

ISSN 1691-5402

Environment. Technology. Resources

 Proceedings of the 9th International Scientific and Practical Conference. Volume 1I

© Rēzeknes Augstskola, Rēzekne, RA Izdevniecība, 2013

46

Pathfinding Algorithm Efficiency Analysis in

2D Grid

Imants Zarembo, Sergejs Kodors
 Rezekne Higher Education Institution

Abstract. The main goal of this paper is to collect information about pathfinding algorithms A*, BFS, Dijkstra's

algorithm, HPA* and LPA*, and compare them on different criteria, including execution time and memory

requirements. Work has two parts, the first being theoretical and the second practical. The theoretical part details the

comparison of pathfinding algorithms. The practical part includes implementation of specific algorithms and series of

experiments using algorithms implemented.

Such factors as various size two dimensional grids and choice of heuristics were taken into account while

conducting experiments.

Keywords – A*, BFS, Dijkstra's algorithm, HPA*, LPA*, shortest path problem.

I INTRODUCTION

Pathfinding theory describes a process of finding a

path between two points in a certain environment. In

the most cases the goal is to find the specific shortest

path, which would be optimal, i.e., the shortest, the

cheapest or the simplest. Criteria such as, a path,

which imitates path chosen by a person, a path, that

requires the lowest amount of fuel, or a path from

point A to point B through point C is often found

relevant in many pathfinding tasks.

The shortest path problem is a pressing issue in

many fields, starting with navigation systems,

artificial intelligence and ending with computer

simulations and games. Although all of these fields

have their own specific algorithms, there are many

general purpose pathfinding algorithms which can be

successfully applied. But it is not always clear what

advantages certain algorithm has in comparison to its

alternatives.

As a part of this paper pathfinding algorithms A*,

BFS, Dijkstra's algorithm, HPA* and LPA* were

implemented to analyze their efficiency in an

environment based on two dimensional grid. Such

factors as grid size, traversed node count and

execution time were taken into consideration

conducting series of experiments.

II MATERIALS AND METHODS

To assess algorithm efficiency in two dimensional

grids experiments were conducted using A*, BFS,

Dijkstra's algorithm, HPA* and LPA* to find the

shortest path between two randomly placed nodes.

Algorithm execution times and traversed node count

were measured.

Two dimensional grids used in experiments

contained two types of nodes: passable and blocked.

20% of grid was randomly filled with blocked nodes.

To assess algorithm efficiency experiments were

conducted on various size grids: 64x64, 128x128,

256x256, 512x512 and 1024x1024 nodes.

In case of HPA* three level hierarchy was chosen

and initial grid was divided into 4x4 clusters. These

parameters were chosen because any smaller division

of base grid (64x64 in this case) would lead to

incorrect search results while executing preprocessing

phase.

Manhattan distance was chosen as heuristic

function, because it is strictly grid based distance:

 . (1)

Every experiment was repeated 100 times to reduce

the amount of random errors. Algorithms were

implemented assuming that pathfinding may only

occur horizontally or vertically, with no diagonal

movement. Every transition between two neighboring

nodes costs 1.

All experiments were conducted on the computer

with CPU running at a frequency of 2.8 GHz.

III ALGORITHM A*

A* is a pathfinding algorithm used for finding

optimal path between two points called nodes.

Algorithm A* uses best-first search to find the lowest

cost path between start and goal nodes. Algorithm

uses heuristic function, to determine the order in

which to traverse nodes. This heuristic is sum of two

functions:

G — exact cost of the path from initial node to the

current node;

H — admissible (not overestimated) cost of

reaching the goal from current node;

 — cost to reach goal, if the current

node is chosen as next node in the path.

Estimated heuristic cost is considered admissible, if

it does not overestimate the cost to reach the goal [3].

