
REVIEW ARTICLE
published: 18 December 2013
doi: 10.3389/fphar.2013.00156

Pathobiology of cancer chemotherapy-induced peripheral
neuropathy (CIPN)
Yaqin Han1,2 and Maree T. Smith1,2*

1 Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD, Australia
2 School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia

Edited by:

Susan Hua, The University of
Newcastle, Australia

Reviewed by:

Joel S. Greenberger, University of
Pittsburgh Medical
Center-Shadyside, USA
Andreas Bergdahl, Concordia
University, Canada

*Correspondence:

Maree T. Smith, Centre for
Integrated Preclinical Drug
Development, The University of
Queensland, Level 3, Steele
Building, St. Lucia Campus,
Brisbane, QLD 4072, Australia
e-mail: maree.smith@uq.edu.au

Chemotherapy induced peripheral neuropathy (CIPN) is a type of neuropathic pain that
is a major dose-limiting side-effect of potentially curative cancer chemotherapy treatment
regimens that develops in a “stocking and glove” distribution. When pain is severe, a
change to less effective chemotherapy agents may be required, or patients may choose
to discontinue treatment. Medications used to alleviate CIPN often lack efficacy and/or
have unacceptable side-effects. Hence the unmet medical need for novel analgesics for
relief of this painful condition has driven establishment of rodent models of CIPN. New
insights on the pathobiology of CIPN gained using these models are discussed in this
review. These include mitochondrial dysfunction and oxidative stress that are implicated as
key mechanisms in the development of CIPN. Associated structural changes in peripheral
nerves include neuronopathy, axonopathy and/or myelinopathy, especially intra-epidermal
nerve fiber (IENF) degeneration. In patients with CIPN, loss of heat sensitivity is a hallmark
symptom due to preferential damage to myelinated primary afferent sensory nerve fibers
in the presence or absence of demyelination. The pathobiology of CIPN is complex as
cancer chemotherapy treatment regimens frequently involve drug combinations. Adding
to this complexity, there are also subtle differences in the pathobiological consequences
of commonly used cancer chemotherapy drugs, viz platinum compounds, taxanes,
vincristine, bortezomib, thalidomide and ixabepilone, on peripheral nerves.
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INTRODUCTION
Chemotherapy-induced peripheral neuropathy (CIPN) is a com-
mon and potentially dose-limiting side effect of many cancer
chemotherapy drug treatment regimens (Burton et al., 2007). The
prevalence of CIPN varies from 10 to 100% depending upon the
particular anticancer drug or drug combination administered, the
dosing regimen, the methods of pain assessment and the particu-
lar patient situation (Balayssac et al., 2011). The development of
CIPN may result in dose reduction of the cancer chemotherapy
agents or a switch to less efficacious agents or even cessation of
treatment in the extreme (Gutiérrez-Gutiérrez et al., 2010).

Typically, CIPN presents in patients with a “stocking and
glove” distribution in the feet and hands, respectively, due
to the vulnerability of the long nerves (Boland et al., 2010).
Sensory symptoms that are commonly reported include paresthe-
sia, dysesthesia, allodynia, hyperalgesia, hypoalgesia or pain that
is burning, shooting or electric-shock-like (Boland et al., 2010).
Painful symptoms may persist well beyond discontinuation of
treatment (so called “coasting”) (Quasthoff and Hartung, 2002)
resulting in a condition as painful or more painful than the orig-
inal cancer. Furthermore, although slow recovery of peripheral
nerve damage may occur in patients with CIPN, this is not always
the case and so pain may persist (Peltier and Russell, 2002).

Anticancer drugs that most commonly induce CIPN are
platinum compounds (cisplatin and oxaliplatin), spindle

poisons/antitubulins including vincristine and paclitaxel (Wolf
et al., 2008; Balayssac et al., 2011), and some newer agents such as
the proteasome inhibitor, bortezomib (Hoy, 2013), ixabepilone
(Goel et al., 2008) and thalidomide (Kocer et al., 2009). A wide
range of solid and hematological malignancies are treated with
these compounds and polychemotherapy schedules are used to
enhance treatment effectiveness (Cavaletti and Marmiroli, 2010).
However, the latter also increase the risk of CIPN (Burton et al.,
2007; Argyriou et al., 2013).

The prevalence of cancer is increasing globally with an esti-
mated 17 million new cases projected by 2020 (Kanavos, 2006;
Paice, 2011). Cancer survival rates have increased dramatically
as new treatments and older therapies are refined to have a
greater antitumor effect. This means that the landscape of “can-
cer pain” has shifted into a form of long term chronic pain
in many instances (Burton et al., 2007). In clinical practice,
CIPN is poorly diagnosed and under-treated to the detriment of
patient quality-of-life and there is no proven method for preven-
tion of CIPN (Balayssac et al., 2011). Although drugs used to
provide symptomatic relief of CIPN often lack efficacy and/or
have unacceptable side-effects (Balayssac et al., 2005), a recent
5-week randomized, placebo-controlled clinical trial found that
oral duloxetine at 60 mg daily produced significant relief of CIPN
above placebo (Smith et al., 2013). Despite these promising find-
ings, there is nevertheless a large unmet medical need for novel,
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well-tolerated analgesic agents to improve relief of CIPN. In the
past decade, new insights on the mechanisms underpinning the
pathogenesis of CIPN (Balayssac et al., 2011) have been made pos-
sible by the advent of rodent models enabling new targets to be
identified for use in pain therapeutics discovery programs. Such
studies are discussed in the following sections of this review.

