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Pathway analysis is often the first choice for studying the mechanisms underlying a 

phenotype. However, conventional methods for pathway analysis do not take into account 

complex protein-protein interaction information, resulting in incomplete conclusions. 

Previously, numerous approaches that utilize protein-protein interaction information to 

enhance pathway analysis yielded superior results compared to conventional methods. 

Hereby, we present pathfindR, another approach exploiting protein-protein interaction 

information and the first R package for active-subnetwork-oriented pathway enrichment 

analyses for class comparison omics experiments. Using the list of genes obtained from 

an omics experiment comparing two groups of samples, pathfindR identifies active 

subnetworks in a protein-protein interaction network. It then performs pathway enrichment 

analyses on these identified subnetworks. To further reduce the complexity, it provides 

functionality for clustering the resulting pathways. Moreover, through a scoring function, 

the overall activity of each pathway in each sample can be estimated. We illustrate the 

capabilities of our pathway analysis method on three gene expression datasets and 

compare our results with those obtained from three popular pathway analysis tools. The 

results demonstrate that literature-supported disease-related pathways ranked higher in 

our approach compared to the others. Moreover, pathfindR identified additional pathways 

relevant to the conditions that were not identified by other tools, including pathways 

named after the conditions.
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INTRODUCTION

High-throughput technologies revolutionized biomedical research by enabling comprehensive 
characterization of biological systems. One of the most common use cases of these technologies 
is to perform experiments comparing two groups of samples (typically disease versus control) and 
identify a list of altered genes. However, this list alone often falls short of providing mechanistic 
insights into the underlying biology of the disease being studied (Khatri et al., 2012). Therefore, 
researchers face a challenge posed by high-throughput experiments: extracting relevant information 
that allows them to understand the underlying mechanisms from a long list of genes.
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One approach that reduces the complexity of analysis while 
simultaneously providing great explanatory power is identifying 
groups of genes that function in the same pathways, i.e., pathway 
analysis. Pathway analysis has been successfully and repeatedly 
applied to gene expression (Werner, 2008; Emmert-Streib 
and Glazko, 2011), proteomics (Wu et al., 2014), and DNA 
methylation data (Wang et al., 2017).

Most commonly used pathway analysis methods are 
overrepresentation analysis (ORA) and functional class scoring 
(FCS). For each pathway, ORA statistically evaluates the 
proportion of altered genes among the pathway genes against the 
proportion among a set of background genes. In FCS, a gene-
level statistic is calculated using the measurements from the 
experiment. These gene-level statistics are then aggregated into a 
pathway-level statistic for each pathway. Finally, the significance 
of each pathway-level statistic is assessed, and significant 
pathways are determined.

While they are widely used, there are drawbacks to 
conventional pathway analysis methods. The statistics used 
by ORA approaches usually consider the number of genes in 
a list alone. ORA methods are also independent of the values 
associated with these genes, such as fold changes or p values. Most 
importantly, both ORA and FCS methods lack in incorporating 
interaction information. We propose that directly performing 
pathway analysis on a gene set is not completely informative 
because this approach reduces gene-phenotype association 
evidence by ignoring information on interactions of genes.

We propose a pathway analysis method, which we named 
pathfindR, that first identifies active subnetworks and then 
performs enrichment analysis using the identified active 
subnetworks. For a given list of significantly altered genes, an 
active subnetwork is defined as a group of interconnected genes in 
a protein-protein interaction network (PIN) that predominantly 
consists of significantly altered genes. In other words, active 
subnetworks define distinct disease-associated sets of interacting 
genes. 

The idea of utilizing PIN information to enhance pathway 
enrichment results was sought and successfully implemented 
in numerous studies. Gene Network Enrichment Analysis 
(GNEA) (Liu et al., 2007) analyzes gene expression data. The 
mRNA expression of every gene is mapped onto a PIN, and a 
significantly transcriptionally affected subnetwork is identified 
via jActiveModules (Ideker et al., 2002). To determine the gene 
set enrichment, each gene set is then tested for overrepresentation 
in the subnetwork. In EnrichNet (Glaab et al., 2012), input genes 
and pathway genes are mapped on a PIN. Using the random walk 
with restart (RWR) algorithm, distances between input genes and 
pathway genes are calculated. Enrichment results are obtained 
by comparing these distances to a background model. In both 
NetPEA and NetPEA′ (Liu et al., 2017a), initially, the RWR 
algorithm is used to measure distances between pathways and 
input gene sets. The significances of pathways are then calculated 
by comparing against a background model created with two 
different approaches: a) randomizing input genes (NetPEA) and 
b) randomizing input genes and the PIN (NetPEA′).

With pathfindR, our aim was likewise to exploit interaction 
information to extract the most relevant pathways. We aimed 

to combine together active subnetwork search and pathway 
enrichment analysis. By implementing this original active-
subnetwork-oriented pathway analysis approach as an R 
package, our intention was to provide the research community 
with a set of utilities (in addition to pathway analysis, clustering 
of pathways, scoring of pathways, and visualization utilities) that 
will be effective, beneficial, and straightforward to utilize for 
pathway enrichment analysis exploiting interaction information.

The active-subnetwork-oriented pathway enrichment 
paradigm of pathfindR can be summarized as follows: Mapping 
the statistical significance of each gene onto a PIN, active 
subnetworks, i.e., subnetworks in the PIN that contain an optimal 
number of significant nodes maximizing the overall significance 
of the subnetwork, either in direct contact or in indirect contact 
via an insignificant (non-input) node, are identified. Following 
a subnetwork filtering step, enrichment analyses are then 
performed on these active subnetworks. Similar to the above-
mentioned PIN-aided enrichment approaches, utilization of 
active subnetworks allows for efficient exploitation of interaction 
information and enhances enrichment analysis.

For the identification of active subnetworks, various 
algorithms have been proposed, such as greedy algorithms 
(Breitling et al., 2004; Sohler et al., 2004; Chuang et al., 2007; Nacu 
et al., 2007; Ulitsky and Shamir, 2007; Karni et al., 2009; Ulitsky 
and Shamir, 2009; Fortney et al., 2010; Doungpan et al., 2016), 
simulated annealing (Ideker et al., 2002; Guo et al., 2007), genetic 
algorithms (Klammer et al., 2010; Ma et al., 2011; Wu et al., 2011; 
Amgalan and Lee, 2014; Ozisik et al., 2017), and mathematical 
programming-based methods (Dittrich et al., 2008; Zhao et al., 
2008; Qiu et al., 2009; Backes et al., 2012; Beisser et al., 2012). In 
pathfindR, we provide implementations for a greedy algorithm, a 
simulated annealing algorithm, and a genetic algorithm.

In summary, pathfindR integrates information from three 
main resources to enhance determination of the mechanisms 
underlying a phenotype: (i) differential expression/methylation 
information obtained through omics analyses, (ii) interaction 
information through a PIN via active subnetwork identification, 
and (iii) pathway/gene set annotations from sources such as 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa 
and Goto, 2000; Kanehisa et al., 2017), Reactome (Fabregat et al., 
2018), BioCarta (Nishimura, 2001), and Gene Ontology (GO) 
(Ashburner et al., 2000).

The pathfindR R (https://www.R-project.org/) package was 
developed based on a previous approach developed by our group 
for genome-wide association studies (GWASes): Pathway and 
Network-Oriented GWAS Analysis (PANOGA) (Bakir-Gungor 
et al., 2014). PANOGA was successfully applied to uncover the 
underlying mechanisms in GWASes of various diseases, such 
as intracranial aneurysm (Bakir-Gungor and Sezerman, 2013), 
epilepsy (Bakir-Gungor et al., 2013), and Behcet’s disease (Bakir-
Gungor et al., 2015). With pathfindR, we aimed to extend the 
approach of PANOGA to omics analyses and provide novel 
functionality.

In this article, we present an overview of pathfindR, example 
applications on three gene expression data sets, and comparison 
of the results of pathfindR with those obtained using three 
tools widely used for enrichment analyses: The Database for 
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Annotation, Visualization and Integrated Discovery (DAVID) 
(Huang da et al., 2009), Signaling Pathway Impact Analysis 
(SPIA) (Tarca et al., 2009), and Gene Set Enrichment Analysis 
(GSEA) (Subramanian et al., 2005).

MATERIAL AND METHODS

PINs and Gene Sets
PIN data available in pathfindR by default are KEGG, Biogrid (Stark 
et al., 2006; Chatr-Aryamontri et al., 2017), GeneMania (Warde-
Farley et al., 2010), and IntAct (Orchard et al., 2014). The default 
PIN is Biogrid. Besides these four default PINs, the researcher can 
also use any other PIN of their choice on the condition that they 
provide the PIN file in simple interaction file (SIF) format.

The KEGG Homo sapiens PIN was created by an in-house 
script using the KEGG pathways. In KEGG, pathways are 
represented in XML files that contain genes and gene groups, such 
as protein complexes as entries and interactions as entry pairs. The 
KEGG pathway XML files were obtained using the official KEGG 
Application Programming Interface (API) which is a REST-style 
interface to the KEGG database resource. Using the in-house 
script, the XML files were parsed; the interactions were added 
as undirected pairs, while interaction types were disregarded. In 
cases of an entry in an interacting pair containing multiple genes, 
interactions from all of these genes to the other entry were built.

For Biogrid, Homo sapiens PIN data in tab-delimited text 
format from release 3.4.156 (BIOGRID-ORGANISM-Homo_
sapiens-3.4.156.tab.txt) was obtained from the Biogrid Download 
File Repository (https://downloads.thebiogrid.org/BioGRID).

For IntAct, the PIN data in Proteomics Standards Initiative – 
Molecular Interactions tab-delimited (PSI-MI TAB) (MITAB) 
format (intact.txt) were obtained from the IntAct Molecular 
Interaction Database FTP site (ftp://ftp.ebi.ac.uk/pub/databases/
intact/current) in January 2018. 

For GeneMania, Homo sapiens PIN data in tab-delimited 
text format from the latest release (COMBINED.DEFAULT_
NETWORKS.BP_COMBINING.txt) was obtained from the 
official data repository (http://genemania.org/data/current/
Homo_sapiens.COMBINED/). For this PIN only, only 
interactions with GeneMania weights ≥0.0006 were kept, 
allowing only strong interactions.

No filtration for interaction types were performed for any 
PIN (i.e., all types of interactions were kept). The processing 
steps performed for all the PINs were (1.) if the HUGO Gene 
Nomenclature Committee (HGNC) symbols for interacting 
genes were not provided, conversion of provided gene identifiers 
to HGNC symbols using biomaRt (Durinck et al., 2009) was 
performed; (2.) duplicate interactions and self-interactions (if 
any) were removed; and (3.) all PINs were formatted as SIFs.

Gene sets available in pathfindR are KEGG, Reactome, BioCarta, 
GO-Biological Process (GO-BP), GO-Cellular Component (GO-
CC), GO-Molecular Function (GO-MF) and GO-All (GO-BP, 
GO-CC, and GO-MF combined).

KEGG gene sets were obtained using the R package KEGGREST. 
Reactome gene sets in Gene Matrix Transposed (GMT) file 
format were obtained from the Reactome website (https://

reactome.org/download/current/). BioCarta gene sets in GMT 
format were retrieved from the Molecular Signatures Database 
(MSigDB) (Liberzon et al., 2011) website (http://software.
broadinstitute.org/gsea/msigdb). All “High-quality” GO gene 
sets were obtained from GO2MSIG (Powell, 2014) web interface 
(http://www.go2msig.org/cgi-bin/prebuilt.cgi?taxid=9606) in 
GMT format. All of the datasets were processed using R to obtain 
(1) a list containing the genes involved in each given gene set/
pathway (hence, each element of the list is named by the gene set 
ID and is a vector of gene symbols located in the given gene set/
pathway) and (2) a list containing the descriptions for each gene 
set/pathway (i.e., a list linking gene set IDs to description).

All of the gene sets in pathfindR are for Homo sapiens, and 
the default gene set is KEGG. The researcher can also use a gene 
set of their choice following the instructions on pathfindR wiki.

All of the default data for PINs and gene sets are planned to 
be updated annually.