Selection of heuristic function is an important part

of ensuring the best A* performance. Ideally H is

equal to the cost necessary to reach the goal node. In

this case A* would always follow perfect path, and

would not waste time traversing unnecessary nodes. If

Zarembo I., Kodors S. PATHFINDING ALGORITHM EFFICIENCY ANALYSIS IN 2D GRID

47

overestimated value of H is chosen, the goal node is

found faster, but at a cost of optimality. In some cases

that may lead to situations where the algorithm fails to

find path at all, despite the fact, that path exists. If

underestimated value of H is chosen, A* will always

find the best possible path. The smaller H is chosen,

the longer it will take for algorithm to find path. In the

worst-case scenario, , A* provides the same

performance as Dijkstra's algorithm [2].

A* starts its work by creating two node lists: a

closed list containing all traversed nodes and an open

list of nodes that are being considered for inclusion in

the path. Every node contains three values: F, G and

H. In addition to these three values every node needs

to contain information about which node precedes it to

determine path by which this node can be reached.

IV ALGORITHM BREADTH-FIRST SEARCH

Breadth-first search (BFS) is one of the simplest

graph search algorithms and is a prototype for several

more advanced algorithms. Prim's minimal spanning

tree algorithm and Dijkstra's single-source graph

search algorithm uses principles similar to BFS [1].

Given a graph and the starting node ,

BFS will systematically traverse edges of , to find all

nodes, that are reachable from node . It calculates

distance (the smallest number of edges) from node

to every reachable node and creates breadth-first tree,

which contains all reachable nodes. The root of this

tree is node . Every node reachable from node in

breadth-first tree makes the shortest path from to

in graph , i.e., path which contains the smallest

number of edges. The algorithm is applicable to

directed and undirected graphs.

To follow search progress, breadth-first search

algorithm marks all nodes in white, gray or black. All

nodes are white in the beginning. When during the

search node is encountered for the first time it

becomes gray or black. Gray and black nodes are

considered visited. BFS sorts these nodes to ensure

that search is progressing breadth-first. If

and node is black, then node is gray or black i.e.

all black node neighbors have been visited. Gray

nodes can have white neighbors, they represent border

between visited and not visited nodes.

The algorithms complexity in time can be expressed

as , in the worst case scenario every edge

and every node is visited. can fluctuate

between and depending on graph edge

evaluation.

V DIJKSTRA'S ALGORITHM

Dijkstra's algorithm deals with single-source the

shortest path problems in directed, weighted graphs

 with non-negative edge costs (
 for every edge) [2]. Dijkstra's algorithm

maintains set of nodes , whose final shortest-path

weights from source have already been determined.

The algorithm repeatedly selects nodes

with the minimum shortest-path estimate, sums and

 , and relaxes all edges leaving .

Dijkstra's algorithm is called "greedy" algorithm,

because it always chooses "the lightest" and "the

nearest" node to add to the set .

The simplest implementation of Dijkstra's algorithm

holds the set of nodes in simple linked list and

finding node with minimal weight is linear search in

set . In this case algorithm execution time is

 . The algorithm worst case performance

can be expressed as [5].

VI ALGORITHM HPA*

Hierarchical pathfinding A* was developed by Adi

Botea and his colleagues in 2004. HPA* is a near-

optimal pathfinding algorithm, it finds paths which are

within 1% of optimal [7]. It is combination of

pathfinding and clusterization algorithms, which

works by creating an abstract graph on the basis of

two dimensional grids. The main HPA* principle is

based on dividing search problem into several smaller

sub problems, and caching results for every path

segment [8].

Clusterization, used in this algorithm, is relatively

simple: a low resolution two dimensional grid is

created, where is a size of new grid. New grid is

placed directly above the initial grid. Every node in

new grid becomes a cluster. All initial grid nodes that

are located under according cluster are considered

members of that cluster. Each cluster is considered

separate graph. The abstract graph is then created to

connect all separate graphs. To achieve that, border

nodes needs to be found between neighboring clusters

- nodes that are on cluster outer sides are checked. If

node has a passable neighbor in an adjacent cluster, it

is considered connected, and connection between two

graphs representing clusters are added to abstract

graph. In cases where there are many adjacent

connections between two clusters, they are combined

into one entrance. Then entrances are added to

abstract graph and connected. Abstract graph still

lacks internal edges (paths between entrances inside

one cluster). These edges are created by running A*

algorithm through every node in each separate cluster.

