost ¼ meaniðminjðdðai; bjÞÞ þ stdiðminjðdðai; bjÞÞ: ð7Þ

Thus, every element ai finds the closest element bj, and then,
we take the mean plus one standard deviation (std) of the
distances to the closest elements. For example, if sequences a
and bare similarwith theexceptionofoneoutlier element, call
it ak, then every ai for i 6¼ k finds an element bj with a small
distancedðai; bjÞ. Consequently, the jumpcostwill be small, so
that the distance to the closest element in b for ak will be
greater than the jumpcost, and theelementakwill be excluded
from the matching with a relatively small penalty, that is, we
jumpover it. For anygiven correspondence,we candefine the
distance between two sequences as

dða; b; fÞ ¼
1

m

X

m

i¼1

dðai; bfðiÞÞ
2
: ð8Þ

Our goal is to find a correspondence f so that dða0; b0; fÞ is
minimal. More precisely, an optimal correspondence bf of
elements in sequence a to elements in sequence b is defined
as the one that yields the global minimum of dða; b; fÞ over
all possible correspondences f :

bf ¼ arg minfdða; b; fÞ : f is a correspondenceg: ð9Þ

Finally, the optimal distance is given by formula (8) for f ¼ bf .
The optimal correspondence can be found with the shortest
path algorithmon adirected acyclic graph (DAG).Wedenote
the optimal distance dða; bÞ in (10) with OSBða; bÞ for the
Optimal Subsequence Bijection distance. The nodes of the
DAG are all index pairs ði; jÞ 2 f1; . . . ;mg � f1; . . . ; ng and
the edge costs w are defined as

wðði; jÞ; ðk; lÞÞ ¼

dðai; bjÞ if iþ 1 ¼ k and jþ 1 � l

ðk� i� 1Þ � jumpcost if iþ 1 < k and jþ 1 � l

1 otherwise:

8

>

<

>

:

ð10Þ

Observe that there is no explicit penalty for skipping an
element of sequence b. The intuition is that we expect all
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TABLE 1
The Matrix CðG;G0Þ of the Dissimilarity Values between

All End Nodes of the Two Horses in Fig. 5

The last row is added to make CðG;G0Þ a square matrix. The values in
red are between the most similar end nodes.



elements of sequence a to find apartner element in sequence b
with possibly skipping some elements of b. An interesting
situation occurs if both sequences a and b have an equal
number of elements or sequence a is longer. Since each
correspondence f is a injection on a, skipping an element of b
implies skipping an element of a (with a penalty) and,
consequently, there is an implied penalty for skipping any
element of b.

The OSB differs from the method in [36] in that it allows
penalized skipping of outliers in the query sequence in
addition to skipping outliers in the target sequence. The
method in [36] allows only skipping outlier elements in the
target sequence.

To illustrate the benefit of the proposed one-to-one
matching with skipping the outliers, consider the matching
of the two real sequences shown in Fig. 6. Both the query
sequence on top and the target sequence at the bottom have
two outlier elements (shown as spikes). The proposed OSB
method is able to skip them, as illustrated in Fig. 6b. For
comparison, the correspondence obtained with Dynamic
Time Warping (DTW) [39] shown in Fig. 6a is significantly
corrupted by the outliers.

6 RELATION OF OSB TO OTHER SEQUENCE

SIMILARITY MEASURES

The DTW distance has been shown to be superior to the
euclidean distance of sequences in many cases [40], [41],
[42], [43]. However, as illustrated in Fig. 6, DTW is
particularly sensitive to outliers, since all elements of both
sequences must participate in the correspondence.

The Longest Common Subsequence (LCSS) measure has
been used in time series [44], [45] to deal with the alignment
and outliers problem. Given a query and a target series, LCSS
determines their LCSS, that is, LCSS finds subsequences of
the query and target (of the same length) that best correspond
to each other. The distance is based on the ratio between the
length of LCSS and the length of the whole sequence. The
subsequence does not need to consist of consecutive points,
the order of points is not rearranged, and some points can
remain unmatched. When LCSS is applied to sequences of
numeric values, one needs to set a threshold that determines
whenvaluesof correspondingpoints are treatedas equal [45].
The performance of LCSS depends heavily on the correct
setting of this threshold, whichmay be a particularly difficult
problem for some applications.