STRUCTURAL CHANGES IN PERIPHERAL NERVES
Cancer chemotherapy agents may differentially affect specific
peripheral nervous system (PNS) structures to produce neu-
ronopathy, axonopathy and/or myelinopathy that contribute to
the pathogenesis of painful CIPN (Ocean and Vahdat, 2004;
Balayssac et al., 2011) (Table 1 and Figure 1).

Cancer chemotherapy-induced peripheral nerve injury
appears to be due primarily to axonopathy (McDonald et al.,
2005; Persohn et al., 2005; Gilardini et al., 2012) that is seen
both in patients with CIPN (Cata et al., 2007; Burakgazi et al.,
2011) and in rodent models of CIPN (Cavaletti et al., 2007;
Boyette-Davis et al., 2011). Thus, peripheral nerve degeneration
or small fiber neuropathy is generally accepted as underpinning
the development of CIPN (Liu et al., 2010; Boyette-Davis et al.,
2011; Burakgazi et al., 2011; Wang et al., 2012).

THE LONGEST AXONS ARE THE FIRST AFFECTED
Peripheral nerves contain a variety of nerve fibers that differ in
their respective morphology, degree of myelination, function and
biochemical features (Gutiérrez-Gutiérrez et al., 2010). These var-
ious fiber types are differentially sensitive to the neurotoxic effects
of cancer chemotherapy agents with the longest nerves having
the greatest vulnerability (Wilkes, 2007; Gutiérrez-Gutiérrez et al.,
2010). This may be related to their higher metabolic requirements
(Chen and Chan, 2006; Mironov, 2007). Clinically, symptoms
develop initially in the feet and hands, followed by proximal
progression to the ankles and wrists in a “stocking and glove”
distribution (Lomonaco et al., 1992; Wolf et al., 2008).

MYLELINATED FIBERS ARE DAMAGED WITH/WITHOUT ALTERED
MYELIN STRUCTURE WHEREAS UNMYELINATED FIBERS ARE MOSTLY
UNAFFECTED
Myelin is a lipid- and protein-rich sheath that insulates axons
and facilitates faster conduction of nerve impulses compared with
unmyelinated axons (Gilardini et al., 2012). Although myelinated
fibers are damaged (Cata et al., 2006), perhaps even by preferen-
tial selection (Cavaletti et al., 1995; Dougherty et al., 2004), the
extent to which demyelination is a key pathobiological event in
CIPN is unclear. For example, using X-ray diffraction capable of
detecting even subtle changes in the myelin structure, there were
no structural alterations in the myelin sheath of the sciatic and
optic nerves in rat models of CIPN induced using cisplatin, pacli-
taxel or bortezomib (Gilardini et al., 2012). These findings mirror
the findings of earlier work that used fixed tissues (spinal cord and
DRGs) from rodents administered the same cancer chemother-
apy agents (Cavaletti et al., 1995) as well as from humans with
paclitaxel-induced CIPN (Postma et al., 1995). In patients with
bortezomib-induced CIPN, approximately 50% had pure small
fiber neuropathy whereas the remainder had mixed small and
large fiber involvement (Richardson et al., 2009).

In rat models of paclitaxel, cisplatin and bortezomib-induced
CIPN, there were no clear-cut changes in the structure of intern-
odal myelin (Gilardini et al., 2012). However, higher dosages of
bortezomib were associated with an increased risk of periph-
eral nerve degeneration and possibly demyelination in contrast to
lower dosages that nevertheless induced neuropathic pain behav-
iors (Zheng et al., 2012) (Table 1). In earlier work in patients
administered paclitaxel, sural nerve biopsy revealed severe nerve
fiber loss, axonal atrophy (with absence of axonal regeneration)
and secondary demyelination (Sahenk et al., 1994). These periph-
eral nerve changes argue more for ganglionopathy than axonopa-
thy as the most likely structural change in paclitaxel-induced
neurotoxicity (Sahenk et al., 1994).

SLOWING OF SNCV MAY NOT BE DUE TO DEMYELINATION OR
DEGENERATION OF PERIPHERAL NERVE AXONS
In CIPN, reduced sensory nerve conduction velocity (SNCV)
(Gilardini et al., 2012; Xiao et al., 2012), can only be attributed
reliably to myelinopathy if it is associated with preserved
nerve compound action potentials (Gilardini et al., 2012).
Unfortunately, the technical limitations of current neurophys-
iological methods do not allow the relative contributions of
demyelination and axonal degeneration on reduced SNCV in
CIPN to be assessed (Gilardini et al., 2012). In rats with docetaxel-
induced CIPN, reduced levels of myelin and mRNA encoding
myelin suggest that myelin is targeted in experimental peripheral
neuropathies (Roglio et al., 2009). These findings are consis-
tent with observations of taxane-induced axonal damage and
secondary demyelination (Sahenk et al., 1994; Quasthoff and
Hartung, 2002; Windebank and Grisold, 2008). The extent to
which individual anticancer agents or treatment combinations
induce differential structural changes in peripheral nerves, is cur-
rently unclear. This is a knowledge gap that requires systematic
investigation in rodent models for comparison with the changes
observed in skin biopsy specimens from patients with CIPN.

IENF LOSS WITHOUT DEGENERATION OF PERIPHERAL NERVE AXONS
AND ASSOCIATED WITH MITOCHONDRIAL DYSFUNCTION
Unmyelinated fibers and terminal nerve arbors are major sites of
cancer chemotherapy-induced neurotoxicity (Grisold et al., 2012)
such that intraepidermal nerve fiber (IENF) loss or terminal arbor
degeneration is proposed as a common lesion in various toxic
neuropathies (Bennett et al., 2011; Zheng et al., 2012).