Scoring of Subnetworks
In pathfindR, we followed the scoring scheme that was 
proposed by Ideker et al., 2002). The p value of each gene is 
converted to a z score using equation (1), and the score of a 
subnetwork is calculated using equation (2). In equation (1) 
Φ–1 is the inverse normal cumulative distribution function. In 
equation (2), A is the set of genes in the subnetwork and k is 
its cardinality.

 
zi i= −−Φ 1 1( )p  (1)
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In the same scoring scheme, a Monte Carlo approach is 
used for the calibration of the scores of subnetworks against a 
background distribution. Using randomly selected genes, 2,000 
subnetworks of each possible size are constructed, and for each 
possible size, the mean and standard deviation of the score is 
calculated. These values are used to calibrate the subnetwork 
score using equation (3).
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Active Subnetwork Search Algorithms
Currently, there are three algorithms implemented in the 
pathfindR package for active subnetwork search, described 
below.

Greedy Algorithm
Greedy algorithm is the problem-solving/optimization concept 
that chooses locally the best option in each stage with the 
expectation of reaching the global optimum. In active subnetwork 
search, this is generally applied by starting with a significant 
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seed node and considering addition of a neighbor in each step 
to maximize the subnetwork score. In pathfindR, we used the 
approach described by Chuang et al. (2007). This algorithm 
considers addition of a node within a specified distance d to the 
current subnetwork. In our method, the maximum depth from 
the seed can also be set. With the default parameters, our greedy 
method considers addition of direct neighbors (d = 1) and forms 
a subnetwork with a maximum depth of 1 for each seed. Because 
the expansion process runs for each significant seed node, several 
overlapping subnetworks emerge. Overlapping subnetworks are 
handled by discarding a subnetwork that overlaps with a higher 
scoring subnetwork more than a given threshold, which is set to 
0.5 by default.

Simulated Annealing Algorithm
Simulated annealing is an optimization algorithm inspired by 
annealing in metallurgy. In the annealing process, the material is 
heated above its recrystallization temperature and cooled slowly, 
allowing atoms to diffuse within the material and decrease 
dislocations. Analogous to this process, simulated annealing 
algorithm starts with a “high temperature” in which there is a 
high probability of accepting a solution that is worse than the 
current one as the solution space is explored. The acceptability 
of worse solutions allows a global search and escaping from local 
optima. The equation connecting temperature and probability 
of accepting a new solution is given in equation (4). In this 
equation, P(Acceptance) is the probability of accepting the new 
solution. In scorenew and scorecurrent are the scores of the new and 
the current solutions, respectively. Finally, temperature is the 
current temperature.
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A less worse solution and higher temperature are the conditions 
that increase the chance of acceptation of a new solution. The 
probability of accepting a non-optimal action decreases in each 
iteration, as the temperature decreases in each step.

Simulated annealing provides improved performance over 
the greedy search by accepting non-optimal actions to increase 
exploration in the search space. In the active subnetwork search 
context, the search begins with a set of randomly chosen genes 
(the chosen genes are referred to as genes in “on” state and the not 
chosen genes are referred to as genes in “off ” state). Connected 
components in this candidate solution are found, and the scores 
are calculated. In each iteration, the state of a random node is 
changed from on to off and vice versa. Connected components 
are found in the new solution, and their scores are calculated. If 
the score improves, the change is accepted. If the score decreases, 
the change is accepted with a probability proportional to the 
temperature parameter that decreases in each step.

Genetic Algorithm
Genetic algorithm is a bio-inspired algorithm that mimics 
evolution by implementing natural selection, chromosomal 

crossover, and mutation. The main phases of the genetic 
algorithm are “the selection phase” and “the crossover phase.”

In the selection phase, parents from the existing population 
are selected through a fitness-based process to breed a new 
generation. Common selection methods are (i) roulette 
wheel selection in which a solution’s selection probability is 
proportional to its fitness score, (ii) rank selection in which a 
solution’s selection probability is proportional to its rank, thus 
preventing the domination of a high fitness solution to the rest, 
and (iii) tournament selection in which parents are selected 
among the members of randomly selected groups of solutions, 
thus giving more chance to small fitness solutions that would 
have little chance in other selection methods.

In the crossover phase, encoded solution parameters of the 
parents are exchanged analogous to chromosomal crossover. 
The common crossover operators are (i) single-point crossover 
in which the segment next to a randomly chosen point in the 
solution representation is substituted between parents, (ii) two-
point crossover in which the segment between two randomly 
chosen points is substituted, and (iii) uniform crossover in which 
each parameter is randomly selected from either of the parents. 
Mutation is the process of randomly changing parameters in the 
offspring solutions in order to maintain genetic diversity and 
explore search space.

In our genetic algorithm implementation, candidate 
solutions represent the on/off state of each gene. In the 
implementation, we used rank selection and uniform crossover. 
In each iteration, the fittest solution of the previous population 
is preserved if the highest score of the current population is less 
than the previous population’s score. In every 10 iterations, the 
worst scoring 10% of the population is replaced with random 
solutions. Because uniform cross-over and addition of random 
solutions make adequate contribution to the exploration 
of the search space, mutation is not performed under the 
default settings.

Selecting the Active Subnetwork Search Algorithm
The default search method in pathfindR is greedy algorithm with 
a search depth of 1 and maximum depth of 1. This method stands 
out with its simplicity and speed. This is also the “local subnetwork 
approach” used in the Local Enrichment Analysis (LEAN) 
method (Gwinner et al., 2017). As mentioned in the LEAN study, 
the number of subnetworks to be identified typically increases 
exponentially with increasing number of genes in the PIN, and 
the “local subnetwork approach” enables iterating over each local 
subnetwork and determining phenotype-related clusters. Greedy 
algorithm with search depth and maximum depth equal to 2 or 
more lets the search algorithm look further in the network for 
another significant gene to add to the cluster, but this may result 
in a slower runtime and a loss in interpretability.

Simulated annealing and genetic algorithms are heuristic 
methods that do not make any assumptions on the active 
subnetwork model. They can let insignificant genes between two 
clusters of significant genes to create a single connected active 
subnetwork. Thus, these algorithms may result in a large highest 
scoring active subnetwork, while the remaining subnetworks 
identified become small and therefore uninformative. This 
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tendency towards large subnetworks was attributed to a 
statistical bias prevalent in many tools (Nikolayeva et al., 2018).

The default active search method (greedy algorithm with a 
search depth of 1 and maximum depth of 1) in pathfindR was 
preferred because multiple active subnetworks are used for 
enrichment analyses. If the researcher decides to use the single 
highest scoring active subnetwork for the enrichment process, 
they are encouraged to consider greedy algorithm with greater 
depth, simulated annealing, or genetic algorithm.

Active-Subnetwork-Oriented Pathway 
Enrichment Analysis
The overview of the active-subnetwork-oriented pathway 
enrichment approach is presented in Figure 1A.

The required input is a two- or three-column table: Gene 
symbols, change values as log-fold change (optional) and 
adjusted p values associated with the differential expression/
methylation data.

Initially, the input is filtered so that all p values are less than or 
equal to the given threshold (default is 0.05). Next, gene symbols 
that are not in the PIN are identified. If aliases of these gene 
symbols are found in the PIN, these symbols are converted to the 
corresponding aliases. 

The processed data are then used for active subnetwork search. 
The identified active subnetworks are filtered via the following 
criteria: (i) has a score larger than the given quantile threshold 
(default is 0.80) and (ii) contains at least a specified number of 
input genes (default is 10). 

For each filtered active subnetwork, using the genes contained 
in each of these subnetworks, separate pathway enrichment 
analyses are performed via one-sided hypergeometric testing. 
The enrichment tests use the genes in the PIN as the gene pool 
(i.e., background genes). Using the genes in the PIN instead of the 
whole genome is more appropriate and provides more statistical 
strength because active subnetworks are identified using only the 
genes in the PIN. Next, the p values obtained from the enrichment 
tests are adjusted (default is by Bonferroni method. However, the 
researcher may choose another method they prefer). Pathways 
with adjusted p values larger than the given threshold (default 
is 0.05) are discarded. These significantly enriched pathways per 
all filtered subnetworks are then aggregated by keeping only the 
lowest adjusted p value for each pathway if a pathway was found 
to be significantly enriched in the enrichment analysis of more 
than one subnetwork.

This process of active subnetwork search and enrichment 
analysis (active subnetwork search, filtering of subnetworks, 
enrichment analysis on each filtered subnetwork, and aggregation 

FIGURE 1 | Flow diagrams of the pathfindR methods. (A) Flow diagram of the pathfindR active-subnetwork-oriented pathway enrichment analysis approach. 

(B) Flow diagram of the pathfindR pathway clustering approaches.
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of enrichment results over all subnetworks) is repeated for a 
selected number of iterations (default is 10 iterations for greedy 
and simulated annealing algorithms, 1 for genetic algorithm).

Finally, the lowest and the highest adjusted p values, the 
number of occurrences over all iterations, and up-regulated and 
down-regulated genes in each enriched pathway are returned as 
a table. Additionally, a Hypertext Markup Language (HTML) 
format report with the pathfindR enrichment results is created. 
Pathways are linked to the visualizations of the pathways if 
KEGG gene sets are chosen. The KEGG pathway diagrams are 
created using the R package pathview (Luo and Brouwer, 2013). 
By default, these diagrams display the involved genes colored 
by change values, normalized between −1 and 1, on a KEGG 
pathway graph. If a gene set other than KEGG is chosen and 
visualization is required, graphs of interactions of genes involved 
in the enriched pathways in the chosen PIN are visualized via the 
R package igraph (Csardi and Nepusz, 2006).

Pathway Clustering
Enrichment analysis usually yields a large number of related pathways. 
In order to establish representative pathways among similar groups 
of pathways, we propose that clustering can be performed either via 
hierarchical clustering (default) or via a fuzzy clustering method as 
described by Huang et al. (2007). These clustering approaches are 
visually outlined in Figure 1B and described below:

Firstly, using the input genes in each pathway, a kappa 
statistics matrix containing the pairwise kappa statistics, a 
chance-corrected measure of co-occurrence between two sets 
of categorized data, between the pathways is calculated (Huang 
et al., 2007).

By default, the wrapper function for pathway clustering, 
cluster_pathways, performs agglomerative hierarchical clustering 
(defining the distance as 1 − kappa statistic), automatically 
determines the optimal number of clusters by maximizing the 
average silhouette width, and returns a table of pathways with 
cluster assignments.

Alternatively, the fuzzy clustering method, previously 
proposed and described in detail by Huang et al. (2007), can 
be used to obtain fuzzy cluster assignments. Hence, this fuzzy 
approach allows a pathway to be a member of multiple clusters.

Finally, the representative pathway for each cluster is assigned 
as the pathway with the lowest adjusted p value.

Pathway Scoring Per Sample
The researcher can get an overview of the alterations of genes in 
a pathway via the KEGG pathway graph. To provide even more 
insight into the activation/repression statuses of pathways per 
each sample, we devised a simple scoring scheme that aggregates 
gene-level values to pathway scores, described below.

For an experiment values matrix (e.g., gene expression values 
matrix), EM, where columns indicate samples and rows indicate 
genes, the gene score GS of a gene g in a sample s is calculated as:

 

GS g s
EM X

sd

g s g

g

,  
 ,( ) =

−
 (5)

Here, X g  is the mean value for gene g across all samples, and 
sdg is the standard deviation for gene g across all samples.

For a set Pi, the set of k genes in pathway i, and a sample 
j, the ith row and jth column of the pathway score matrix PS is 
calculated as follows:
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The pathway score of a sample for a given pathway is therefore 
the average value of the scores of the genes in the pathway for the 
given sample.

After calculation of the pathway score matrix, a heat map 
of these scores is plotted. Via this heat map, the researcher can 
examine the activity of a pathway in individual samples as well 
as compare the overall activity of the pathway between cases and 
controls.

Application on Gene Expression Datasets
To analyze the performance of pathfindR, we used three gene 
expression datasets. All datasets were obtained via the Gene 
Expression Omnibus (GEO) (Edgar et al., 2002). The first 
dataset (GSE15573) aimed to characterize and compare gene 
expression profiles in the peripheral blood mononuclear cells 
of 18 rheumatoid arthritis (RA) patients versus 15 healthy 
subjects using the Illumina human-6 v2.0 expression bead chip 
platform. This dataset will be referred to as RA. The second 
dataset (GSE4107) compared the gene expression profiles of the 
colonic mucosa of 12 early onset colorectal cancer patients and 
10 healthy controls using the Affymetrix Human Genome U133 
Plus 2.0 Array platform. The second dataset will be referred to 
as CRC. The third dataset (GSE55945) compared the expression 
profiles of prostate tissue from 13 prostate cancer patients versus 
8 controls using the Affymetrix Human Genome U133 Plus 2.0 
Array platform. This dataset will be referred to as PCa.