If A* finds path, its cost becomes costs of found

abstract edge, else edge is not added to abstract graph.

Inter-cluster edges inherit their costs from initial graph

edge cost. Finally abstract graph is ready for

pathfinding using A* [9].

HPA* pathfinding phase consists of two parts

called preprocessing and online search. During

preprocessing start and goal nodes are inserted into

abstract graph, and inter-cluster edges are added. Then

A* is used on abstract graph to find the shortest route.

During online search the shortest route found in

abstract graph is refined to full path in initial graph

using A*. To find full path from start to goal node A*

is used in every cluster on nodes that connect clusters.

Finally partial results from every cluster are combined

into full path [10].

Zarembo I., Kodors S. PATHFINDING ALGORITHM EFFICIENCY ANALYSIS IN 2D GRID

48

VII ALGORITHM LIFELONG PLANNING A*

Lifelong Planning A* (LPA*) is an algorithm

intended for solving the shortest-path problems on

known finite graphs whose edge cost increase or

decrease over time [5]. denotes the finite set of

nodes of the graph. denotes the set of

successors of node . Similarly,

denotes the set of predecessors of node .

 denotes the cost of moving from

node to node LPA* always determines

the shortest path from a given start node to a

given goal node , knowing both the topology

of the graph and the current edge costs. The start

distances satisfy the following relationship:

 (2)

 denotes the start distance to node , i.e.,

the cost of the shortest path from to .

LPA* is an incremental version of A* that applies

to the same finite path-planning problems as A*. It

shares with A* the fact that it uses nonnegative and

consistent heuristics that approximate the goal

distance of the node to focus its search. Consistent

heuristics obey the triangle inequality

and for all nodes and

 with . LPA* reduces to a

version of A* that breaks ties among vertices with the

same value in favor of smaller values when LPA*

is used to search from scratch and to a version of

DynamicsSWSF-FP that applies to path-planning

problems and terminates earlier than the original

version of DynamicsSWSF-FP when LPA* is used

with uninformed heuristics [6].

VIII RESULTS AND DISCUSSION

Algorithm execution time

Breadth-first search is brute-force search algorithm;

its results differ noticeably in comparison with

informed search algorithms. Table I shows, that the

algorithm execution time increases exponentially with

search area size increase.

TABLE I

ALGORITHM BFS EXECUTION TIME

Grid size (nodes) Execution time (ms)

64x64 150

128x128 2803

256x256 48313

512x512 821598

1024x1024 13962457

To find the shortest path in 512x512 node grid, the

algorithm took 821 seconds and in 1024x1024 node

grid — 13962 seconds. This considerable execution

time shows that the algorithm is the most likely not

applicable to real-time search problems in large grids.

Increasing the search problem size Dijkstra's

algorithm execution time increases linearly. On

average in 1024x1024 grid the algorithm finds the

shortest path in 2,3 seconds. Table II shows the

algorithm execution times for different grid sizes.

TABLE II

DIJKSTRA'S ALGORITHM EXECUTION TIME

Grid size (nodes) Execution time (ms)

64x64 6

128x128 25

256x256 120

512x512 515

1024x1024 2362

Algorithm A* performance was greater in

comparison with Dijkstra's algorithm in every grid

size selected for experiments. The algorithms

execution time increases linearly with grid size. Table

III shows the algorithm execution times for different

grid sizes.

TABLE III

ALGORITHM A* EXECUTION TIME

Grid size (nodes) Execution time (ms)

64x64 4

128x128 16

256x256 77

512x512 265

1024x1024 1148

Lifelong Planning A* performance is higher than

Dijkstra's algorithms in all grid sizes, but it is lower

than A* performance in 512x512 and 1024x1024 node

grids. The algorithms execution time increases

linearly with grid size. Table IV shows the algorithm

execution times for different grid sizes.