In a rodent model of paclitaxel-induced CIPN, significant
IENF degeneration was not apparent by approximately 10 days
after initiation of the paclitaxel treatment regimen (2 mg/kg on
4 alternate days) with peak effects observed several days later
(Xiao et al., 2011). IENF degeneration and the development of
pain behavior appear to be linked as both have similar delays
to onset and peak effects (Xiao et al., 2011). Using electron
microscopy at the time of peak pain severity, there were no signs
of axonal degeneration in the saphenous nerve of these animals
at a level just below the knee joint (Flatters and Bennett, 2006).
Additionally, upregulation of activating transcription factor-3
(ATF-3) expression, a marker of axonal injury (Tsujino et al.,
2000), was not observed in the nuclei of afferent neurons (Flatters
and Bennett, 2006). Similar findings have been observed in rat
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Table 1 | Effects of clinically used cancer chemotherapy agents on peripheral nerve structure in rodent models of CIPN.

Chemotherapy agent Dosing regime Rodents PNS tissue examined Extent of peripheral nerve

damage

References

Bortezomib ip, 0.2 mg/kg, 5
consecutive days

Male SD rats Saphenous nerve
DRGs and IENFs

IENF decrease but no
degenerating axons
No DRG neurons with ATF-3
positive nuclei

Zheng et al.,
2012

iv, 0.08, 0.15, 0.2,
0.3 mg/kg, 2 or 3
times a week, 4
weeks

Female Wistar
rats

Sciatic nerves Mild to moderate pathological
changes involving predominantly
Schwann cells and myelin;
primarily characterized by myelin
sheath degeneration and axonal
degeneration. Unmyelinated
fibers were unaffected

Cavaletti et al.,
2007

iv, 0.2 mg/kg
×3/week, 4 weeks

Female Wistar
rats

Sciatic nerves
Optic nerves

No pathological changes in axons
and the surrounding myelin
sheath
Myelin degeneration in a limited
number of fibers, optic nerves
normal

Gilardini et al.,
2012

iv, 0.15/0.2 mg/kg ×
3/week, 8 weeks

Female Wistar
rats

Sciatic nerves
DRGs

Nerve fiber degeneration, loss of
axonal structures in the most
severe cases
No morphological alteration in
most DRG neurons and satellite
cells

Meregalli et al.,
2010

iv, 0.4/0.8 mg/kg ×
2/week, 4 weeks

Female BALB/c
mice

DRGs
Sciatic nerves

No pathological changes in DRGs
Axonal degeneration in sciatic
nerves at higher dose

Carozzi et al.,
2010a

sc, 0.8, 1 mg/kg ×
2/week or × 2/ week,
6 weeks

Swiss OFI
female mice

Sciatic and tibial
nerves
Plantar pads

Lower density of myelinated large
fibers and decreased fiber
diameter but no signs of
degeneration

Bruna et al.,
2010

Cisplatin ip, 1 mg/kg ×3 /week,
2 mg/kg × 2/ week,
3 mg/kg ×1/week,
5 weeks

Male SD rats Lumbar spinal cord
Sciatic nerve and paw
skin

Myelin sheath remains normal
Unmyelinated fibers were
unaffected

Authier et al.,
2003a

ip, 3 mg/kg every 3
days, 4 weeks

Male Wistar
rats

Sciatic nerves Degenerated myelinated axons
with altered myelin band and
altered unmyelinated axons;
axonal damage without
demyelination

Arrieta et al.,
2011

ip, 2/4 mg/kg ×
2/week, 4 weeks

Female BALB/c
mice
Wistar rats

DRGs
Sciatic nerves

No pathological changes in the
DRGs
Mild pathological changes at
higher dosage regimen in sciatic
nerves

Carozzi et al.,
2010a; Gilardini
et al., 2012

ip, 2 mg/kg, 2/week in
4.5 weeks

Male Wistar
rats

Sciatic nerves Focal areas of demyelination and
degeneration

Al Moundhri
et al., 2013

Oxaliplatin ip, 2 mg/kg, 5
consecutive days

Male SD rats Saphenous nerves and
IENFs

Oxaliplatin evoked SNCV slowing
occurred in the absence of
demyelination or degeneration of
peripheral nerve axons

Xiao et al., 2012

(Continued)
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Table 1 | Continued

Chemotherapy agent Dosing regime Rodents PNS tissue examined Extent of peripheral nerve

damage

References

ip, 2 mg/kg, 4
alternate days

Male SD rats Nerve fibers Significantly fewer IENFs Boyette-Davis
and Dougherty,
2011

ip, 4 mg/kg, 2/week in
4.5 weeks

Male Wistar
rats

Sciatic nerves Focal areas of demyelination and
degeneration

Al Moundhri
et al., 2013

ip, 3, 6 or 12 mg/kg,
single

Male SD
rats

Lumbar spinal cord No difference in immunoreactivity
for CGRP but substance P was
significant higher than for vehicle
control group (12 vs. 5%)

Ling et al., 2007

Vincristine iv, 50, 100 and
150 μg/kg, every
second day, up to five
injections

Male SD
rats

Paw skin Myelin sheaths remained
unaffected

Authier et al.,
2003b

ip, 0.2 mg/kg
×1/week, 5 weeks,
0.1 mg/kg and
increase by
0.05 mg/kg each
week, 5 weeks

Male rats Sciatic nerve Reduction in action potential
amplitude associated with axonal
degeneration with or without
minor changes of segmental
demyelination

Ja’afer et al.,
2006

Paclitaxel ip, single 32 mg/kg Male SD rats Lumbar spinal cord,
Sciatic nerve and paw
skin

Axonal degenerative changes
while Schwann cells and myelin
sheaths remained normal