After preprocessing, which included log2 transformation 
and quantile normalization, differential expression testing via a 
moderated t test using limma (Ritchie et al., 2015) was performed. 
Next, the resulting p values were corrected using false discovery 
rate (FDR) adjustment. The differentially expressed genes 
(DEGs) were defined as those with FDR < 0.05. Probes mapping 
to multiple genes and probes that do not map to any gene were 
excluded. If a gene was targeted by multiple probes, the lowest 
p value was kept. The results of differential expression analyses 
for RA, CRC, and PCa, prior to filtering (differential expression 
statistics for all probes) and after filtering (lists of DEGs), are 
provided in Supplementary Data Sheet 1.

We chose to use these three datasets because these are well-
studied diseases and the involved mechanisms are considerably 
well characterized. These different datasets also allowed us to test 
the capabilities of pathfindR on DEGs obtained from different 
platforms. 

We performed enrichment analysis with pathfindR, using the 
default settings. Greedy algorithm for active subnetwork search 
was used, and the analysis was carried out over 10 iterations. 
The enrichment significance cutoff value was set to 0.25 for each 
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analysis (changing the argument enrichment_threshold of run_
pathfindR function) as we later performed validation of the results 
using the three significance cutoff values of 0.05, 0.1, and 0.25

To better evaluate the performance of pathfindR, we compared 
results on the three gene expression datasets by three widely used 
pathway analysis tools, namely, DAVID (Huang da et al., 2009), 
SPIA (Tarca et al., 2009), and GSEA (Subramanian et al., 2005). 
DAVID 6.8 was used for the analyses. SPIA was performed using 
the default settings. GSEA was also performed using the default 
settings (using phenotype permutations). Additionally, pre-
ranked GSEA was performed (GSEAPreranked) using the default 
settings. The rank of the ith gene ranki was calculated as follows:

 

rank
p if logFC

p otherwise
i

i i

i

=
− <






−

−
 

,  

,

1

1

0
 (7)

The unfiltered results of enrichment analyses using the 
different methods on the three datasets are presented in 
Supplementary Data Sheet 2.

For each analysis, the Bonferroni-corrected p values for 
pathfindR were used to filter the results. For all the other tools, 
as the Bonferroni method would be too strict and result in too 
few or no significant pathways, the FDR-corrected p values 
were used.

Because there is no definitive answer to which pathways are 
involved in the pathogenesis of the conditions under study, we 
analyzed the results in light of the existing biological knowledge 
on the conditions and compared our results with other tools 
in this context. The significant pathways were assessed on the 
basis of how well they fitted with the existing knowledge. For 
this, two separate approaches were taken: (i) assessment of 
literature support for the significantly enriched pathways (using 
a significance threshold of 0.05), and (ii) assessment of the 
percentages of pathway genes that are also known disease genes 
(using the three significance thresholds of 0.05, 0.10, and 0.25). 
While both assessments could be separately used to determine 
the “disease-relatedness” of a pathway, we chose to use them 
both as these are complementary measures: the former is a more 
subjective but a comprehensive measure of association, and the 
latter is a limited but a more objective measure of association. 
For determining the percentages of known disease genes in 
each significantly enriched pathway, two curated lists were used. 
For the RA dataset, mapped genes in the curated list of SNPs 
associated with RA was obtained from the NHGRI-EBI Catalog 
of published genome-wide association studies (GWAS Catalog, 
retrieved on 19.12.2018) (MacArthur et al., 2017). These genes 
will be referred to as “RA Genes.” For the CRC and PCa datasets, 
the “Cancer Gene Census” (CGC) genes from the Catalogue of 
Somatic Mutations in Cancer (COSMIC, http://cancer.sanger.
ac.uk, retrieved on 19.12.2018) were used. These genes will be 
referred to as “CGC Genes.”

Assessment Using Permuted Inputs
We performed pathfindR analyses using real and permuted 
data with different sizes to assess the number of enriched 

pathways identified in the permuted data against the 
actual data. For this assessment, the RA data was used. The 
analyses were performed on data subsets taken as the top 
200, 300, 400, and 500 most significant DEGs as well as the 
complete list of 572 DEGs. For each input size, 100 separate 
pathfindR analyses were performed on both the actual input 
data and permuted data. While the real input data were kept 
unchanged, for the permuted data, a random permutation of 
genes (using the set of all genes available on the microarray 
platform) was carried out at each iteration over 100 analyses. 
Analyses with pathfindR were performed using the default 
settings described above.

The distributions of the number of enriched pathways for 
actual vs. permuted data were compared using Wilcoxon rank 
sum test.

ORA Assessment of the Effect of DEGs 
Without Any Interactions
We performed ORA as implemented in pathfindR (as the 
“enrichment” function) to assess any effect of removing DEGs 
without any interactions on enrichment results. For this purpose, 
ORA were performed for (i) the full lists of DEGs for all datasets 
and (ii) the lists of DEGs that are found in the Biogrid PIN. As 
gene sets, KEGG pathways were used. As background genes, all 
of the genes in the Biogrid PIN were used for both analyses so 
that the results could be comparable. The enrichment p values 
were adjusted using the FDR method. Pathway enrichment was 
considered significant if FDR was <0.05.

Assessment of the Effect of PINs on 
Enrichment Results
To analyze the effect of the chosen PIN on the enrichment results, 
we performed pathfindR analyses using the four PINs provided 
by default: the Biogrid, GeneMania, IntAct, and KEGGPINs. For 
these analyses, the default settings were used with the default active 
search algorithm (greedy) and the default gene sets (KEGG).

Software Availability
The pathfindR package is freely available for use under MIT 
license: https://cran.r-project.org/package=pathfindR. The code 
of the pathfindR package is deposited in a GitHub repository 
(https://github.com/egeulgen/pathfindR) along with a detailed 
wiki, documenting the features of pathfindR in detail. Docker 
images for the latest stable version and the development version 
of pathfindR are deposited on Docker Hub (https://hub.docker.
com/r/egeulgen/pathfindr)

RESULTS

The RA Dataset
A total of 572 DEGs were identified for the RA dataset 
(Supplementary Data Sheet 1). Filtered by adjusted p values 
(adjusted-p ≤ 0.05), pathfindR identified 78 significantly 
enriched KEGG pathways which were partitioned into 10 clusters 
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(Figures 2A, B). The relevancy of 31 out of 78 (39.74%) pathways 
was supported by literature, briefly stated in Table 1.

The summary of results obtained using the different tools and 
literature support for the identified pathways (where applicable) 
are presented in Table 1. For this dataset, SPIA identified 
two significant pathways, which were both also identified by 
pathfindR. No significant pathway was identified by the other 
tools.

Clustering allowed us to obtain coherent groups of pathways 
and identify mechanisms relevant to RA, including autoimmune 
response to the spliceosome (Hassfeld et al., 1995), mechanisms 
related with response to microbial infection, such as generation 
of neo-autoantigens and molecular mimicry (Li et al., 2013), 
dysregulation of various signaling pathways (Remans et al., 
2002; Rihl et al., 2005; Barthel et al., 2009; Malemud, 2015), 
DNA damage repair (Lee et al., 2003), dysregulation of energy 
metabolism (Yang et al., 2015), and modulation of immune 
response and inflammation by the proteasome (Wang and 
Maldonado, 2006).

The activity scores of the representative pathways for each 
subject indicated that most representative pathways were down-
regulated in the majority of subjects (Figure 2C).

The CRC Dataset
For the CRC dataset, 1,356 DEGs were identified (Supplementary 

Data Sheet 1). pathfindR identified 100 significantly enriched 
pathways (adjusted-p ≤ 0.05) which were partitioned into 14 
coherent clusters (Figures 3A, B). Forty-eight (48%) of these 
enriched pathways were relevant to CRC biology, as supported 
by literature. Brief descriptions of how these are relevant are 
provided in Table 2.

The results obtained using the different tools and literature 
support for the identified pathways (where applicable) are 
presented in Table 2. For this dataset, DAVID identified 20 
significant pathways, 15 of which were also found by pathfindR 
(4 out of the remaining 5 were not supported by literature to 
be relevant to CRC). SPIA identified 13 significantly enriched 
pathways, 11 of which were also identified by pathfindR. Out 
of the remaining two enriched pathways, only “PPAR signaling 
pathway” was related to CRC biology (You et al., 2015). Neither 
GSEA nor GSEAPreranked yielded any significant pathways for 
the CRC dataset. The Colorectal cancer pathway was identified to 
be significantly enriched only by pathfindR.

Upon clustering, 14 clusters were identified (Figures 3A, 
B). These clusters implied processes previously indicated 

FIGURE 2 | pathfindR enrichment and clustering results on the rheumatoid arthritis (RA) dataset (lowest p ≤ 0.05). (A) Clustering graph, each color displaying 

the clusters obtained for RA. Each node is an enriched pathway. Size of a node corresponds to its −log(lowest_p). The thickness of the edges between nodes 

corresponds to the kappa statistic between the two terms. (B) Bubble chart of enrichment results grouped by clusters (labeled on the right-hand side of each 

panel). The x axis corresponds to fold enrichment values, while the y axis indicates the enriched pathways. The size of the bubble indicates the number of 

differentially expressed genes (DEGs) in the given pathway. Color indicates the −log10(lowest-p) value; the more it shifts to red, the more significantly the pathway 

is enriched. (C) Heat map of pathway scores per subject. The x axis indicates subjects, whereas the y axis indicates representative pathways. Color scale for the 

pathway score is provided in the right-hand legend.
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TABLE 1 | Pathway analysis results for the rheumatoid arthritis (RA) dataset (adjusted p < 0.05).

ID Pathway % RA 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa00190 Oxidative 

phosphorylation

0 <0.001 0.28157363 – 0.50656915 1 Oxygen metabolism 

has an important role in 

the pathogenesis of RA 

(Hitchon and El-Gabalawy, 

2004; Yang et al., 2015).

hsa05012 Parkinson disease 1.41 <0.001 0.35202042 0.03287527 0.5198511 1

hsa03040 Spliceosome 0 <0.001 0.19110635 – – – Autoimmune response 

to the spliceosome was 

previously reported in 

numerous autoimmune 

diseases (Hassfeld et al., 

1995).

hsa04932 Non-alcoholic 

fatty liver disease 

(NAFLD)

2.01 <0.001 – – – –

hsa05010 Alzheimer disease 0.58 <0.001 0.40188326 0.070524222 0.49685246 0.99091035

hsa03013 RNA transport 0.61 <0.001 0.49158247 0.080862112 – –

hsa05016 Huntington 

disease

0.52 <0.001 0.24543866 0.03287527 0.5436461 1

hsa04064 NF-kappa B 

signaling pathway

8.42 <0.001 0.634065 0.206122248 – – NF-kB is a pivotal mediator 

of inflammatory responses 

(Liu et al., 2017b) and an 

important player in RA 

pathogenesis (Makarov, 

2001).

hsa03010 Ribosome 0 <0.001 – – 0.6974111 –

hsa04714 Thermogenesis 0.43 <0.001 – – – –

hsa05130 Pathogenic 

Escherichia coli 

infection

0 <0.001 0.42959791 0.103834432 0.740603 0.96458197 Possibly related to 

generation of neo-

autoantigens, molecular 

mimicry, and bystander 

activation of the immune 

system (Li et al., 2013)

hsa04659 Th17 cell 

differentiation

19.63 <0.001 – – – – Th17 cells play an important 

role in inflammation in 

human autoimmune 

arthritides, including RA 

(Pernis, 2009; Leipe et al., 

2010).

hsa04921 Oxytocin signaling 

pathway

1.97 <0.001 – – – –

hsa04722 Neurotrophin 

signaling pathway

2.52 <0.001 0.55824289 0.331277414 – – Neurotrophin signaling is 

altered in RA (Rihl et al., 

2005; Barthel et al., 2009).

hsa04130 SNARE 

interactions 

in vesicular 

transport

0 <0.001 0.51353532 0.205302976 0.69465846 0.9727782

hsa04920 Adipocytokine 

signaling pathway

2.9 <0.001 – 0.999995202 – – The adipocytokines and 

the adipokine network 

have extensive roles in 

the pathogenesis of RA 

(Frommer et al., 2011; Del 

Prete et al., 2014).

hsa05167 Kaposi sarcoma-

associated herpes 

virus infection

5.91 <0.001 – – – –

hsa04630 JAK-STAT 

signaling pathway

9.26 <0.001 – 0.980050749 – – Disruption of the JAK-STAT 

pathway is a critical event 

in the pathogenesis and 

progression of rheumatoid 

arthritis (Malemud, 2018).

