
Path Summaries and Path Partitioning in Modern XML
Databases

Andrei Arion?, Angela Bonifati†, Ioana Manolescu? and Andrea Pugliese‡

? INRIA Futurs - LRI France, † ICAR CNR - Italy, ‡ University of Calabria - Italy

andrei.arion@inria.fr, bonifati@icar.cnr.it, ioana.manolescu@inria.fr,
apugliese@deis.unical.it

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment Systems]: Query processing

General Terms: Algorithms

Keywords: XML, path summaries, path partition, XQuery pro-
cessing

1. MOTIVATION
The performance of XML query processing in persistent XML

databases crucially depends on the chosen data access paths, and
on the efficiency of the remaining query processing steps, notably
navigation (path) query processing, and result construction (or re-
construction, if the data has been shredded).

In this context, we demonstrate that XML path summaries are
useful tools for access path selection, and establish efficient algo-
rithms for building and exploiting them. This leads to very efficient
processing when used in conjunction with a path-partitioned store,
in particular much better than if tag partitioning is used. Further-
more, we devise an efficient method for complex tree reconstruc-
tion, with much lower memory needs than existing alternatives.
Our algorithms are implemented in the XSum Java library [6].

2. PATH SUMMARIES AND PATH PARTI-
TIONING

Path summaries The path summary PS(D) of an XML document
D is a tree, having exactly one node for every path in the document
D (see Figure 1). Moreover, for any summary nodes x, y such that
y is a child of x, we record on the edge x-y whether every node on
path x has exactly one child on path y (edge x-y labeled 1), or at
least one child on path y (edge x-y labeled +).

We have established experimentally that path summaries are gen-
erally very small (3 to 6 orders of magnitude smaller than the doc-
uments), however, exploiting them may still be challenging, un-
less carefully designed algorithms are used [2]. A path summary
is built in O(N) time, using O(|PS|) memory [3]. Our imple-
mentation gathers 1 and + labels during summary construction, in
O(N + |PS|) time and O(|PS|) memory.
Path-partitioned storage model

Structural identifiers are assigned to each element in an XML
document. A direct comparison of two structural identifiers suf-
fices to decide whether the corresponding elements are structurally
related (one is a parent or ancestor of the other) or not. A very pop-
ular such scheme consists of assigning (pre,post,depth) numbers to
every node [1]. The pre number corresponds to the positional num-

Copyright is held by the author/owner(s).
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

[29 63]
listitem

A special

text
[30 60]

keyword
[31 61]

gold

emph
[32 62]

companion

people[2 10]

@id=
"person0"

city

Tampa

[7 3]
country

USA

[6 2]
street

35 McCrossin St

[8 4]

people

person

5

86
7

address

country
city

street

#text

#text

#text

9

#text

email

...item

...item

parlist

description

[22 64]

[21 65]
name
[20 53]

Umbrella

item
[19 66]

asia[18 100]

listitem
[23 59]

gold−plated

text
[28 58]

parlist

listitem
[25 56]

[24 57]

Rolex

emph
[27 55]

text
[26 54]

wristwatch

[17 300] regions

[33 200]
europe

site
[1 1000]

person

[9 6]
address
[5 5]

[3 7]

name

M. Wile

[4 1]
email

Wile@1tel.com

person

name

T. Limaye

[10 9]

[11 8]@id=
"person1"

(a)

(c)

(d)

2

3

4name@id
#text

(b) site1
regions

asia

item

description

parlist

listitem

listitem

parlist

europe

item

text keyword

11

10

12

text

emph

name
13

15
16

17

19

20 emph

24
25

2322
18

21

14

#text

#text

#text #text

#text#text

/site/people/person

/site/people

/site [1 1000]

[2 10]

[3 7][10 9]

/site/people/person/@id

/site/people/person/name/#text

person0[3 7]

T. Limaye[11 8][4 1]M. Wile

[10 9]person1

Figure 1: XMark document snippet, its path summary, and
some resulting path-partitioned storage structures.

ber of the element’s begin tag, and the post number corresponds to
the number of its end tag in the document.

For example, Figure 1(a) depicts (pre,post) IDs next to the ele-
ments. The depth number reflects node depth in the document tree
(omitted in Figure 1 to avoid clutter).

Based on structural IDs, our first structure contains a compact
representation of the XML tree structure. We partition the identi-
fiers according to the data path of the elements. For each path, we
create an ID path sequence, which is the sequence of IDs in docu-
ment order. Figure 1(c) depicts a few ID path sequences resulting
from some paths of the sample document in Figure 1(a). Our sec-
ond structure stores the contents of XML elements, and values of
the attributes. We pair such values to an ID of their closest enclos-
ing element identifier. Figure 1(d) shows some such (ID, value)
pair sequences for our sample document.

3. RELEVANT PATH COMPUTATION
The main observation underlying this work is that path sum-

maries provide very good support for access path selection. A
path-partitioned storage, moreover, provides robust and selective
data access methods (see Section 4).

For instance, for the query //asia//item[description]/name on an
XMark [5] document, name elements not belonging to asia/item

1077

(such as person names) need not be retrieved. These examples il-
lustrate how ancestor paths, such as //asia, filter descendent paths,
separating asian items (relevant) from other items (irrelevant). De-
scendent paths can also filter ancestor paths.

From an XQuery query, we extract a query pattern, as shown
in Figure 2. We distinguish parent-child edges (single lines) from
ancestor-descendent ones (double lines). Dashed edges represent
optional relationships: the children (resp. descendents) at the lower
end of the edge are not required for an element to match the upper
end of the edge. Edges crossed by a “[“ connect parent nodes with
children that must be found in the data, but are not returned by the
query, corresponding to navigation steps in path predicates, and in
“where” XQuery clauses. We call such nodes existential. Boxed
nodes are those which must actually be returned by the query. In
Figure 2(b), some auxiliary variables $1, $2 and $3 are introduced
for the expressions in the return clause, and expressions enclosed
in existential brackets [].