Authier et al.,
2000b

ip, 0.5, 1, 2, 6 or
8 mg/kg,
4 alternate days

Male SD rats DRGs
Sciatic nerves

No degeneration, no DRG
neurons with ATF-3 positive nuclei
No degeneration of myelinated or
unmyelinated axons

Polomano et al.,
2001; Flatters
and Bennett,
2006; Bennett
et al., 2011

iv, 18 mg/kg, D0 and
D3

Male SD rats DRGs
Sciatic nerve

ATF-3 upregulation Peters et al.,
2007

ip, 8 mg/kg × 2/week,
4 weeks

Male Wistar
rats

Sciatic nerves Axonal damage without
demyelination

Arrieta et al.,
2011

ip, 16mg/kg × 1/week,
4 weeks
iv, 5, 10, 12.5 mg/kg ×
1/week, 4 weeks

Female Wistar
rats

Axons
(sciatic nerve)

Most myelinated fibers have
normal histology, some fibers
show axonal degeneration

Persohn et al.,
2005

ip, 12.5 mg/kg ×
1/week,
9 weeks

Female Wistar
rats

DRGs Increased immunohistochemical
staining for ATF-3

Jamieson et al.,
2007

iv, 10 mg/kg × 1/week,
4 weeks

Female Wistar
rats

Sciatic nerves
Optic nerves

No pathological changes in axons
and surrounding myelin sheath

Gilardini et al.,
2012

iv, 18 mg/kg, twice,
every 3 days

Male SD rats Trigeminal ganglia
DRGs

Increased immunohistochemical
staining for ATF-3

Jimenez-
Andrade et al.,
2006

ip, 4.5 mg/kg,
25 mg/kg, or 60 mg/kg

Female
C57BL/6
mice

Sciatic nerves Macrophage-mediated
demyelination, axons completely
stripped of their myelin sheaths
and surrounded by the cytoplasm
of debris-filled phagocytes in
some cases

Mo et al., 2012

(Continued)
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Table 1 | Continued

Chemotherapy agent Dosing regime Rodents PNS tissue examined Extent of peripheral nerve

damage

References

ip, 8 or 16 mg/kg ×
1/week,
5 weeks

Female Wistar
rats

Sciatic/peroneal
nerves and DRGs

Decrease in number of large
myelinated fibers, but not due to
a reduction in myelin thickness,
mild axonal loss with minimal
demyelination

Cavaletti et al.,
1995

iv, 50.70 mg/kg, ×
1/week,
4 weeks

Female BALB/c
mice

DRGs
Sciatic nerves

No pathological changes Carozzi et al.,
2010a

ip, 30 mg/kg once or
several times at
different intervals

BDF1 mice Dorsal funiculus
Dorsal spinal roots
Peripheral nerves

Nerve fiber degeneration
characterized by axonal and
myelin fragmentations and
phagocytosis

Mimura et al.,
2000

ATF, activating transcription factor; CGRP, calcitonin gene-related peptide; DRG, dorsal root ganglia; IENFs, intraepidermal nerve fibers; iv, intravenous injection; ip,

intraperitoneal injection; sc, subcutaneous; SD, Sprague-Dawley; SNCV, sensory nerve conduction velocity.

FIGURE 1 | CIPN pathogenesis and associated morphologic changes. The
neurotoxic effects of cancer chemotherapy agents adversely affect multiple
components of the peripheral nervous system (PNS) including axons and cell
bodies of dorsal root ganglion (DRG) neurons to cause axonal damage (IENF
loss/terminal arbor degeneration), mitochondrial damage and oxidative stress
probably associated with inflammation. DRG neurons and their surrounding
satellite cells show pathological changes including alterations in levels of
expression of multiple ion channels (Xiao et al., 2007; Anand et al., 2010; Kaur
et al., 2010; Descoeur et al., 2011), neurotransmitters (Tatsushima et al.,

2011), and their receptors (Carozzi et al., 2010b; Mihara et al., 2011), as well
as altered gene expression (Alaedini et al., 2008). Mitochondrial dysfunction
and IENF loss appear to be important pathobiological features of CIPN that
are correlated directly with pain behaviors in rodent models (Flatters and
Bennett, 2006; Zheng et al., 2012). Indeed, direct mitochondrial DNA
(mtDNA) damage contributes to cisplatin-induced CIPN (Podratz et al., 2011).
Myelinated fibers are damaged (Cata et al., 2006) possibly by preferential
selection (Dougherty et al., 2004) but the extent to which demyelination is a
key pathobiological event is currently unclear.

models of vincristine, oxaliplatin and bortezomib-induced CIPN
such that neuropathic pain behaviors were associated with IENF
degeneration in the absence of peripheral nerve axonal degenera-
tion (Aley et al., 1996; Tanner et al., 1998; Topp et al., 2000; Siau
and Bennett, 2006; Bennett et al., 2011).

Clinically, there is IENF loss in patients with CIPN (Boyette-
Davis et al., 2011; Giannoccaro et al., 2011) despite these indi-
viduals having normal peripheral nerve axon counts (Holland
et al., 1998; Herrmann et al., 1999) and normal nerve conduction
results (Periquet et al., 1999; Devigili et al., 2008; Løseth et al.,
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2008). This led Holland et al. (1998) to coin the term “termi-
nal axonopathy” that is akin to the more recently promulgated
“terminal arbor degeneration” concept (Bennett et al., 2011). In
patients, an increase in the swelling ratio of IENFs appeared to
be predictive of a decrease in IENF density and this was corre-
lated with the severity of painful neuropathy induced in the feet
by paclitaxel (CIPN), diabetes, AIDS, and idiopathic neuropathy
(Schmidt et al., 1997; Lauria et al., 2003). However, adminis-
tration of much larger doses of cancer chemotherapy agents in
rats, such as paclitaxel either as a single bolus (12.5–32 mg/kg)
(Authier et al., 2000b; Jamieson et al., 2007) or as cumulative
doses (8 and 16 mg/kg once-weekly for 5 weeks) (Cavaletti et al.,
1995) or bortezomib at 2.4–4.8 mg/kg (Cavaletti et al., 2007;
Meregalli et al., 2010; Gilardini et al., 2012), resulted in degen-
eration of peripheral nerve axons and DRG neurons, together
with ATF-3 up-regulation in DRG neurons (Jamieson et al., 2007;
Peters et al., 2007). Thus, the extent to which peripheral nerve
axons are damaged by chemotherapy agents appear to be directly
related to the dosing regimen (Table 1).