(Continued)
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TABLE 1 | Continued

ID Pathway % RA 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04931 Insulin resistance 1.85 <0.001 – – – –

hsa04260 Cardiac muscle 

contraction

0 <0.001 – – 0.6976311 1

hsa05142 Chagas disease 

(American 

trypanosomiasis)

7.77 <0.001 – 0.999995202 – –

hsa05100 Bacterial invasion 

of epithelial cells

1.35 <0.001 – 0.743380146 – – Possibly related to 

generation of neo-

autoantigens, molecular 

mimicry, and bystander 

activation of the immune 

system (Li et al., 2013).

hsa05163 Human 

cytomegalovirus 

infection

4 <0.001 – – – –

hsa04660 T cell receptor 

signaling pathway

10.89 <0.001 – 0.743380146 – – Dysregulation of the TCR 

signaling pathway was 

previously implicated in RA 

biology (Sumitomo et al., 

2018).

hsa05131 Shigellosis 3.08 <0.001 0.51130292 0.137642182 – – Possibly related to 

generation of neo-

autoantigens, molecular 

mimicry, and bystander 

activation of the immune 

system (Li et al., 2013).

hsa05203 Viral 

carcinogenesis

2.99 <0.001 – 0.999995202 – –

hsa05166 Human T-cell 

leukemia virus 1 

infection

7.31 <0.001 0.48795724 0.137642182 – –

hsa04210 Apoptosis 1.47 <0.001 – 0.827952041 – – Apoptosis may play 

divergent roles in RA biology 

(Liu and Pope, 2003).

hsa05165 Human 

papillomavirus 

infection

1.82 <0.001 – – – –

hsa05161 Hepatitis B 6.13 <0.001 – – – –

hsa04150 mTOR signaling 

pathway

0.66 0.001061744 – 0.743380146 – – Intracellular signaling 

pathway (including mTOR 

signaling) play a critical role in 

rheumatoid arthritis (Malemud, 

2013; Malemud, 2015).

hsa05418 Fluid shear 

stress and 

atherosclerosis

1.44 0.001166905 – – – –

hsa04218 Cellular 

senescence

2.5 0.001351009 – – – –

hsa04217 Necroptosis 4.32 0.001442161 – – – – Necroptosis suppresses 

inflammation via termination of 

TNF- or LPS-induced cytokine 

and chemokine production 

(Kearney et al., 2015).

hsa04145 Phagosome 5.26 0.001665316 0.49641734 – – –

hsa03050 Proteasome 2.22 0.001881322 – – 0.7889826 – Proteasome modulates 

immune and inflammatory 

responses in autoimmune 

diseases (Wang and 

Maldonado, 2006).

hsa05168 Herpes simplex 

infection

8.65 0.002442405 – 0.53977679 – –

(Continued)
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TABLE 1 | Continued

ID Pathway % RA 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa05200 Pathways in 

cancer

4.56 0.002463658 – 0.743380146 – –

hsa04621 NOD-like receptor 

signaling pathway

5.06 0.002477183 – 0.909381246 – – NOD-like receptors are 

being implicated in the 

pathology of RA and 

other rheumatic diseases 

(McCormack et al., 2009).

hsa05202 Transcriptional 

misregulation in 

cancer

4.84 0.002495122 – 0.743380146 – –

hsa04151 PI3K-Akt signaling 

pathway

2.82 0.00331152 – – – – PI3K-Akt signaling regulates 

diverse cellular processes 

and was proposed as a 

target for inducing cell death 

in RA (Malemud, 2015).

hsa05215 Prostate cancer 1.03 0.003884234 – 0.999995202 – –

hsa05170 Human 

immunodeficiency 

virus 1 infection

3.3 0.004185672 – – – –

hsa04066 HIF-1 signaling 

pathway

5 0.004382877 – – – – Alterations in hypoxia-

related signaling pathways 

are considered potential 

mechanisms of RA 

pathogenesis (Quiñonez-

Flores et al., 2016).

hsa05225 Hepatocellular 

carcinoma

3.57 0.004782642 – – – –

hsa04922 Glucagon 

signaling pathway

0 0.004927201 – – – –

hsa03420 Nucleotide 

excision repair

0 0.005418059 0.63260927 – – – DNA damage load is 

higher in RA patients, thus 

activating repair pathways 

(Lee et al., 2003).

hsa04015 Rap1 signaling 

pathway

0.97 0.005543915 – – – – Deregulation of Rap1 

signaling pathway was 

shown to be a critical 

event altering the response 

of synovial T cells in RA 

(Remans et al., 2002).

hsa05221 Acute myeloid 

leukemia

3.03 0.006008327 – 0.999995202 – –

hsa05132 Salmonella 

infection

3.49 0.006557353 – 0.721697645 – – Possibly related to 

generation of neo-

autoantigens, molecular 

mimicry, and bystander 

activation of the immune 

system (Li et al., 2013).

hsa05212 Pancreatic cancer 4 0.006646458 – 0.743380146 – –

hsa04662 B cell receptor 

signaling pathway

2.82 0.00748718 – 0.851804025 – –

hsa04971 Gastric acid 

secretion

4 0.008829291 – 0.743380146 – –

hsa04020 Calcium signaling 

pathway

3.19 0.009304653 – 0.999995202 – – Dysregulation of the calcium 

signaling pathway was 

implicated in RA pathogenesis 

(Berridge, 2016).

hsa04919 Thyroid hormone 

signaling pathway

3.45 0.009478272 – – – –

hsa05220 Chronic myeloid 

leukemia

3.95 0.011899647 – 0.743380146 – –

hsa04728 Dopaminergic 

synapse

1.53 0.012701709 – 0.743380146 – –

(Continued)
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TABLE 1 | Continued

ID Pathway % RA 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa05412 Arrhythmogenic 

right ventricular 

cardiomyopathy 

(ARVC)

1.39 0.012829444 – 0.96639695 – –

hsa04371 Apelin signaling 

pathway

1.46 0.015134748 – – – –

hsa04910 Insulin signaling 

pathway

0 0.015134748 – 0.999995202 – 0.95215786

hsa03015 mRNA surveillance 

pathway

0 0.015767824 – – – –

hsa04658 Th1 and Th2 cell 

differentiation

17.39 0.016291789 – – – – RA patients were 

characterized by a disruption 

of Th1/Th2 balance towards 

Th1(He et al., 2017).

hsa04620 Toll-like receptor 

signaling pathway

5.77 0.017712009 – 0.743380146 0.72964895 1 Toll-like receptors are 

being implicated in the 

pathology of RA and 

other rheumatic diseases 

(McCormack et al., 2009).

hsa05410 Hypertrophic 

cardiomyopathy 

(HCM)

2.41 0.019642576 – – – –

hsa04668 TNF signaling 

pathway

5.45 0.0209396 – – – – Intracellular signaling 

pathway (including TNF 

signaling) play a critical 

role in rheumatoid arthritis 

(Malemud, 2013).

hsa05169 Epstein-Barr virus 

infection

8.96 0.022925676 – 0.743380146 – –

hsa05031 Amphetamine 

addiction

2.94 0.023901842 – 0.743380146 – –

hsa05414 Dilated 

cardiomyopathy 

(DCM)

2.22 0.025016113 – 0.851804025 – –

hsa04012 ErbB signaling 

pathway

2.35 0.026253837 – 0.999995202 – – Intracellular signaling 

pathway play a critical 

role in rheumatoid arthritis 

(Malemud, 2013).

hsa04510 Focal adhesion 0.5 0.02805129 – 0.999995202 0.77597433 – Adhesion molecules have 

an important role in RA 

(Pitzalis et al., 1994).

hsa04110 Cell cycle 4.03 0.029916503 – 0.743380146 – – Cell cycle stalling was 

recently linked to arthritis 

(Matsuda et al., 2017).

hsa05206 MicroRNAs in 

cancer

1.34 0.03026234 – – – –

hsa03460 Fanconi anemia 

pathway

0 0.033094195 – 0.743380146 – – DNA damage load is 

higher in RA patients, thus 

activating repair pathways 

(Lee et al., 2003).

hsa05160 Hepatitis C 3.23 0.035219047 – 0.743380146 – –

hsa04721 Synaptic vesicle 

cycle

1.28 0.035442941 – – – –

hsa04810 Regulation of 

actin cytoskeleton

0.47 0.036496481 – 0.96639695 0.80830806 – Actin cytoskeleton dynamics 

is linked to synovial fibroblast 

activation (Vasilopoulos et al., 

2007). Autoimmune response 

to cytoskeletal proteins 

(including actin) was reported 

in RA (Shrivastav et al., 2002).

hsa04270 Vascular 

smooth muscle 

contraction

2.48 0.036862558 – 0.070524222 – 1

(Continued)
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in colorectal cancer, including but not limited to colorectal 
cancer and related signaling pathways (Fang and Richardson, 
2005; Zenonos and Kyprianou, 2013; Francipane and Lagasse, 
2014), apoptosis (Watson, 2004), p53 signaling (Slattery et al., 
2018), dysregulation of metabolic functions, including glucose 
metabolism (Fang and Fang, 2016), fatty acid metabolism 
(Wen et al., 2017), and amino acid metabolism (Santhanam 
et al., 2016; Antanaviciute et al., 2017), and cell cycle (Hartwell 
and Kastan, 1994; Collins et al., 1997; Jarry et al., 2004). Brief 
descriptions of all pathways relevant to CRC are provided in 
Table 2.

Representative pathways that were upregulated in the 
majority of subjects included important pathways related to 
cancer in general and colorectal cancer, such as the proteoglycans 
in cancer, adherens junction, gap junction, and Hippo signaling 
pathway. Representative pathways that were downregulated in 
the majority of subjects included other important pathways 
related to colorectal cancer, such as valine, leucine, and 
isoleucine degradation, mTOR signaling pathway, and cell cycle 
(Figure 3C).

The PCa Dataset
For the PCa dataset, 1,240 DEGs were identified (Supplementary 

Data Sheet 1). pathfindR identified 92 significantly enriched 
pathways (adjusted-p ≤ 0.05) which were clustered into 14 
coherent clusters (Figures 4A, B). Forty-six (50%) of these 
enriched pathways were relevant to PCa biology, as supported 
by literature. Brief descriptions of the relevancies are provided 
in Table 3. 

The results obtained using the different tools and literature 
support for the identified pathways (where applicable) are 
presented in Table 3. DAVID identified eight significant 
pathways, which were all also identified by pathfindR and 
only half of which were relevant to PCa. SPIA identified five 
significantly enriched pathways, all of which were also identified 
by pathfindR. GSEA identified no significant pathways, whereas 
GSEAPreranked identified one significant pathway, for which no 
association with PCa was provided by the literature. The prostate 
cancer pathway was identified to be significantly enriched only 
by pathfindR.

The clusters identified by pathfindR pointed to several 
mechanisms previously shown to be important for prostate 
cancer. These mechanisms included but were not limited to 

the prostate cancer pathway and related signaling pathways (El 
Sheikh et al., 2003; Shukla et al., 2007; Rodríguez-Berriguete 
et al., 2012), cancer immunity (Knutson and Disis, 2005; Zhao 
et al., 2014), Hippo signaling (Zhang et al., 2015), cell cycle (Balk 
and Knudsen, 2008), autophagy (Farrow et al., 2014), and insulin 
signaling (Cox et al., 2009; Bertuzzi et al., 2016).

The majority of representative pathways relevant to PCa were 
down-regulated (Figure 4C).

Common Pathways Between the CRC and 
PCa Datasets
Because the CRC and PCa datasets were both cancers, they were 
expected to have common pathways identified by pathfindR. 
Indeed, 47 common significant pathways (adjusted-p ≤ 0.05) were 
identified (Supplementary Table 1). These common pathways 
included general cancer-related pathways, such as pathways in 
cancer, proteoglycans in cancer, MAPK signaling pathway, Ras 
signaling pathway, Hippo signaling pathway, mTOR signaling 
pathway, Toll-like receptor signaling pathway, Wnt signaling 
pathway, and adherens junction.