TABLE IV

ALGORITHM LPA* EXECUTION TIME

Grid size (nodes) Execution time (ms)

64x64 4

128x128 11

256x256 57

512x512 319

1024x1024 1490

Algorithm HPA* execution time, using 4x4 clusters

and 3 level hierarchy, is lower than any other

algorithm in this experiment. The algorithms

execution time increases linearly with grid size. Table

V shows the algorithm execution times for different

grid sizes.

Zarembo I., Kodors S. PATHFINDING ALGORITHM EFFICIENCY ANALYSIS IN 2D GRID

49

TABLE V

ALGORITHM HPA* EXECUTION TIME

Grid size (nodes) Execution time (ms)

64x64 3

128x128 14

256x256 52

512x512 190

1024x1024 775

The experimental data shows, that the fastest

execution times belong to HPA* in almost all grid

sizes, only dropping behind LPA* in 128x128 grid by

3 ms. The slowest execution times were shown by

BFS, which was considerably slower than the second

slowest algorithm — Dijkstra's. All algorithm

execution times are shown in Table VI and graphically

in Fig. 1.

TABLE VI

ALGORITHM EXECUTION TIME

Algorithm Grid size (nodes)

64x

64

128x

128

256x

256

512x

512

1024x

1024

BFS 150 2803 48313 821598 13962457

Dijkstra 6 25 120 515 2362

A* 4 16 77 265 1148

LPA* 4 11 57 319 1490

HPA* 3 14 52 190 775

Fig. 1. Algorithm execution time

Traversed nodes

Breadth-first search traverses the most nodes from

all the algorithms discussed. Table VII shows the

algorithm traversed node count for the different grid

sizes.

TABLE VII

ALGORITHM BREADTH-FIRST SEARCH TRAVERSED NODES

Grid size (nodes) Traversed nodes

64x64 3155

128x128 12887

256x256 52367

512x512 213648

1024x1024 1159255

While searching for a path Dijkstra's algorithm

traversed slightly less nodes than BFS. Similar amount

of visited nodes for Dijkstra's algorithm and BFS can

be explained by the fact, that both algorithms use

similar node traversal principles. Table VIII shows the

algorithm traversed node count for different grid sizes.

TABLE VIII

DIJKSTRA'S ALGORITHM TRAVERSED NODES

Grid size (nodes) Traversed nodes

64x64 3173

128x128 13058

256x256 52068

512x512 209251

1024x1024 836977

Algorithm A* traversed less nodes than BFS,

Dijkstra's algorithm or LPA* while searching for the

shortest path. The algorithm uses heuristics to expand

nodes in the direction of the goal thus minimizing

traversed node count. Table IX shows the algorithm

traversed node count for different grid sizes.

TABLE IX

ALGORITHM A* TRAVERSED NODES

Grid size (nodes) Traversed nodes

64x64 623

128x128 1576

256x256 8071

512x512 40333

1024x1024 104109

Lifelong Planning A* traversed node count

increases linearly with grid size increase. On average

LPA* traverses half as much nodes as Dijkstra's

algorithm. Table X shows LPA* algorithm traversed

node count for different grid sizes.

TABLE X

ALGORITHM LPA* TRAVERSED NODES

Grid size (nodes) Traversed nodes

64x64 994

128x128 6163

256x256 25004

512x512 115973

1024x1024 460318

1

10

100

1000

10000

100000

1000000

10000000

100000000

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s)

Grid size (nodes)

A*

Dijkstra

HPA*

LPA*

BFS

Zarembo I., Kodors S. PATHFINDING ALGORITHM EFFICIENCY ANALYSIS IN 2D GRID

50

Hierarchical Pathfinding A* traversed the least

nodes from all selected algorithms in all grid sizes.

This can be explained by the fact, HPA* only searches

paths within selected clusters, which were chosen in

preprocessing phase. Table XI shows the algorithm

traversed node count for different grid sizes.