Comparatively high concentrations of paclitaxel are found in
the DRGs relative to peripheral nerve and spinal cord (Herrmann
et al., 1999), that may be underpinned by the fact that the subepi-
dermal axon bundles in peripheral nerves lack a perineurium (a
component of the blood-nerve barrier). Additionally, anterograde
transport of paclitaxel from sensory neuron cell bodies to the
IENFs would take time for toxic levels to be reached in the termi-
nal arbors (Bennett et al., 2011). Such a lag period may potentially
explain the coasting effect, i.e., the delay between treatment ces-
sation relative to the loss of IENFs and the appearance of pain
hypersensitivity (Bennett et al., 2011).

IENF degeneration and abnormal spontaneous discharge of
primary afferent nerve fibers in rat models of CIPN may
be underpinned by mitochondrial dysfunction and consequent
energy deficiency (Boyette-Davis and Dougherty, 2011; Xiao
et al., 2012; Zheng et al., 2012). Mitochondria are concen-
trated in regions of high metabolic demand (Chen and Chan,
2006; Mironov, 2007) such as sensory terminal boutons that are
packed with mitochondria (Breathnach, 1977; Ribeiro-Da-Silva
et al., 1991; Bennett et al., 2011). The high energy requirement
of the intraepidermal terminal arbor is thought to be due, at
least in part, to the constant degeneration and regeneration (re-
modeling) of the arbor in its ever changing microenvironment
(Bennett et al., 2011). This is because the epidermis is in a con-
tinuous state of renewal with a total epidermal turnover time of
approximately 45 days in humans (Bergstresser and Taylor, 1977).

MITOCHONDRIAL DYSFUNCTION AND OXIDATIVE STRESS
Mitochondria are the energy-generating structures in cells with
their dysfunction implicated in the pathogenesis of cancer and
a range of neurodegenerative diseases (Florea and Büsselberg,
2011). Abnormalities in mitochondrial structure and func-
tion in peripheral sensory nerve fibers are postulated as key
CIPN mechanisms and appear to be correlated directly with
pain behavior (Flatters and Bennett, 2006; Zheng et al., 2012).
In multiple myeloma patients administered cycles of borte-
zomib in combination with dexamethasone, bortezomib toxic-
ity on mitochondria resulted in impairment of the electrogenic

Na+-K+-ATPase-dependent pump resulting in axonal mem-
brane depolarization that preceded axonal degeneration (Nasu
et al., 2013). In patients with vincristine and bortezomib-
induced CIPN, there were significant changes in the expression
of genes involved in the control of mitochondrial function in
myeloma plasma cells and peripheral blood (Broyl et al., 2010).
Interestingly, exposure of cultured DRG neurons to cisplatin
and paclitaxel in vitro induced mitochondrial damage that was
reversed by pretreatment with the antioxidant, α-lipoic acid
(Melli et al., 2008). Additionally, the development of CIPN
in rodent models (Table 2) and patients (Table 3) can be pre-
vented by treatment with drugs that enhance mitochondrial
function. Conversely, as mitochondrial poisons exacerbate neu-
ropathic pain behaviors in rodent models of CIPN (Xiao and
Bennett, 2012), CIPN appears to be linked to mitotoxicity
(Figure 1).

MITOTOXICITY
Direct mitochondrial DNA (mtDNA) damage
Cisplatin forms adducts with mitochondrial DNA resulting in
direct mitochondrial DNA (mtDNA) damage that is a novel
mechanism for cisplatin-induced CIPN and is distinct from
the established nuclear DNA (nDNA) damage pathway (Podratz
et al., 2011). DRG neurons accumulate high levels of cisplatin-
DNA adducts both in vitro and in vivo (McDonald et al., 2005;
Ta et al., 2006) such that the cisplatin concentration in the PNS is
comparable with that in tumor tissue (Gregg et al., 1992; Screnci
and McKeage, 1999; Melli et al., 2008).

Cisplatin-DNA adducts can be removed and DNA repaired
by the nucleotide excision repair (NER) system that is present
in nDNA (McDonald et al., 2005; Podratz et al., 2011), in con-
trast to mtDNA where the NER system is absent (Croteau et al.,
1999). Hence, cisplatin-mtDNA adducts inhibit mtDNA replica-
tion and mtRNA transcription to cause mitochondrial degrada-
tion (Podratz et al., 2011) in DRG neurons.

Increased mitochondrial swelling and vacuolation in peripheral
nerve axons
In rat models of paclitaxel, oxaliplatin and bortezomib-induced
CIPN, the number of swollen and vacuolated mitochondria in
the axons of A- and C-primary afferent sensory nerve fibers
was significantly higher (37.3 and 152%, respectively) than for
vehicle-treated control rats (Xiao et al., 2011, 2012; Zheng
et al., 2012). These changes resulted in mitochondrial dys-
function characterized by significant deficits in mitochondrial
respiration and ATP production that were rescued by prophy-
lactic treatment with acetyl-L-carnitine. The latter is an acety-
lated derivative of the natural amino acid, L-carnitine, that
has an essential role in the transport of long-chain free fatty
acids into mitochondria (Zheng et al., 2011, 2012). Interestingly,
there was a relative sparing of mitochondria in the correspond-
ing peripheral nerve Schwann cells (Flatters and Bennett, 2006;
Zheng et al., 2011, 2012; Xiao and Bennett, 2012; Xiao et al.,
2012).