Disease-Related Genes in the Significantly 
Enriched Pathways
The percentages of disease-related genes for each pathway found 
to be enriched by any tool (adjusted-p ≤ 0.05) are presented in 
the corresponding columns of Tables 1, 2, and 3 (“% RA Genes” 
for the RA dataset and “% CGC Genes” for the CRC and PCa 
datasets). These percentages show great variability but support 
the literature search results in assessing the disease-relatedness of 
the enriched pathways.

The distributions of disease-related gene percentages in 
pathways identified by each tool in the three different datasets, 
filtered by the adjusted-p value thresholds of 0.05, 0.1, and 0.25, 
are presented in Figure 5. As stated before, for the RA dataset, 
only pathfindR and SPIA identified significant pathways. The 
median percentages of RA-associated genes of the enriched 
pathways of pathfindR was higher than the median percentages 
of SPIA (2.43% vs. 0.96% for the 0.05 cutoff, 2.5% vs. 0.61% for 
the 0.1 cutoff, and 2.27% vs. 0.67% for the 0.25 cutoff). For CRC, 
pathfindR displayed the highest median percentage of CGC 
genes for all the cutoff values (17.84%, 17.72%, and 16.7% for 
0.05, 0.1, and 0.25, respectively). For the PCa dataset, the median 

TABLE 1 | Continued

ID Pathway % RA 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa05230 Central carbon 

metabolism in 

cancer

1.54 0.038909519 – – – – Dysregulation of energy 

metabolism is indicated in 

RA (Yang et al., 2015).

“ID” indicates the Kyoto Encyclopedia of Genes and Genomes (KEGG) ID for the enriched pathway, whereas “Pathway” indicates the KEGG pathway name. “% RA genes” 

indicates the percentage of RA genes in the pathway. The lowest Bonferroni-adjusted p value for pathfindR analysis is provided in “pathfindR,” the false discovery rate (FDR)-

adjusted p value for Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis is provided in “DAVID,” the FDR-adjusted p value for Signaling Pathway 

Impact Analysis (SPIA) is presented in “SPIA,” and the FDR-adjusted p values for Gene Set Enrichment Analysis (GSEA) and GSEAPreranked are presented in “GSEA” and 

“GSEAPreranked,” respectively. Significant p values (i.e., adjusted p value <0.05) are given in bold font. “-“ indicates the pathway was not found to be enriched by the given tool. If 

a pathway is relevant to RA, a brief description of its relevance is provided in “Brief Description.”
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TABLE 2 | Pathway analysis results for the colorectal cancer (CRC) dataset (adjusted p < 0.05).

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04974 Protein digestion 

and absorption

5.56 <0.001 0.01573699 – – –

hsa04512 ECM-receptor 

interaction

6.1 <0.001 0.00010652 <0.001 0.3232827 0.92760116 The extracellular matrix 

modulates the hallmarks 

of cancer (Pickup et al., 

2014).

hsa04380 Osteoclast 

differentiation

21.26 <0.001 – 0.418726575 – –

hsa05205 Proteoglycans in 

cancer

27.86 <0.001 0.02168567 – – – Proteoglycans play roles 

in modulating cancer 

progression, invasion and 

metastasis (Iozzo and 

Sanderson, 2011).

hsa05130 Pathogenic 

Escherichia coli 

infection

10.91 <0.001 0.25769925 0.015730997 0.23110063 1 Pathogenic E. coli is 

claimed to be a cofactor in 

pathogenesis of colorectal 

cancer (Bonnet et al., 

2014).

hsa00280 Valine, leucine 

and isoleucine 

degradation

2.08 <0.001 <0.001 – – – Degradation of branched 

chain amino acids could 

play an important role in the 

energy supply of cancer 

cells (Antanaviciute et al., 

2017).

hsa04010 MAPK signaling 

pathway

17.97 <0.001 0.08238577 0.004151739 0.28760567 1 MAPK signaling plays 

an important part in 

progression of colorectal 

cancer (Fang and 

Richardson, 2005).

hsa04520 Adherens junction 31.94 <0.001 0.0852993 – 0.39334586 0.98078984 Dysregulation of the 

adherens junction system 

has particular implications 

in transformation and tumor 

invasion (Knights et al., 

2012).

hsa04810 Regulation of 

actin cytoskeleton

15.02 <0.001 0.01469723 0.004105905 0.31124064 1 Regulation of actin 

cytoskeleton is dysregulated 

in cancer cell migration and 

invasion (Yamaguchi and 

Condeelis, 2007).

hsa05166 Human T-cell 

leukemia virus 1 

infection

27.4 <0.001 – 0.858709076 – –

hsa04510 Focal adhesion 19.1 <0.001 <0.001 <0.001 0.2348305 0.95611423 Cancer cells exhibit highly 

altered focal adhesion 

dynamics (Maziveyi and 

Alahari, 2017).

hsa04540 Gap junction 19.32 <0.001 0.03853227 0.009701705 0.24327032 0.9830453 Deficiencies in cell-to-cell 

communication, particularly 

gap junctional intercellular 

communication are 

observed in CRC (Bigelow 

and Nguyen, 2014).

hsa05012 Parkinson disease 6.34 <0.001 0.28728621 0.025978875 – 0.91026866

hsa04662 B cell receptor 

signaling pathway

42.25 <0.001 – 0.500093708 0.27041057 1

hsa00071 Fatty acid 

degradation

6.82 <0.001 <0.001 – – – Adipocytes activate 

mitochondrial fatty acid 

oxidation and autophagy 

to promote tumor growth 

in colon cancer (Wen et al., 

2017).

(Continued)
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TABLE 2 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04145 Phagosome 5.26 <0.001 – – – –

hsa04658 Th1 and Th2 cell 

differentiation

19.57 <0.001 – – – – T helper cells are important 

in cancer immunity 

(Knutson and Disis, 2005).

hsa05165 Human 

papillomavirus 

infection

19.09 <0.001 – – – –

hsa05161 Hepatitis B 31.29 <0.001 – – – –

hsa00640 Propanoate 

metabolism

0 <0.001 <0.001 – – –

hsa04151 PI3K-Akt signaling 

pathway

21.47 <0.001 0.07244833 – – – PI3K-Akt signaling is 

deregulated in CRC 

(Danielsen et al., 2015; 

Zhang et al., 2017a).

hsa04660 T cell receptor 

signaling pathway

31.68 <0.001 – 0.698350894 0.44643503 0.965013 T-cell receptor signaling 

modulates control of anti-

cancer immunity (Cronin 

and Penninger, 2007).

hsa04659 Th17 cell 

differentiation

26.17 <0.001 – – – – A unique change of Th17 

cells was observed in the 

progression of CRC (Wang 

et al., 2012).

hsa04933 AGE-RAGE 

signaling pathway 

in diabetic 

complications

31 <0.001 – – – –

hsa04657 IL-17 signaling 

pathway

9.68 <0.001 – – – – IL-17 is considered as a 

promoter factor in CRC 

progression (Wu et al., 

2013).

hsa04625 C-type lectin 

receptor signaling 

pathway

27.88 <0.001 – – – – C-Type lectin receptors 

may be targeted for cancer 

immunity (Yan et al., 2015).

hsa05167 Kaposi sarcoma-

associated 

herpesvirus 

infection

24.73 <0.001 – – – –

hsa05170 Human 

immunodeficiency 

virus 1 infection

16.98 <0.001 – – – –

hsa04921 Oxytocin signaling 

pathway

13.16 <0.001 0.1513106 – – –

hsa05168 Herpes simplex 

infection

10.81 <0.001 – 0.840617856 – –

hsa04668 TNF signaling 

pathway

18.18 <0.001 – – – – TNF-α was shown to 

promote colon cancer cell 

migration and invasion 

(Zhao and Zhang, 2018).

hsa04022 cGMP-PKG 

signaling pathway

11.04 <0.001 0.00352246 – – – cGMP-PKG signaling 

inhibits cell proliferation and 

induces apoptosis (Fajardo 

et al., 2014).

hsa00650 Butanoate 

metabolism

0 <0.001 <0.001 – – – Butanoate has the ability 

to inhibit carcinogenesis 

(Goncalves and Martel, 

2013).

hsa05132 Salmonella 

infection

8.14 <0.001 – 0.524757851 – –

hsa05014 Amyotrophic 

lateral sclerosis 

(ALS)

15.69 <0.001 0.36800171 0.200174194 0.27973756 1

(Continued)
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TABLE 2 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04530 Tight junction 11.18 <0.001 0.0915822 0.02704172 0.27459267 0.98746127 Dysregulation of tight 

junctions promote 

tumorigenesis as well 

as tumor progression in 

colorectal cancer (Hollande 

and Papin, 2013).

hsa04150 mTOR signaling 

pathway

16.45 <0.001 – 0.999999998 0.31433496 1 mTOR signaling is 

accepted as one of the 

primary mechanisms 

for sustaining tumor 

outgrowth and metastasis 

and is dysregulated in 

many cancers, including 

colorectal cancer 

(Francipane and Lagasse, 

2014).

hsa05120 Epithelial cell 

signaling in 

Helicobacter 

pylori infection

14.71 <0.001 – 0.552502996 0.327181 1

hsa05418 Fluid shear 

stress and 

atherosclerosis

18.71 <0.001 – – – –

hsa04015 Rap1 signaling 

pathway

18.93 <0.001 – – – – Rap1 signaling has roles 

in tumor cell migration 

and invasion (Zhang et al., 

2017b).

hsa05164 Influenza A 15.79 <0.001 – 0.999999998 – –

hsa05100 Bacterial invasion 

of epithelial cells

22.97 <0.001 – 0.167771421 – –

hsa05146 Amebiasis 12.5 <0.001 – 0.418726575 – –

hsa00380 Tryptophan 

metabolism

2.5 <0.001 0.0036283 – – – Tryptophan metabolism 

is a promising target for 

immunotherapy in CRC 

(Santhanam et al., 2016).

hsa04072 Phospholipase D 

signaling pathway

20.55 0.001079935 – – – – Phospholipase D signaling 

has roles in cell migration, 

invasion and metastasis 

(Gomez-Cambronero, 

2014).

hsa04014 Ras signaling 

pathway

18.1 0.001165472 – – – – Ras signaling has roles 

in colorectal cancer 

progression, treatment 

response, prognosis 

(Zenonos and Kyprianou, 

2013).

hsa05210 Colorectal cancer 51.16 0.00129243 – 0.177026287 0.5272962 1 The pathway of the 

disease.

hsa05200 Pathways in 

cancer

26.81 0.001394025 0.01610123 0.004421859 0.23207118 0.99618906 “Meta”-pathway of cancer 

pathways.

hsa05169 Epstein-Barr virus 

infection

21.39 0.001483431 – 0.999999998 – –

hsa04934 Cushing 

syndrome

22.73 0.002134647 – – – –

hsa00190 Oxidative 

phosphorylation

3.76 0.002190056 – – – 1 Glucose metabolism 

is altered in cancers, 

including CRC (Fang and 

Fang, 2016).

hsa04144 Endocytosis 11.48 0.00223191 – – 0.74809563 0.9971049

(Continued)
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TABLE 2 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04722 Neurotrophin 

signaling pathway

26.05 0.00225063 – 0.869732385 0.22082567 0.9303874 Neurotrophin signaling and 

related factors were found 

to clearly exert several 

biological and clinical 

features in CRC (Akil et al., 

2016).

hsa04926 Relaxin signaling 

pathway

20.77 0.002413722 – – – – Relaxin signaling has a role 

in tumor cell growth and 

differentiation (Silvertown 

et al., 2003).

hsa04024 cAMP signaling 

pathway

14.57 0.002417989 0.37342574 – – – Dysregulation cAMP 

signaling was implicated 

in many cancer types, 

including CRC (Löffler et al., 

2008; Fajardo et al., 2014).

hsa04310 Wnt signaling 

pathway

17.72 0.002418113 – 0.068851256 0.3056234 1 Wnt signaling is a key 

player in many cancers, 

responsible for maintenance 

of cancer stem cells, 

metastasis and immune 

control (Zhan et al., 2017).

hsa05226 Gastric cancer 30.87 0.00267019 – – – –

hsa04392 Hippo signaling 

pathway - multiple 

species

17.24 0.002915258 – – – – Hippo signaling is involved 

in the control of intestinal 

stem cell proliferation 

and colorectal cancer 

development (Wierzbicki 

and Rybarczyk, 2015).

hsa04390 Hippo signaling 

pathway

16.23 0.003135632 – – – – Hippo signaling is involved 

in the control of intestinal 

stem cell proliferation 

and colorectal cancer 

development (Wierzbicki 

and Rybarczyk, 2015).