The proposed OSB computes the distance value between
two sequences based directly on the distances of correspond-
ing elements, just as DTW does, and it allows the query
sequence to match to only a subsequence of the target
sequence, just as LCSS does. The main difference between
LCSS and OSB is that LCSS optimizes over the length of the
LCSS (which requires a distance threshold), whereas theOSB
directly optimizes the sum of distances of corresponding
elements. Themain difference between DTWandOSB is that
OSB can skip some elements of the target sequence when
computing the correspondencewhileDTWrequires that each
point of thequery sequence bematched to apoint in the target
sequence, and vice versa. The main difference between OSB
and theHungarian algorithm is that theHungarian algorithm
does not preserve the order of sequences.

7 EXPERIMENTS

In this section, we evaluate the performance of the proposed
method in two parts: (Section 7.1) matching the end nodes in
the skeleton graphs, and (Section 7.2) the recognition
performance of our method on standard shape databases.
We illustrate in Section 7.3 the importance of matching
skeleton graph structures as opposed to matching only tree
structures.

7.1 Correspondence Matching

Besides thematching of the two horses in Fig. 1, we tested the
matching process on several other examples. In Fig. 7, we
match a horse in Fig. 1 to a cat. Since the articulations of the
horse are similar to the ones of the cat, our matching process
finds the correct correspondences. Fig. 8 shows the corre-
spondence between the end nodes of a horse in Fig. 5 and an
outline of horse ridden by a person, which is similar to an
example in [7]. Observe that the skeleton branch representing
the person on the horse does affect the performance of the
proposed approach. Fig. 8 demonstrates that the proposed
method is able to establish a correct correspondence if parts
are substantially altered. The two persons in the left part in
Fig. 9 are taken from Kimia’s data set [14], whereas the
silhouette on the right hand side is manually modified. Fig. 9
illustrates that the proposed approach works correctly if
object parts are significantly altered (shortened in this case).
Wealso showanothermatching result onhands fromKimia’s
data set in Fig. 10. The obtained correspondence demon-
strates that our matching process has strong performance in
the presence of occlusion.
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Fig. 6. The links illustrate corresponding elements obtained with the

proposed method OSB in (b) compared to the classical DTW in (a).

Observe how outliers corrupt the result of DTW.

Fig. 7. The correspondence between a horse and a cat.



7.2 Robustness of Recognition

To evaluate the recognition performance of our method, we
tested it on four standard data sets: Aslan and Tari database
[21], Kimia’s two databases [15], and Rutgers tools database
[16]. The Aslan and Tari database is used for testing the
performance on nonrigid objects. As shown in Fig. 11, it
includes 14 classes of articulated shapes with four shapes in
each class. We use each shape in this database as a query.
Several representative results are shown in Fig. 12, where six
most similar shapesare shownfor thequeries. For eachquery,
a perfect result should have the three most similar shapes in
the same class as the query. The red squares mark all the
results where this was not the case. Since there are only five
errors in 168query results, the recognition rate on this data set
(using the standard percent measure) is 97.0 percent. Using
the bull’s-eye test [32], the recognition rate is 99.4 percent.
Moreover, we can easily observe that the wrong results are
very similar to the query. For this data set, we use parameters
M ¼ 50 and � ¼ 40. Although this database was introduced
in Aslan and Tari [21], their paper does not present results on
the whole database, as we do. (Aslan and Tari [21] illustrate

only a few example dissimilarities between pairs of shapes).
Since no recognition rate on the whole data set is provided in
[21], we cannot directly compare the recognition rate of our
method in [21]. We were able to compare our method to the
inner distance [47] on this data set.We compared it to the best
performing version in [47], which is the inner distance shape
context with dynamic programming, denoted by IDSCþDP.
The retrieval results are summarized as the number of correct
shapes for all 56 queries among the first, second, and third
closest matches. IDSCþDP obtained 53, 51, and 38, whereas
ourmethod achieved 55, 55, and 53. The perfect result would
be 56, 56, and 56. We found that inner distance has problems
with nonrigid deformations like the bending of an arm. In
contrast, the proposedmethod is designed to performwell in
the presence of nonrigid deformations.

We also tested our algorithm on two shape databases
provided byKimia [15]. The first database as shown in Fig. 13
contains 216 images from 18 classes, which is a subset of
MPEG-7 database [32]. For each shape, we checkwhether the
11closestmatchesare in thesameclassas thequery. InTable2,
we compare our result to two typical shape classification
methods, and the number of correct matches in each rank
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Fig. 8. The correspondence between a horse and a horse ridden by a

person.

Fig. 9. The correspondence between the persons with different numbers

of legs.

Fig. 10. The correspondence between a hand and another hand with

occlusion.