In DRG satellite cells, bortezomib induced intracytoplasmic
vacuolation characterized by damage to mitochondria and the
endoplasmic reticulum (Cavaletti et al., 2007). These changes
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Table 2 | Summary of pharmacological agents that enhance mitochondrial function as well as prevent and/or alleviate CIPN in rodent models.

Pharmacological agent Rodent model Efficacy outcome Dose and route References

Acetyl-L-carnitine (antioxidant) Paclitaxel + (intervention) 100 mg/kg, p.o. Daily ×10 Flatters et al., 2006

Paclitaxel +(prophylactic) 50 and 100 mg/kg, p.o. Daily ×21 Flatters et al., 2006

Paclitaxel + (prophylactic and intervention) 100 mg/kg, s.c. Daily Ghirardi et al., 2005

Vincristine + (prophylactic and intervention) 100 mg/kg, s.c. Daily Ghirardi et al., 2005

Cisplatin + (prophylactic and intervention) 100 mg/kg, s.c. Daily Ghirardi et al., 2005

Oxaliplatin + (prophylactic and intervention) 100 mg/kg, s.c. Daily Orlando et al., 2005

Oxaliplatin + (prophylactic) 100 mg/ml/kg, p.o. Daily Xiao et al., 2012

Olesoxime Paclitaxel + (prophylactic) 3 or 30 mg/kg, p.o. Daily Xiao et al., 2009

Oxaliplatin + (prophylactic) 30 mg/ml/kg, p.o. Daily Xiao et al., 2012

Silibinin(antioxidant) Oxaliplatin + (prophylactic) 100 mg/kg, p.o. Daily Di Cesare Mannelli et al., 2012

Allopregnanolone Oxaliplatin + (prophylactic and intervention) 2 or 4 mg/kg, Every 2 or 4 days Meyer et al., 2011

p.o., per os; s.c., subcutaneous.

Table 3 | Clinical trial evidence for the role antioxidants in the relief of CIPN.

Medications Patients involved Chemotherapy agent Trial Efficacy Weather interfere

with anticancer

efficacy

References

α-Lipoic acid
(Treatment)

14 Docetaxel and isplatin Randomised Yes – Gedlicka et al., 2003

15 Oxaliplatin – Yes – Gedlicka et al., 2002

Acetyl-L-carnitine
(Treatment)

25 Cisplatin and/or Paclitaxel – Yes – Bianchi et al., 2005

27 Cisplatin and/or Paclitaxel – Yes – Maestri et al., 2005

409 Taxane-based RCT No; pain
worsened

– Hershman et al.,
2013

Glutathione
(Prevention)

31 Cisplatin Randomized Yes No Colombo et al., 1995

151 Cisplatin – Yes – Smyth et al., 1997

27 Oxaliplatin/5-fluorouracil/
leucovorin (FOLFOX)

Randomized Yes No Milla et al., 2009

52 Oxaliplatin-based RCT Yes – Cascinu et al., 2002

Amifostine
(Prevention)

92 Oxaliplatin (FOLFOX4) Randomized Yes No Lu et al., 2008

187 Paclitaxel and Carboplatin Randomized yes – Lorusso et al., 2003

27 Cisplatin and Paclitaxel – Not really – Moore et al., 2003

38 Paclitaxel and Carboplatin Randomized Yes – Kanat et al., 2003

72 Paclitaxel and
Carboplatin-based

RCT Yes ± Hilpert et al., 2005

Org 2766
(Prevention)

196 Cisplatin and
cyclophosphamide

– No – Roberts et al., 1997

55 Cisplatin and
cyclophosphamide

RCT Yes No van et al., 1990

N-acetylcysteine
(Prevention)

14 Cisplatin-based Randomized
placebo
controlled

Yes – Lin et al., 2006

RCT, Randomized, Double-Blind, Placebo-Controlled Trial.
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appear to be underpinned by activation of the mitochondrial-
based apoptotic pathway including caspase activation (Broyl et al.,
2010; Lee et al., 2012) as well as dysregulation of calcium home-
ostasis (Landowski et al., 2005). Paclitaxel-induced mitochondrial
damage was confined to the axons of primary afferent sensory
with sparing of motor neurons (Xiao et al., 2011). The high and
persistent exposure of primary sensory neuron cell bodies in the
DRGs to paclitaxel may contribute to this selective effect (Xiao
et al., 2011).

Opening of the mPTP and dysregulation of calcium homoeostasis
Paclitaxel opens the mitochondrial permeability transition pore
(mPTP), a multi-molecular complex containing a voltage-
dependent anion channel that induces mitochondrial calcium
release (Kidd et al., 2002; Flatters and Bennett, 2006). Acetyl-
L-carnitine can prevent mPTP opening (Pastorino et al., 1993)
and is associated with a reduction in paclitaxel, oxaliplatin and
bortezomib-induced CIPN when administered prophylactically
in rodents (Jin et al., 2008; Bujalska and Makulska-Nowak, 2009;
Carozzi et al., 2010b; Xiao et al., 2012; Zheng et al., 2012).