For pattern node, we compute a minimal set of relevant paths. A
path p is relevant for node n iff: (i) the last tag in p agrees with the
tag of n (which may also be *); (ii) p satisfies the structural con-
ditions imposed by the n’s ancestors, and (iii) p has descendents
paths in the path summary, matching all non-optional descendents
of the node. Relevant path sets are organized in a tree, mirroring
the relationships between their corresponding nodes.

The paths relevant to nodes of the pattern in Figure 2(b) appear
in Figure 2(c). The path 14 for the variable $d has no impact on the
query result, because: (i) $d is not required to compute the query
result; (ii) it follows from the path summary that every element on
path 12 (relevant for $i) has exactly one child on path 14 (relevant
to $d). Thus, query evaluation does not need to find bindings for
$d, but only $i and $2, and combine them. We say 14 is useless.

A path summary may guarantee that every XML element on path
12 has at least one descendent on path 22, if all paths between 12
and 22 are annotated 1 or +. In this case, 22 is a trivial path for
the existential node $3. If the annotations between 12 and 20 are
also 1 or +, path 20 is also trivial. The execution engine does not
need to check, on the stored data, which elements on path 12 have
descendents on paths 20 and 22: we know they all do. Thus, paths
20 and 22 are discarded from the set of $3.

(a)
return <gift><name>{$i/name}</name> {$d//emph} </gift>
where $i//keyword="gold"
for $i in //asia//item[//text], $d in $i/description

$k keyword
="gold"

asia

$i item[
$3 text

$d $2 $1

12 14 17
13

23
3i

[

$d description

$2 emph $1 name

(b) (c)

21

$k

22

20

Figure 2: (a): query pattern for the query in Example 1; (b): re-
sulting paths on the document in Figure 1.

XSum [6] provides an efficient algorithm [2] computing minimal
path sets in O(|PS| ∗ |q|2) time, using O(|PS| ∗ |q|) memory.

4. QUERY PROCESSING
Access path selection Given an XML fragmentation model and
a path summary, the following generic XML access path selec-
tion strategy applies: (i) Compute relevant paths for query pat-
tern nodes. (ii) Compute associated paths for data in every storage
structure (table, view, index etc.) (iii) Choose, for every query
pattern node, a storage structure whose associated paths form a
(tight) superset of the node’s relevant paths. In the case of a path-
partitioned store, the query plan resulting from this access path
selection method is exemplified in Figure 3 for the query in Fig-

σval="gold"

IDsAndVal(21)
IDsAndVal(17)

Merge

XMLize

IDsAndVal(13)

IDsAndVal(23)

IDs(12)

Figure 3: Complete QEP for the query in Figure 2.

struct.ID

struct.ID,valstruct.ID

struct.ID struct.ID,val struct.ID struct.ID,val

struct.ID struct.ID,val struct.ID struct.ID,valstruct.ID struct.ID,val

IDs(3)

IDs(5)

IDs(7)

IDsAndVal(3/@id)

Reconstruct

IDsAndVal(4)IDs(4) IDs(9) IDsAndVal(9)

IDsAndVal(6)IDs(6) IDsAndVal(7) IDs(8) IDsAndVal(8)

Figure 4: Reconstruct plan for //person on XMark data.

ure 2. IDs(n) designates an access to the sequence of structural
IDs on path n, while IDAndVal(n) accesses the (ID, value) pairs
where IDs identify elements on path n, and values are text children
of such elements. The left semi-join (�<) and the left outer-joins
(��<) are structural, i.e. they combine inputs based on parent-child
or ancestor-descendent relationships between the IDs they contain.
This QEP takes good advantage of relevant paths to access only a
very small subset of the data present in an XMark document.
Element (re)construction The biggest performance issues using a
path-partitioned store concern the task of reconstructing complex
XML subtrees, since the data has been aggressively partitioned.

A first approach is to adapt the SortedOuterUnion [4] method for
exporting relational data in XML, to a path-partitioned setting with
structural IDs; this is illustrated in Figure 3. In the worst case, the
complexity of this method is O(N ∗ h/B) I/O complexity, where
B is the blocking factor, and its time complexity is O(N ∗ h).

Based on a path summary and a path-partitioned store, we de-
vised a more efficient approach, using the physical operator Re-
construct. This operator reads in parallel the ordered sequences of
structural IDs and (ID, value) pairs from all the paths to recombine,
and produces textual output in which XML markup (tags) and val-
ues are concatenated in the right order [2] (see Figure 2). Interest-
ingly, Reconstruct does not build intermediary results, thus it has
a smaller memory footprint, namely O(n), where n is the num-
ber of paths from which data is combined. For large documents,
n � N ∗ h/B, thus the Reconstruct is particularly competitive.

Our experimental validation, as well as a full comparison with
related works on XML query processing, can be found in [2].

5. REFERENCES
[1] S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu, N. Koudas,

and D. Srivastava. Structural joins: A primitive for efficient
XML query pattern matching. In ICDE, 2002.

[2] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese. Path
summaries and path partitioning in modern XML databases
(full version). www-rocq.inria.fr/˜manolesc, 2006.

[3] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases. In
VLDB, Athens, Greece, 1997.

[4] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
VLDB, 2001.

[5] The XMark benchmark. www.xml-benchmark.org, 2002.
[6] The XSum library. www-rocq.inria.fr/gemo/XSum, 2005.

1078