Fig. 11. Aslan and Tari database [21] with 56 shapes.

Fig. 12. Selected results of the proposed method on the Aslan and Tari
database [21]. Since each class is composed of four shapes, the query
and the first three most similar shapes should be in the same class. Red
boxes mark the results where this is not the case.

Fig. 13. Sample shapes from Kimia’s 216 shape database [15]. We
show two shapes for each of the 18 classes.



is summarized. Our algorithm performs better than Shock-
Edit [16] and Shape Context [5]. We use parameters M ¼ 50

and � ¼ 70.
Fig. 14 shows another Kimia’s data set with 99 images

from nine classes. In this data set, some images have
protrusions or missing parts. Table 3 compares our results
to several other methods in a way similar to that in Table 2.
Our results are acceptable but are not the best, which is due
to the presence of protrusions. Although small protrusions
do not present any problems, significant ones do. We
illustrate the limitation of our method on the example in
Fig. 10, where both shapes are taken form this data set. We
are able to compute the correct correspondence but the
dissimilarity value is relatively large due to the necessity of
skipping five skeleton endpoints in the protrusion. We use
parameters M ¼ 50 and � ¼ 30.

To compare our method to other typical skeleton-based
approaches, we use the Rutgers Tools Database [16], which
consists of 25 shapes grouped into eight classes. Several
sample shapes from the Rutgers Tools Database are shown in
Fig. 15. Here, we use parameters M ¼ 50 and � ¼ 40. The
results of theproposedmethodon theRutgersToolsDatabase
are shown in Fig. 16. We only have two mismatched entries,
which are highlighted with red squares in the class “Pliers”
and the class “Screwdriver.” Compared with other skeleton
based methods, our method outperforms Shock Tree [11]
(five mismatched entries), Graph-Edit Distance [15] (five
mismatched entries), and Many-to-Many Matching [27]
(three mismatched entries). It is important to observe that
skeleton-based methods significantly outperform contour-
basedmethods on this data set. As reported in [15], one of the
most popular contour-based methods, Shape Contexts [5],
misclassified 21 entries on this data set.

7.3 Matching Skeleton Graphs that Are Not Trees

This section illustrates the advantage of matching directly
skeleton graphs as opposed tomatching skeleton trees.Many
approaches presented in the literature (for example, Shock
Tree [11] and Many-to-Many Matching [27]) are unable to
match skeleton graphs. They require first converting skeleton
graphs to trees.However, aswe illustratenow, thismayresult
in losing important structural information. Fig. 17a shows
two binary masks of keys. Observe that the holes are a

characteristic shape feature ofmost keys. Fig. 17b shows their
skeleton graphs and the correspondence between their end
nodes computed by our algorithm.

For algorithms that are able tomatchonly tree structures, it
is necessary to convert the key graphs to trees by removing
oneof the edges in the loop. If, for example, the top edge in the
loop is removed, the obtained tree structure becomes very
similar to the skeleton of the wrenches shown in Fig. 18.
Therefore, converting graphs to treesmay result in the loss of
important structural information and, consequently, in the
inability to correctly differentiate shapes.

To evaluate the performance of our algorithm on distin-
guishing the topological difference, we use a small database
that contains five shapes: The two keys in Fig. 17, the two
wrenches in Fig. 18, and the broken key in Fig. 19 (its skeleton
is very similar to the wrenches). The parameters for this
database are M ¼ 50 and � ¼ 30. Since the shortest paths
between end nodes change dramatically when a loop is
broken, we are able to distinguish the structural difference
between a closed loop and a broken loop. Consequently, the
broken key (without hole) is more similar to the wrenches
than the keys (with holes), as shown in Fig. 20a. It seems to be
impossible for tree matching methods to capture this
difference since they need to cut the loops on the skeletons
before matching (in order to convert a graph to a tree
structure). Therefore, we do not see how they could capture
the topological difference between the broken key and the
two unbroken keys. In analogy, we expect contour-based
methods (for example, [5], [31], [47], [48]) to be unable to
capture this difference too. To verify this claim, we evaluated
one of the best performing contour-based methods on this
data set. The results of IDSC þ DP [47] on this database are
shown in Fig. 20b. In particular, the last row in Fig. 20b shows
that IDSC þ DP cannot properly capture this topological
difference.

It is important to mention that the proposed method
requires the existence of end branches, which is always the
case for polygonal shapes. However, ideal mathematical
shapes like a doughnut may not have any end branches, in
which case, the proposed method is not applicable.