hsa00630 Glyoxylate and 

dicarboxylate 

metabolism

0 0.003236188 0.30407411 – – –

hsa04110 Cell cycle 23.39 0.003442925 – 0.987280486 – 0.9898676 Dysregulation of the cell 

cycle is implicated in the 

biology of many cancers, 

including CRC (Hartwell 

and Kastan, 1994; Collins 

et al., 1997; Jarry et al., 

2004).

hsa04932 Non-alcoholic 

fatty liver disease 

(NAFLD)

13.42 0.003808796 – – – –

hsa05142 Chagas disease 

(American 

trypanosomiasis)

21.36 0.003899445 – 0.937326751 – –

hsa00410 beta-Alanine 

metabolism

3.23 0.005120816 0.00196409 – – 1

hsa04670 Leukocyte 

transendothelial 

migration

16.07 0.005646255 0.35563014 0.167771421 0.27631387 1

hsa00620 Pyruvate 

metabolism

5.13 0.00565919 0.09639534 – – – Glucose metabolism 

is altered in cancers, 

including CRC (Fang and 

Fang, 2016).

hsa04114 Oocyte meiosis 7.2 0.006872183 – 0.792716868 0.72884667 0.97175264

hsa05215 Prostate cancer 51.55 0.007778647 – 0.598712628 0.32108408 1
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TABLE 2 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04210 Apoptosis 22.06 0.007963488 – 0.869732385 – – Abnormalities in apoptotic 

function contribute to 

both the pathogenesis 

of colorectal cancer 

and its resistance to 

chemotherapeutic drugs 

and radiotherapy (Watson, 

2004).

hsa05140 Leishmaniasis 10.81 0.008480037 – 0.999999998 0.24636032 1

hsa05222 Small cell lung 

cancer

27.96 0.008933391 – 0.120809416 0.45156074 1

hsa05160 Hepatitis C 22.58 0.010464676 – 0.869732385 – –

hsa05031 Amphetamine 

addiction

13.24 0.010805065 – 0.107609007 – –

hsa04621 NOD-like receptor 

signaling pathway

6.74 0.011387668 – 0.999999998 0.5148187 0.9774175 NOD-like receptors are 

accepted as master 

regulators of inflammation 

and cancer (Saxena and 

Yeretssian, 2014).

hsa04914 Progesterone-

mediated oocyte 

maturation

16.16 0.011933047 – 0.857467386 0.5950144 0.9922697

hsa04923 Regulation 

of lipolysis in 

adipocytes

18.52 0.011957867 0.19643837 – – – Adipocytes activate 

mitochondrial fatty acid 

oxidation and autophagy 

to promote tumor growth 

in colon cancer (Wen et al., 

2017).

hsa04071 Sphingolipid 

signaling pathway

18.64 0.012088886 – – – – Sphingolipids have 

emerging roles in CRC 

(García-Barros et al., 2014).

hsa05016 Huntington 

disease

10.88 0.013246653 – 0.494422017 – 1

hsa05030 Cocaine addiction 16.33 0.014430369 – 0.310528247 – –

hsa04270 Vascular 

smooth muscle 

contraction

12.4 0.014703261 0.01450931 <0.001 0.31157959 0.91536194

hsa04915 Estrogen signaling 

pathway

22.06 0.014973032 – – – –

hsa04664 Fc epsilon RI 

signaling pathway

29.41 0.016512816 – 0.552502996 0.7568524 0.99502826

hsa05211 Renal cell 

carcinoma

44.93 0.017251888 – 0.107609007 0.59724545 1

hsa05202 Transcriptional 

misregulation in 

cancer

44.09 0.017926078 – 0.329766057 – – Core cancer pathway

hsa04913 Ovarian 

steroidogenesis

4.08 0.021805547 – – – –

hsa04620 Toll-like receptor 

signaling pathway

14.42 0.023494048 – 0.968714181 0.44691193 1 Toll-like receptor signaling 

pathway is being 

considered as a potential 

therapeutic target in 

colorectal cancer (Moradi-

Marjaneh et al., 2018).

hsa04370 VEGF signaling 

pathway

33.9 0.025228423 – 0.768939947 0.53752804 1 Dysregulation of VEGF 

signaling is observed 

in numerous cancers, 

including CRC (Sun, 2012; 

Stacker and Achen, 2013).
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https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


pathfindR: Enrichment via Active ModulesUlgen et al.

19 September 2019 | Volume 10 | Article 858Frontiers in Genetics | www.frontiersin.org

TABLE 2 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04020 Calcium signaling 

pathway

9.57 0.025565655 0.33050764 0.057419238 0.3367621 0.9716838 Alterations of calcium 

signaling modulate tumor 

initiation, angiogenesis, 

progression and metastasis 

(Cui et al., 2017).

hsa05224 Breast cancer 31.29 0.028494806 – – – –

hsa04630 JAK-STAT 

signaling pathway

24.07 0.029068433 – 0.494422017 0.40343955 1 Jak-STAT signaling is 

involved in immune function 

and cell growth and has an 

important role in colorectal 

cancer (Slattery et al., 

2013).

hsa04723 Retrograde 

endocannabinoid 

signaling

4.05 0.029254258 – 0.147248603 – –

hsa04622 RIG-I-like receptor 

signaling pathway

7.14 0.030848585 – 0.524757851 0.95792913 – RIG-I-like receptors are 

important in immune 

signaling (Loo and Gale, 

2011).

hsa04720 Long-term 

potentiation

22.39 0.031734969 – 0.899457922 0.7634754 0.9743132

hsa04360 Axon guidance 14.36 0.032363714 0.14566283 0.03397083 0.31695387 0.98838806

hsa04115 p53 signaling 

pathway

33.33 0.033554867 – 0.869732385 – 0.9952885 p53 signaling influences 

many key processes 

such as cell cycle 

arrest, apoptosis, and 

angiogenesis (Slattery 

et al., 2018).

hsa05131 Shigellosis 10.77 0.033710491 – 0.87420689 – –

hsa05203 Viral 

carcinogenesis

23.38 0.036540488 – 0.999999998 – –

hsa05416 Viral myocarditis 18.64 0.038063956 – 0.418726575 0.27175233 0.9940278

hsa04666 Fc gamma 

R-mediated 

phagocytosis

20.88 0.039418918 – 0.141340043 0.32853782 –

hsa00010 Glycolysis / 

Gluconeogenesis

1.47 0.044512411 0.35158586 – – 1 Glucose metabolism 

is altered in cancers, 

including CRC (Fang and 

Fang, 2016).

hsa01212 Fatty acid 

metabolism

0 – <0.001 – – 1

hsa01130 Biosynthesis of 

antibiotics

0 – <0.001 – – –

hsa04924 Renin secretion 7.69 0.050814742 <0.001 – – –

hsa05414 Dilated 

cardiomyopathy

8.89 0.211547395 0.10754894 0.009508921 0.29030624 0.95637035

hsa03320 PPAR signaling 

pathway

4.05 – 0.11340534 0.015730997 0.5118186 0.98862046 PPARδ acts as a tumor 

suppressor in colorectal 

cancer (You et al., 2015).

hsa01200 Carbon 

metabolism

0 – 0.003293423 – – –

hsa01100 Metabolic 

pathways

0 – 0.015541794 – – – Metabolic reprogramming 

has consequences at the 

cellular and molecular 

level with implications for 

cancer initiation and growth 

(Hagland et al., 2013)

“ID” indicates the Kyoto Encyclopedia of Genes and Genomes (KEGG) ID for the enriched pathway, whereas “Pathway” indicates the KEGG pathway name. “% CGC genes” 

indicates the percentage of Cancer Gene Census (CGC) genes in the pathway. The lowest Bonferroni-adjusted p value for pathfindR analysis is provided in “pathfindR,” the false 

discovery rate (FDR)-adjusted p value for Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis is provided in “DAVID,” the FDR-adjusted p value for 

Signaling Pathway Impact Analysis (SPIA) is presented in “SPIA,” and the FDR-adjusted p values for Gene Set Enrichment Analysis (GSEA) and GSEAPreranked are presented in 

“GSEA” and “GSEAPreranked,” respectively. Significant p values (i.e., adjusted p value < 0.05) are given in bold font. “-“ indicates the pathway was not found to be enriched by the 

given tool. If a pathway is relevant to CRC, a brief description of its relevance is provided in “Brief Description.”
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percentages of CGC genes of the enriched pathways of pathfindR 
were again the highest among all tools for all significance cutoff 
values (18.73%, 18.37%, and 17.93% for 0.05, 0.1, and 0.25, 
respectively).

Permutation Assessment
To assess the number of pathways identified to be enriched by 
pathfindR, we performed analyses using actual and permuted 
data of different sizes. Comparison of the distributions of actual 
vs. permuted data is presented in Figure 6. Wilcoxon rank sum 
tests revealed that the distributions of the numbers of enriched 
pathways obtained using actual and permuted input data were 
significantly different (all p < 0.001). The median number of 
enriched pathways was lower for permuted data in each case.

It was observed that the ratio of the median number of 
pathways (permuted/actual) tended to increase as the number of 
input genes increased. This is most likely because as the input size 
gets larger, there is higher chance in finding highly connected 
subnetworks that in turn leads to identifying a higher number of 
enriched pathways.

Assessment of the Effect of DEGs Without 
Any Interactions on Enrichment Results
To gain further support for our proposal that directly performing 
enrichment analysis on a list of genes is not completely 
informative because this ignores the interaction information, we 
performed ORA (as implemented in pathfindR) on (i) all of the 
DEG lists (RA, CRC, and PCa) and (ii) the filtered list of DEGs 
for the same datasets so that they only contain DEGs found in the 
Biogrid PIN. This allowed us to assess any effect of eliminating 
DEGs with no interactions on the enrichment results.

The numbers of DEGs found in the Biogrid PIN for each 
dataset was as follows: RA—481 (out of 572 total), CRC—
989 (out of 1,356) and PCa—900 (out of 1,240). The ORA 
results are presented in Supplementary Data Sheet 3. The 
elimination of DEGs without any interaction clearly affected 
numbers of significantly enriched (FDR < 0.05) KEGG 
pathways (Supplementary Table  2). For the RA dataset, no 
significantly enriched pathways were found using all DEGs, 
whereas elimination of non-interacting DEGs resulted in one 
significant pathway. For CRC and PCa, using only DEGs found 

FIGURE 3 | pathfindR enrichment and clustering results on the colorectal cancer (CRC) dataset (lowest p ≤ 0.05). (A) Clustering graph, each color displaying 

the clusters obtained for CRC. Each node is an enriched pathway. The size of a node corresponds to its −log(lowest_p). The thickness of the edges between 

nodes corresponds to the kappa statistic between the two terms. (B) Bubble chart of enrichment results grouped by clusters (labeled on the right-hand side of 

each panel). The x axis corresponds to fold enrichment values, while the y axis indicates the enriched pathways. The size of the bubble indicates the number 

of differentially expressed genes (DEGs) in the given pathway. The color indicates the −log10(lowest-p) value; the more it shifts to red, the more significantly the 

pathway is enriched. (C) Heat map of pathway scores per subject. The x axis indicates subjects, whereas the y axis indicates representative pathways. Color scale 

for the pathway score is provided in the right-hand legend.
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in the PIN, the number of significantly enriched pathways were 
doubled compared to using all of the genes without taking into 
account any interaction information. We would like to note that 
these results partly explain why taking interaction information 
into account results in enhanced enrichment results.

Assessment of the Effect of PINs on 
Enrichment Results
To assess any effect of the choice of PIN on pathfindR results, 
we first compared the default PINs in terms of the interactions 
they contain. The number of interactions in the PINs were as 
follows: 289,417 interactions in Biogrid, 79,741 interactions 
in GeneMania, 121,007 interactions in IntAct, and 53,047 
interactions in KEGG. The numbers of common interactions 
between any pair of PINs and the overlap percentages of the 
interactions are presented in Supplementary Table 3. The results 
show that there is very little overlap between the PINs. Despite 
the fact that Biogrid has more than double the interactions of 
IntAct and 3 times the interactions of GeneMania, it remarkably 

does not contain half of the interactions they contain, implying 
this lack of overlap between PINs may affect pathfindR results.