Mitochondria have a large calcium buffering capacity and so
impaired calcium uptake or increased calcium leakage from mito-
chondrial stores may have a pathological role in CIPN (Jaggi and
Singh, 2012). This notion is supported by the fact that vincristine-
induced neurotoxicity in rats was reversed by drugs that reduce
elevated intra-neuronal calcium concentrations (Muthuraman
et al., 2008; Kaur et al., 2010). In other work, increased expres-
sion levels of the α2δ subunit of voltage-gated Ca2+ channels in
the DRGs were correlated with the development of mechanical
allodynia (Luo et al., 2001). Conversely, drugs that bind to the
α2δ subunit such as gabapentin (Flatters and Bennett, 2004; Xiao
et al., 2007) and pregabalin (Saif et al., 2010; Nakashima et al.,
2012; Peng et al., 2012), as well as the L-type calcium channel
blocker, lercanidipine (Saha et al., 2012), showed efficacy for pre-
vention of CIPN in rodent models and patients (Nguyen and
Lawrence, 2004; Saif et al., 2010; Nakashima et al., 2012).

A retrospective review of 69 patients administered oxali-
platin concluded that calcium channel blockers reduce
CIPN (Tatsushima et al., 2013). Although intravenous
Ca2+/Mg2+infusions reportedly attenuate the development
of oxaliplatin-induced CIPN without compromising cancer
treatment efficacy (Wolf et al., 2008; Kurniali et al., 2010; Wen
et al., 2013), there are lingering concerns regarding a negative
effect on cancer chemotherapy treatment efficacy. Hence, this
needs to be evaluated for each class of cancer chemotherapy agent
(Kurniali et al., 2010).

OXIDATIVE STRESS
In a rat model of oxaliplatin-induced neuropathy, markers of
oxidative stress including lipid peroxidation, carbonylated pro-
teins, and DNA oxidation increased in the systemic circulation,
the sciatic nerve and the lumbar spinal cord (Di Cesare Mannelli
et al., 2012), with these changes prevented by antioxidant treat-
ment (Di Cesare Mannelli et al., 2012; Nasu et al., 2013). Similarly,
production of reactive oxygen species (ROS) was increased by
cisplatin (Florea and Büsselberg, 2011), and bortezomib (Wang
et al., 2011). In patients receiving docetaxel for the treatment of

cancer, the occurrence of grade ≥2 CIPN was more frequent in
individuals homozygous for GSTP1 105Ile allele, that encodes glu-
tathione S-transferase pi 1 (GSTP1), an enzyme involved in the
regulation of oxidative stress (Mir et al., 2009).

A role for oxidative stress in the pathobiology of CIPN is
supported by multiple in vitro and in vivo studies showing
that antioxidants have neuroprotective effects in CIPN (Table 2).
In particular, the non-specific ROS scavenger, phenyl N-tert-
butylnitrone (PBN), administered according to an intervention
protocol in rats administered paclitaxel, attenuated develop-
ment of mechanical (Kim et al., 2010) and cold hypersensi-
tivity in the hindpaws (Fidanboylu et al., 2011). Conversely,
for rats administered auranofin, a compound that increased
oxidative stress, oxaliplatin and paclitaxel-induced neuropathic
pain behaviors were exacerbated (Xiao and Bennett, 2012).
Furthermore, as the superoxide-specific scavenger, TEMPOL
(4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) neither allevi-
ated established paclitaxel-induced CIPN nor prevented its devel-
opment in rodents, ROS but not superoxide radicals alone, are
implicated in CIPN pathogenesis (Fidanboylu et al., 2011).

Although a benefit of antioxidants for the treatment and/or
prevention of CIPN has been shown in multiple clinical stud-
ies (Table 3), most did not report on their impact on anticancer
efficacy, and so this is a knowledge gap.

Increased spinal dorsal horn levels of peroxynitrite in rats
with paclitaxel-induced CIPN (Doyle et al., 2012) implicate a
role for reactive nitrogen species (RNS) in CIPN pathogenesis
(Kamei et al., 2005; Mihara et al., 2011). Augmented peroxyni-
trite production may occur via two mechanisms with the first
involving activation of nitric oxide synthase and NADPH oxi-
dase to induce formation of the peroxynitrite precursors, NO and
SO (Doyle et al., 2012). The second involves inactivation of the
enzyme (manganese superoxide dismutase) that catalyzes perox-
ynitrite degradation (Doyle et al., 2012). This latter mechanism is
supported by observations that peroxynitrite decomposition cat-
alysts (FeTMPyP5+ and MnTE-2-PyP5+) prevented development
of neuropathic pain behaviors in rat models of paclitaxel, oxali-
platin and bortezomib-induced CIPN (Doyle et al., 2012; Janes
et al., 2013).

CIPN-induced nitro-oxidative stress results in increased pro-
duction of proinflammatory cytokines (TNF-α and IL-1β),
reduced production of anti-inflammatory cytokines (IL-10 and
IL-4), as well as post-translational nitration of glutamate trans-
porters and glutamine synthetase in astrocytes, the net result
of which is enhanced pro-nociceptive glutamatergic signaling
(Doyle et al., 2012). Treatment strategies that shift the balance
in favor of anti-inflammatory cytokines have potential for slow-
ing the development and progression of peripheral neuropathy in
patients receiving cancer chemotherapy drugs (Wang et al., 2012).

LOSS OF HEAT SENSITIVITY IN CIPN
DIVERSE RESULTS OF HEAT SENSITIVITY IN CIPN
Primary afferent nerve fibers affected by cancer chemotherapy
drug treatment regimens often exhibit both positive and negative
sensory phenomena resulting in altered nociceptive thresholds
(Nahman-Averbuch et al., 2011). Increased nociceptive thresh-
olds may develop due to nerve fiber loss whereas reduced
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nociceptive thresholds may develop as a result of peripheral and
central sensitization (Nahman-Averbuch et al., 2011).