8 IMPLEMENTATION AND COMPUTATIONAL

COMPLEXITY

We briefly describe all the implementation steps: first, we
compute skeletons with the algorithm in [28]. An important
next step is proper skeleton pruning. We prune the skeletons
with the algorithm in [34]. Then, we find all the shape paths
with Dijkstra’s shortest path algorithm on the pruned
skeleton graph. Finally, the total costs between skeleton
graphs are computed with the proposed method.
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TABLE 2
Retrieval Results on Kimia’s 216 Shape Database

Fig. 14. Sample shapes from Kimia’s 216 shape database [15]. We

show two shapes for each of the 18 classes.



We now analyze the computational complexity of the

proposed graph matching approach. Let ni be the number of
end nodes in the skeleton graphs Gi ði ¼ 1; 2Þ, and let mi be
the number of all nodes (including junction nodes) in Gi.

Observe that ni < mi, since the number of end nodes is
significantly smaller than the number of all nodes in the
skeletongraph. Since inour experiment,ni andmi areusually
nomore than 20, the time cost for comparing the similarity of
two graphs is very small. The average time is approximately
0.015 seconds in our tests.

The time for Dijkstra’s algorithm used to find the shortest
path between two end modes onGi is Oðmi logmiÞ, thus, the
time for computing all shape paths on Gi is Oðn2

imi logmiÞ,
since we have n2

i pairs of end nodes. The complexity for
computing a shape distance between a pair of shape paths is
OðMÞ, so the complexity for computing a path matrix is
Oðn1n2MÞ. Since the complexity of OSB is Oðn1n2Þ [36], the
time for computing thematrixCðG1; G2Þ isOðn2

1n
2
2Þ. Sincewe

assume n1 < n2, the time cost for the Hungarian algorithm in
our paper isOðn3

2Þ. Thus, the total complexity for ourmethod

BAI AND JAN LATECKI: PATH SIMILARITY SKELETON GRAPH MATCHING 9

TABLE 3
Retrieval Results on Kimia’s 99 Shape Database

Fig. 15. Sample shapes in Rutgers Tools Database.

Fig. 16. The results of the proposed method on Rutgers Tools Database.
We only have two mismatched entries, which are highlighted with red
squares.

Fig. 17. The holes in the keys leads to skeletons that are graphs but not

trees. The lines between end nodes illustrate the correspondence

computed by our algorithm.

Fig. 18. Two wrenches and their skeletons. The lines between end
nodes illustrate the correspondence computed by our algorithm.

Fig. 19. A broken key and its skeleton.



is Oðn2
imi logmiÞ þOðn1n2MÞ þOðn2

1n
2
2Þ þOðn3

2Þ. Recalling

thatni < mi, for i ¼ 1; 2, by substituting the larger numbermi

for all occurrences of ni, our time complexity is bounded by

Oðm2
1m

2
2Þ. For example, this is two orders of magnitude

smaller than the complexity of the Graph-Edit Distance,

which is Oðm3
1m

3
2Þ [15].

9 CONCLUSIONS

A novel object recognition method based on similarity of

skeleton graphs is presented. The most significant contribu-

tion of this paper is the novel approach to skeleton graph

matching. We represent a skeleton as a set of geodesic paths

between skeleton endpoints. The paths are compared using

sequencematching. The proposed approach does not require

any complicated strategies for tree/graphmatching based on

editing of topological structures and complicated weighting

of branches/nodes. In addition to superior performance, the

proposed method also reduces the time cost. Moreover, the

fact that our representation of skeletons is based on their

endpoints opens a possibility of new applications. We are

able to compute the main symmetry axes of articulated

objects by computing self similarity of skeleton divisions

induced by pairs of endpoints.
The performance of our method is limited in the

presence of large protrusions, since they require skipping
a large number of skeleton endpoints. However, we believe
this limitation can be solved with partial matching, for
example, when the dissimilarity is computed only for the
pair of subgraphs that are most similar.

Our method is not limited to skeleton graphs. Our future
work will also focus on matching any weighted graphs. In
the case of planar graphs, we can still benefit from the cyclic
order of end nodes. In the case of nonplanar graphs, it
appears to be possible to replace the cyclic order with the
order of end nodes induced by the geodesic distance. We
will also work on an efficient indexing scheme that is
needed for fast sublinear database retrieval. Although our
method is significantly faster than other skeleton graph
matching approaches in direct comparison of two shapes,
some of the existing methods allow for sublinear database
retrieval [15], [25].
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