We then proceeded with analyzing any effect of the choice 
of PIN on active-subnetwork-oriented pathway enrichment 
analysis. Venn diagrams comparing enrichment results obtained 
through pathfindR analyses with all available PINs are presented 
in Supplementary Figure 1. This comparison revealed that 
there was no compelling overlap among the enriched pathways 
obtained by using different PINs. Overall, using Biogrid and 
KEGG resulted in the highest number of significantly enriched 
pathways for all datasets.

As described in Materials and Methods, the results presented in 
this subsection were obtained using greedy search with search depth 
of 1 and maximum depth of 1, which results in multiple subnetworks 
structured as local subnetworks. Although it is not fully dependent 
on it, this method requires direct interactions between input genes. 
In the extreme case where there is no direct connection between 
any pair of two input genes, it is impossible to get any multi-node 
subnetworks with this method. Therefore, in order to gain a better 
understanding of the lack of overlap between the enrichment results 

FIGURE 4 | pathfindR enrichment and clustering results on the prostate cancer (PCa) dataset (lowest p ≤ 0.05). (A) Clustering graph, each color displaying 

the clusters obtained for PCa. Each node is an enriched pathway. The size of a node corresponds to its −log(lowest_p). The thickness of the edges between 

nodes corresponds to the kappa statistic between the two terms. (B) Bubble chart of enrichment results grouped by clusters (labeled on the right-hand side of 

each panel). The x axis corresponds to fold enrichment values, while the y axis indicates the enriched pathways. The size of the bubble indicates the number 

of differentially expressed genes (DEGs) in the given pathway. The color indicates the −log10(lowest-p) value; the more it shifts to red, the more significantly the 

pathway is enriched. (C) Heat map of pathway scores per subject. The x axis indicates subjects, whereas the y axis indicates representative pathways. Color scale 

for the pathway score is provided in the right-hand legend.
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TABLE 3 | Pathway analysis results for the prostate cancer (PCa) dataset (adjusted p < 0.05).

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04392 Hippo signaling 

pathway - multiple 

species

17.24 <0.001 – – – – The hippo pathway effector 

YAP regulates motility, 

invasion, and castration-

resistant growth of prostate 

cancer cells (Zhang et al., 

2015).

hsa03010 Ribosome 1.96 <0.001 – – 0.425191 1 Certain ribosomal proteins 

are altered and may serve 

as putative biomarkers for 

prostate cancer (Arthurs 

et al., 2017).

hsa04012 ErbB signaling 

pathway

40 <0.001 – 0.637063484 – – There are interactions 

among the ErbB receptor 

network, its downstream 

pathways, and androgen 

receptor signaling (El 

Sheikh et al., 2003).

hsa04625 C-type lectin 

receptor signaling 

pathway

27.88 <0.001 – – – – C-type lectin receptors are 

emerging orchestrators 

of sterile inflammation 

and represent potential 

therapeutic targets in many 

cancers, including PCa 

(Chiffoleau, 2018). C-type 

lectins were shown to 

facilitate tumor metastasis 

(Ding et al., 2017).

hsa04010 MAPK signaling 

pathway

17.97 <0.001 – 0.282733912 – 0.90003437 MAPK signaling pathways 

act through their effects 

on apoptosis, survival, 

metastatic potential, and 

androgen-independent 

growth in prostate cancer 

(Rodríguez-Berriguete 

et al., 2012).

hsa05205 Proteoglycans in 

cancer

27.86 <0.001 0.02399376 – – – Proteoglycans play roles 

in modulating cancer 

progression, invasion and 

metastasis (Iozzo and 

Sanderson, 2011).

hsa04919 Thyroid hormone 

signaling pathway

32.76 <0.001 0.5109672 – – –

hsa04390 Hippo signaling 

pathway

16.23 <0.001 0.10679672 – – – The hippo pathway effector 

YAP regulates motility, 

invasion, and castration-

resistant growth of prostate 

cancer cells (Zhang et al., 

2015).

hsa04728 Dopaminergic 

synapse

11.45 <0.001 0.06897641 0.034643839 – –

hsa04270 Vascular smooth 

muscle contraction

12.4 <0.001 <0.001 <0.001 – 0.9954409

hsa04810 Regulation of actin 

cytoskeleton

15.02 <0.001 0.02727598 0.033699531 – – Dysregulated in cancer 

cell migration and invasion 

(Yamaguchi and Condeelis, 

2007).

hsa04218 Cellular senescence 25.63 <0.001 – – – – Cellular senescence may 

play a role in treatment 

resistance in PCa (Blute 

et al., 2017).

(Continued)
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TABLE 3 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04520 Adherens junction 31.94 <0.001 – – – – Dysregulation of the 

adherens junction system 

has particular implications 

in transformation and 

tumor invasion (Knights 

et al., 2012).

hsa04962 Vasopressin-

regulated water 

reabsorption

13.64 <0.001 – 0.655412336 – –

hsa04310 Wnt signaling 

pathway

17.72 <0.001 0.14714863 0.174150166 – – Wnt signaling is implicated 

in PCa biology (Murillo-

Garzon and Kypta, 2017).

hsa04151 PI3K-Akt signaling 

pathway

21.47 <0.001 – – – – Activation of PI3K-

Akt signaling pathway 

promotes prostate cancer 

cell invasion (Shukla et al., 

2007).

hsa04921 Oxytocin signaling 

pathway

13.16 <0.001 0.09939094 – – – Oxytocin signaling has 

a role in prostate cancer 

metastasis (Zhong et al., 

2010).

hsa04144 Endocytosis 11.48 <0.001 0.14183304 – – – Defective vesicular 

trafficking of growth 

factor receptors, as 

well as unbalanced 

recycling of integrin- and 

cadherin-based adhesion 

complexes, has emerged 

as a multifaceted hallmark 

of malignant cells 

(Mosesson et al., 2008).

hsa04928 Parathyroid 

hormone synthesis, 

secretion and 

action

20.75 <0.001 – – – –

hsa04931 Insulin resistance 14.81 <0.001 0.44248049 – – – Men in the highest tertile 

of insulin resistance (IR) 

had an increased risk of 

prostate cancer, indicating 

a potential pathogenetic 

link of IR with prostate 

cancer (Hsing et al., 2003).

hsa05170 Human 

immunodeficiency 

virus 1 infection

16.98 <0.001 – – – –

hsa04071 Sphingolipid 

signaling pathway

18.64 <0.001 – – – – Sphingolipids are 

modulators of cancer 

cell death and represent 

potential therapeutic 

targets (Segui et al., 2006; 

Shaw et al., 2018).

hsa04510 Focal adhesion 19.1 <0.001 0.01182864 0.003797795 – – Cancer cells exhibit highly 

altered focal adhesion 

dynamics (Maziveyi and 

Alahari, 2017).

hsa04014 Ras signaling 

pathway

18.1 <0.001 – – – – Ras signaling plays an 

important role in prostate 

cancer progression and 

is a possibly mediator of 

hormone resistance (Weber 

and Gioeli, 2004; Whitaker 

and Neal, 2010).

(Continued)
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TABLE 3 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04140 Autophagy - animal 17.19 <0.001 – 0.91466497 0.7367432 – Autophagy is a modulator 

of PCa biology and is a 

therapeutic target (Farrow 

et al., 2014).

hsa04360 Axon guidance 14.36 <0.001 0.36615434 0.174150166 – –

hsa04910 Insulin signaling 

pathway

18.98 <0.001 – 0.592610905 – – Insulin signaling has crucial 

roles in cell proliferation 

and death. Insulin 

receptors were detected 

on primary human prostate 

cancers (Cox et al., 2009; 

Bertuzzi et al., 2016).

hsa05132 Salmonella infection 8.14 0.001024926 – 0.884388639 – –

hsa04261 Adrenergic 

signaling in 

cardiomyocytes

11.81 0.001251519 0.1359051 – – –

hsa05213 Endometrial cancer 60.34 0.001571998 – 0.889535144 0.9776995 0.9350631

hsa05211 Renal cell 

carcinoma

44.93 0.001704596 – 0.958690885 – –

hsa05200 Pathways in cancer 26.81 0.001864931 0.44205232 0.592610905 – – “Meta”-pathway of cancer 

pathways.

hsa05214 Glioma 44 0.00191144 – 0.678606672 – –

hsa04110 Cell cycle 23.39 0.00200072 – 0.53576482 0.73860705 – Dysregulation of the cell 

cycle is implicated in the 

biology of many cancers, 

including PCa (Hartwell 

and Kastan, 1994; Collins 

et al., 1997; Balk and 

Knudsen, 2008).

hsa05410 Hypertrophic 

cardiomyopathy 

(HCM)

6.02 0.002088682 0.01508581 – – 0.94539815

hsa05202 Transcriptional 

misregulation in 

cancer

44.09 0.002227785 – 0.909985754 – – Core cancer pathway.

hsa04068 FoxO signaling 

pathway

29.55 0.00256445 – – – – FOXO signaling is 

implicated and considered 

as a therapeutic target in 

many cancers, including 

PCa (Farhan et al., 2017).

hsa04620 Toll-like receptor 

signaling pathway

14.42 0.002757387 – 0.999737262 1 – TLRs may serve as a 

double-edged sword 

in prostate cancer 

tumorigenesis by 

promoting malignant 

transformation of epithelial 

cells and tumor growth, or 

on the contrary, inducing 

apoptosis, and inhibiting 

tumor progression (Zhao 

et al., 2014).

hsa05414 Dilated 

cardiomyopathy 

(DCM)

8.89 0.002884316 0.00445895 0.00145624 – 0.9310661

hsa05224 Breast cancer 31.29 0.002996465 – – – –

hsa04340 Hedgehog signaling 

pathway

21.28 0.003701704 – 0.603911642 – – Hedgehog signaling 

plays an important role 

in the development and 

progression of PCa 

(Gonnissen et al., 2013).

hsa05215 Prostate cancer 51.55 0.004678127 – 0.637063484 – – The pathway of the disease.

(Continued)
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TABLE 3 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04211 Longevity regulating 

pathway

25.84 0.004704898 – – – –

hsa04022 cGMP-PKG 

signaling pathway

11.04 0.004947514 0.00142051 – – – cGMP-PKG signaling 

inhibits cell proliferation 

and induces apoptosis 

(Fajardo et al., 2014).

hsa05032 Morphine addiction 4.4 0.005138281 0.37736294 0.174150166 – –

hsa04550 Signaling pathways 

regulating 

pluripotency of 

stem cells

31.65 0.00540706 – – – –

hsa04912 GnRH signaling 

pathway

19.35 0.005600378 0.37736294 0.340227111 – 0.9284794 GnRH signaling has roles 

in cancer cell proliferation 

and metastasis in many 

cancers, including PCa 

(Gründker and Emons, 

2017).

hsa05165 Human 

papillomavirus 

infection

19.09 0.005787239 – – – – HPV infection is associated 

with increasing risk of 

PCa, indicating a potential 

pathogenetic link between 

HPV and prostate cancer 

(Yin et al., 2017).

hsa05012 Parkinson disease 6.34 0.005882045 – 0.895565575 – –

hsa04070 Phosphatidylinositol 

signaling system

6.06 0.007170858 0.47255633 0.592215095 – – Deregulation PI3 kinase 

signaling is implicated in 

prostate carcinogenesis 

(Elfiky and Jiang, 2013).

hsa04750 Inflammatory 

mediator regulation 

of TRP channels

10.1 0.007170858 0.47255633 – – – TRP channels have 

emerged as key proteins 

in central mechanisms of 

the carcinogenesis such as 

cell proliferation, apoptosis 

and migration (Gkika and 

Prevarskaya, 2011).

hsa04933 AGE-RAGE 

signaling pathway 

in diabetic 

complications

31 0.007170858 – – – –

hsa05231 Choline metabolism 

in cancer

27.27 0.007170858 – – – – Core cancer pathway. 

Choline metabolites can 

be used as potential 

prognostic biomarkers 

for the management of 

prostate cancer patients 

(Awwad et al., 2012).

hsa04730 Long-term 

depression

23.33 0.007411265 0.29433246 0.228920589 – –

hsa04152 AMPK signaling 

pathway

15.83 0.007412407 – – – – First identified as a master 

regulator of metabolism, 

AMPK may have numerous 

roles beyond metabolism. 