TABLE XI

ALGORITHM HPA* TRAVERSED NODES

Grid size (nodes) Traversed nodes

64x64 454

128x128 1334

256x256 3551

512x512 10629

1024x1024 41491

Comparing algorithms by nodes traversed, Breadth-

first has traversed the most nodes and Hierarchical

Pathfinding A* - the least nodes. All algorithms

traversed node counts are shown in Table XII and

graphically in Fig. 2.

TABLE XII

ALGORITHM TRAVERSED NODES

Algorithm Grid size (nodes)

64x

64

128x

128

256x

256

512x

512

1024x

1024

A* 623 1576 8071 40333 104109

Dijkstra 3173 13058 52068 209251 836977

HPA* 454 1334 3551 10629 41491

LPA* 994 6163 25004 115973 460318

BFS 3155 12887 52367 213648 1159255

Fig. 2. Algorithm traversed nodes

Breadth-first search results overall are similar to

Dijkstra's in 64, 128, 256 and 512 nodes grids, but

falls behind in 1024 node grid.

IX CONCLUSIONS

Comparing A*, Breadth-first search, Dijkstra,

HPA* and LPA* algorithms execution times in

different size two dimensional grids, the slowest was

BFS. This result can be explained by the fact, that the

algorithm operation principle is very simple and it

does not use any heuristics. Dijkstra's algorithm was

faster than BFS, but slower than all other algorithms.

A* and LPA* performance was similar: LPA* was

faster in smaller grids (64, 128, 256), but A* in larger

(512, 1024). Which leads to conclusion, that LPA* is

better suitable for smaller pathfinding problems, while

A* is better used for solving larger problems.

Algorithm HPA* was the fastest in searching path

between 2 points, primarily because of hierarchical

problem division into smaller parts.

Breadth-first search traversed the most nodes,

closely followed by Dijkstra's algorithm. LPA*

traverses node count was larger than A* in all grid

sizes. A* traversed node count was the second best

amon discussed algorithms. HPA* traversed the least

nodes.

X REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest and S. Clifford,

Introduction to Algorithms (3rd ed.). MIT Press and McGraw-
Hill, 2009. pp. 658.

[2] E. W. Dijkstra, “A note on two problems in connexion with

graphs,” Numerische Mathematik, vol. 1, 1959, pp. 269-271.
[3] P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal Basis for

the Heuristic Determination of Minimum Cost Paths,” in IEEE

Transactions of Systems Science and Cybernetics, vol. 4,
1968, pp. 100-107.

[4] D. Wagner, T. Willhalm, "Geometric Speed-Up Techniques

for Finding Shortest Paths in Large Sparse Graphs". 2003.

[5] S. Koenig, M. Likhachev, D. Furcy. "Lifelong Planning A*".

Artificial Intelligence, Vol. 155 Issue 1-2, 2004, pp. 93 - 146.
[6] L. Sangeorzan, K. Kiss-Iakab, M. Sirbu, "Comparison of 3

implementations of the A* algorithm". North University of

Baia Mare. 2007.
[7] A. Botea, M. Muller, J. Schaeffer, "Near, Optimal Hierarchical

Path-Finding," Journal of Game Development, 1(1): 2004, pp.

7-28.
[8] M. R. Jansen, M. Buro, HPA* Enhancements. Proceedings of

the Third Artificial Intelligence and Interactive Digital

Entertainment Conference, Stanford, California, USA. 2007.
[9] N. Sturtevant, M. Buro, Partial Pathfinding Using Map

Abstraction and Refinement. AAAI 05 Proceedings of the 20th

national conference on Artificial intelligence, vol. 3. 2005. pp.
1392 – 1397.

[10] R. C. Holte, M. B. Holte, R. M. Zimmer, A. J. MacDonald,

Hierarchical A*: Searching Abstraction Hierarchies
Efficiently. AAAI 96 Proceedings of the thirteenth national

conference on Artificial intelligence, vol. 1, 1996. pp. 530 –

535. 1

10

100

1000

10000

100000

1000000

10000000

N
o

d
e
 c

o
u

n
t

Grid size (nodes)

A*

Dijkstra

HPA*

LPA*

BFS