AMPK signaling can have 

context-dependent effects 

in prostate cancer (Khan 

and Frigo, 2017).

hsa05210 Colorectal cancer 51.16 0.007572536 – 0.53576482 – 0.8859366

hsa04660 T cell receptor 

signaling pathway

31.68 0.007759806 – 0.999737262 – – T-cell receptor signaling 

modulates control of anti-

cancer immunity (Cronin 

and Penninger, 2007).

hsa04916 Melanogenesis 20.79 0.007759806 0.23117007 0.191012563 – –

(Continued)
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TABLE 3 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04922 Glucagon signaling 

pathway

11.65 0.008383558 – – – –

hsa04971 Gastric acid 

secretion

8 0.008625239 0.17201492 0.174150166 – –

hsa05164 Influenza A 15.79 0.009418672 – 0.871606688 – –

hsa05230 Central carbon 

metabolism in 

cancer

49.23 0.00943342 – – – – Core cancer pathway.

hsa05163 Human 

cytomegalovirus 

infection

24 0.010897057 – – – –

hsa04920 Adipocytokine 

signaling pathway

18.84 0.011289828 – 0.573213367 – – Adipocytokines are 

implicated in many 

cancers, including PCa 

(Housa et al., 2006).

hsa05130 Pathogenic 

Escherichia coli 

infection

10.91 0.012638019 – 0.914414969 – –

hsa05160 Hepatitis C 22.58 0.012701709 – 0.952731561 – –

hsa05168 Herpes simplex 

infection

10.81 0.012818879 – 0.999737262 – –

hsa04934 Cushing syndrome 22.73 0.012968007 – – – –

hsa04662 B cell receptor 

signaling pathway

42.25 0.015323796 – 0.871606688 – –

hsa05418 Fluid shear stress 

and atherosclerosis

18.71 0.016016719 – – – –

hsa05216 Thyroid cancer 70.27 0.016672034 – 0.77019655 – –

hsa05221 Acute myeloid 

leukemia

50 0.018273818 – 0.916809245 0.9737256 0.9253648

hsa04371 Apelin signaling 

pathway

13.14 0.019388476 – – – – Various apelin peptides 

can stimulate tumor growth 

and proliferation of many 

types of cancer cells, 

including PCa (Wysocka 

et al., 2018).

hsa05016 Huntington disease 10.88 0.019575207 – 0.887106943 1 0.9790702

hsa04911 Insulin secretion 11.76 0.021091491 0.02334547 – – –

hsa04917 Prolactin signaling 

pathway

31.43 0.021797194 – – – – Prolactin signalling 

promotes prostate 

tumorigenesis and may be 

targeted for therapy (Goffin 

et al., 2011; Sackmann-

Sala and Goffin, 2015).

hsa03440 Homologous 

recombination

24.39 0.027879334 – – 0.82518643 0.88681024 Homologous 

recombination offers a 

model for novel DNA repair 

targets and therapies in 

PCa (Bristow et al., 2007).

hsa04713 Circadian 

entrainment

10.31 0.028299959 0.11376372 – – –

hsa03013 RNA transport 5.45 0.029590861 – 0.887106943 – – Many common and 

specialized mRNA export 

factors are dysregulated 

in cancer (Siddiqui and 

Borden, 2012).

hsa04260 Cardiac muscle 

contraction

6.41 0.030119546 – – – 0.92371947

hsa05161 Hepatitis B 31.29 0.031074222 – – – –

hsa04666 Fc gamma 

R-mediated 

phagocytosis

20.88 0.032172546 – 0.838868067 – –

hsa04976 Bile secretion 4.23 0.032183139 – 0.77019655 – –
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presented above, we analyzed the numbers of direct interactions 
of input genes in each PIN. These results are presented as Venn 
diagrams in Supplementary Figure 2. It is striking that there are only 
nine common interactions of RA DEGs in all PINs (although there 
are 54 common interactions in PINs except KEGG). The findings 
are similar for the CRC and PCa datasets: there are 11 common CRC 
DEG interactions in all PINs (81 in PINs except KEGG), and 5 PCa 
DEG interactions (56 in PINs except KEGG).

In case of utilizing KEGG PIN and KEGG pathways, the same 
interactions for both subnetwork interaction and enrichment 
analysis are considered. This approach does not introduce any 
extra information to the analysis, and it is clear that interacting 
gene groups in the KEGG PIN will be enriched in KEGG 
pathways. This explains the high number of pathways obtained 
using the KEGG PIN. Moreover, it is known that pathways in 
pathway databases may be strongly biased by some classes of 
genes or phenotypes that are popular targets, such as cancer 

signaling (Liu et al., 2017a). Therefore, the PIN obtained 
through KEGG pathway interactions are biased. Biogrid has the 
highest coverage for direct interactions among DEGs as seen in 
Supplementary Figure 2. It is unbiased in terms of phenotypes, 
and using Biogrid to extract KEGG pathways combines the two 
sources of information. 

Considering all of the above-mentioned findings, we conclude 
that utilizing the Biogrid PIN can provide the researcher with the 
most extensive enrichment results.

DISCUSSION

PathfindR is an R package that enables active subnetwork-
oriented pathway analysis, complementing the gene-phenotype 
associations identified through differential expression/
methylation analysis. 

TABLE 3 | Continued

ID Pathway % CGC 

genes

pathfindR DAVID SPIA GSEA GSEAPreranked Brief Description

hsa04024 cAMP signaling 

pathway

14.57 0.035154932 0.12151133 – – – Dysregulation cAMP 

signaling was implicated 

in many cancer types, 

including PCa (Fajardo 

et al., 2014).

hsa05226 Gastric cancer 30.87 0.035466235 – – – –

hsa04622 RIG-I-like receptor 

signaling pathway

7.14 0.036168176 – 0.678606672 0.998692 1

hsa04150 mTOR signaling 

pathway

16.45 0.03639603 – 0.608898009 0.97279966 0.8907857 mTOR signaling is 

implicated in prostate 

cancer progression and 

androgen deprivation 

therapy resistance (Edlind 

and Hsieh, 2014).

hsa04064 NF-kappa B 

signaling pathway

17.89 0.036565869 – 0.999737262 – – The NF-kappa B signaling 

pathway controls the 

progression of Pca (Jin 

et al., 2008).

hsa04970 Salivary secretion 6.67 0.038144831 0.35044831 0.228920589 – –

hsa04658 Th1 and Th2 cell 

differentiation

19.57 0.040720473 – – – – T helper cells are important 

in cancer immunity 

(Knutson and Disis, 2005).

hsa04370 VEGF signaling 

pathway

33.9 0.043130708 – 0.889535144 – – Angiogenesis has been 

shown to play an important 

role in tumorigenesis, 

proliferation and metastasis 

in PCa. Various promising 

agents that target VEGF 

signaling have been tested 

(Aragon-Ching and Dahut, 

2009).

hsa04725 Cholinergic 

synapse

18.75 0.04793374 0.13876451 0.129551973 – –

hsa00120 Primary bile acid 

biosynthesis

0 – – – 0.78211117 <0.001

“ID” indicates the Kyoto Encyclopedia of Genes and Genomes (KEGG) ID for the enriched pathway, whereas “Pathway” indicates the KEGG pathway name. “% CGC genes” 

indicates the percentage of Cancer Gene Census (CGC) genes in the pathway. The lowest Bonferroni-adjusted p value for pathfindR analysis is provided in “pathfindR,” the false 

discovery rate (FDR)-adjusted p value for Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis is provided in “DAVID,” the FDR-adjusted p value for 

Signaling Pathway Impact Analysis (SPIA) is presented in “SPIA,” and the FDR-adjusted p values for Gene Set Enrichment Analysis (GSEA) and GSEAPreranked are presented in 

“GSEA” and “GSEAPreranked,” respectively. Significant p values (i.e., adjusted p value < 0.05) are given in bold font. “-“ indicates the pathway was not found to be enriched by the 

given tool. If a pathway is relevant to PCa, a brief description of its relevance is provided in “Brief Description.”
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In most gene set enrichment approaches, relational information 
captured in the graph structure of a PIN is overlooked. Hence, 
during these analyses, genes in the network neighborhood of 
significant genes are not taken into account. The approach we 
considered for exploiting interaction information to enhance 
pathway enrichment analysis was active subnetwork search. In 

a nutshell, active subnetwork search enables inclusion of genes 
that are not significant genes themselves but connect significant 
genes. This results in the identification of phenotype-associated 
connected significant subnetworks. Initially identifying active 
subnetworks in a list of significant genes and then performing 
pathway enrichment analysis of these active subnetworks efficiently 

FIGURE 5 | Distributions of disease-associated genes in the enriched pathways. Boxplots displaying the distributions of the percentages of disease-related genes 

in the pathways found to be enriched by pathfindR, Database for Annotation, Visualization and Integrated Discovery (DAVID), Signaling Pathway Impact Analysis 

(SPIA), Gene Set Enrichment Analysis (GSEA), and GSEAPreranked in the datasets rheumatoid arthritis (RA), colorectal cancer (CRC), and prostate cancer (PCa). 

No boxplot for a tool in a particular dataset indicates that the given tool did not identify any enriched pathways in the given dataset. (A) Boxplots for all the results 

filtered for adjusted-p ≤ 0.05. (B) Boxplots for all the results filtered for adjusted-p ≤ 0.1. (C) Boxplots for all the results filtered for adjusted-p ≤ 0.25.

FIGURE 6 | Distributions of the number of enriched pathways for actual vs. permuted data. Histograms displaying the distributions of the number of enriched 

pathways for actual and permuted data for input sizes of 200, 300, 400, 500, and 572. The x axes correspond to the number of enriched pathways, and the y axes 

correspond to relative frequencies. On the right bottom, a table summarizing the results is provided.
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exploits interaction information between the genes. This, in turn, 
helps uncover relevant phenotype-related mechanisms underlying 
the disease, as demonstrated in the example applications.

Through pathfindR, numerous relevant pathways were 
identified in each example. The literature-supported disease-
related pathways mostly ranked higher in the pathfindR results. 
The majority of additional pathways identified through pathfindR 
were relevant to the pathogenesis of the diseases under study, 
as supported by literature. A separate confirmation of disease-
relatedness was provided by analysis of the distributions of the 
percentage of disease genes in the identified pathways. This analysis 
revealed that pathfindR pathways contained the highest median 
percentages of disease-related genes in each dataset regardless of 
significance cutoff value, implying that the pathways identified by 
pathfindR are indeed associated with the given disease. Together, 
these two assessments of disease-relatedness of pathways indicate 
that pathfindR produces pathway enrichment results at least as 
relevant as the other tools widely used for enrichment analysis.

We propose that pathfindR performed better than the 
analyzed pathway analysis tools because, for enrichment analysis, 
it included disease-related genes that were not in the DEG list 
but that were known to interact with the DEGs, which most 
enrichment tools disregard. By performing enrichment analyses 
on distinct sets of interacting genes (i.e., active subnetworks), 
pathfindR also eliminated “false positive” genes that lacked any 
strong interaction. The above findings indicate that incorporating 
interaction information prior to enrichment analysis results in 
better identification of disease-related mechanisms.

This package extends the use of the active-subnetwork-oriented 
pathway analysis approach to omics data. Additionally, it provides 
numerous improvements and useful new features. The package 
provides three active subnetwork search algorithms. The researcher 
is therefore able to choose between the different algorithms to 
obtain the optimal results. For the greedy and simulated annealing 
active subnetwork search algorithms, the search and enrichment 
processes are executed several times. By summarizing results over 
the iterations and identifying consistently enriched pathways, the 
stochasticity of these algorithms is overcome. Additionally, the 
researcher is able to choose from several built-in PINs and can 
use their own custom PIN by providing the path to the SIF file. 
The researcher is also able to choose from numerous built-in gene 
sets, listed above, and can also provide a custom gene set resource. 
pathfindR also allows for clustering of related pathways. This allows 
for combining relevant pathways together, uncovering coherent 
“meta-pathways” and reducing complexity for easier interpretation 
of findings. This clustering functionality also aids in eliminating 
falsely enriched pathways that are initially found because of their 

similarity to the actual pathway of interest. The package also allows 
for scoring of pathways in individual subjects, denoting the pathway 
activity. Finally, pathfindR is built as a stand-alone package, but it can 
easily be integrated with other tools, such as differential expression/
methylation analysis tools, for building fully automated pipelines.

To the best of our knowledge, pathfindR is the first and, so 
far, the only R package for active-subnetwork-oriented pathway 
enrichment analysis. It also offers functionality for pathway 
clustering, scoring, and visualization. All features in pathfindR 
work together to enable identification and further investigation 
of dysregulated pathways that potentially reflect the underlying 
pathological mechanisms. We hope that this approach will 
allow researchers to better answer their research questions and 
discover mechanisms underlying the phenotype being studied.
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