In general, there is heat hypoalgesia or a loss of heat sensi-
tivity in patients with CIPN (Dougherty et al., 2004; Cata et al.,
2006; Attal et al., 2009; Nahman-Averbuch et al., 2011) as well as
in most rodent models of this condition (Authier et al., 2000a,
2003a; Fischer et al., 2001; Cata et al., 2006, 2008; Garcia et al.,
2008; Hori et al., 2010; Xiao et al., 2012; Zheng et al., 2012).
Additionally, cold allodynia is a characteristic symptom of painful
CIPN in patients (Cata et al., 2006) as well as in rodent models
(Authier et al., 2003a,b; Cata et al., 2006; Xiao et al., 2012).

LOSS OF HEAT SENSITIVITY MAY RESULT FROM
SENSITIZATION/DESENSITIZATION OF TRPV1
Loss of heat sensibility may be due to myelinated A-fiber damage
and loss of transient receptor potential vanilloid 1 (TRPV1)-
expression (Woodbury et al., 2004) C-fibers (Dougherty et al.,
2004).

A small increase in ROS production activates transcriptional
machinery to enhance TRPV1 expression levels in C-fibers
(Suzukawa et al., 2000; Kishi et al., 2002; Schmeichel et al., 2003).
Additionally, nerve growth factor (NGF) facilitates increased
TRPV1 expression by nociceptive C-fibers and directly increases
the number of neurons that respond to noxious heat (Stucky and
Lewin, 1999; Amaya et al., 2004). Enhanced thermal sensitivity
results from sensitization (phosphorylation) of TRPV1, trans-
duced by protein kinase C (PKC) (Kamei et al., 2001; Di Marzo
et al., 2002; Hong and Wiley, 2005) and/or mitogen-activated
protein kinases (MAPK) (Ji et al., 2002; Clapham, 2003). In the
DRGs and hindpaw skin of hyperalgesic and hypoalgesic mice,
TRPV1 expression levels are increased and decreased, respectively
(Pabbidi et al., 2008). Thermal hypoalgesia may be underpinned
by reduced TRPV1 expression and function, that in turn may lead
to more serious complications (Pabbidi et al., 2008).

Other TRP channels implicated in the pathogenesis of CIPN
include TRPA1 that is expressed by nociceptors and is acti-
vated by oxidative stress. The transient benefit of the TRPA1
antagonist HC-030031 in mice with bortezomib or oxaliplatin-
induced CIPN, suggests a role for early activation/sensitization
of TRPA1 by oxidative stress by-products in establishment of
CIPN (Trevisan et al., 2013). Additionally, TRPV4 may con-
tribute to paclitaxel-induced mechanical hypersensitivity in CIPN
(Alessandri-Haber et al., 2004), whereas TRPA1 and TRPM8
over-expression were induced in the DRGs by oxaliplatin (Anand
et al., 2010; Descoeur et al., 2011). Cisplatin and oxaliplatin-
induced neurotoxicity of DRG neurons in rats results in p38
MAPK and ERK1/2 activation as well as a reduction in JNK/Sapk
phosphorylation (Scuteri et al., 2009, 2010). Apart from the fore-
going, a broad array of other molecular mechanisms have been
implicated in the pathobiology of CIPN and these have been
reviewed elsewhere (Jaggi and Singh, 2012; Wang et al., 2012) and
are summarized in Table 4.

BETWEEN CANCER CHEMOTHERAPY AGENT DIFFERENCES
IN THE PATHOBIOLOGY OF CIPN
CIPN affects sensory nerves predominantly; while motor, auto-
nomic or CNS (Schlegel, 2011) involvement is rare (Grisold

et al., 2012). Sensory nerves allow the perception of touch, pain,
temperature (small fiber); position, and vibration (large fiber)
(Wilkes, 2007). The persistent cumulative injury caused by cancer
chemotherapy agents most often affects sensory nerve cell bod-
ies in the DRGs (e.g., cisplatin) and/or the afferent and efferent
axons lying outside the spinal cord (e.g., paclitaxel, oxaliplatin)
(Quasthoff and Hartung, 2002).

It is generally assumed that platinum compounds irreversibly
bind to DNA thereby inducing apoptosis of primary sensory
neurons (Velasco and Bruna, 2010). Antitubulins (paclitaxel, doc-
etaxel and vincristine) bind to microtubules, interrupt axonal
transport, target the soma of sensory neurons as well as nerve
axons, to induce neuronal death (Bennett, 2010; Cavaletti and
Marmiroli, 2010; Velasco and Bruna, 2010). In cultured rat DRG
neurons, paclitaxel increased the release of the pro-nociceptive
neuropeptide, substance P, whereas oxaliplatin did not; the extent
to which this difference contributes to differences in paclitaxel
and oxaliplatin-induced peripheral nerve neurotoxicity, remains
to be determined (Tatsushima et al., 2011). In patients with CIPN,
sensory testing shows that peripheral nerve abnormalities appear
to have distinct features depending upon the cancer chemothera-
peutic agent involved (Cata et al., 2006), but the mechanistic basis
remains unclear (Gilchrist, 2012).

Conversely, it is also likely that one or more pathobiologic
mechanisms are shared among anticancer agents (Dougherty
et al., 2004; Grisold et al., 2012; Zheng et al., 2012). For example,
nerve biopsies from rodents and patients administered cisplatin
(Dougherty et al., 2004), paclitaxel, oxaliplatin, vincristine, and
bortezomib show similar morphological changes (loss of IENFs)
even though these compounds have different neurotoxic targets
(Flatters and Bennett, 2006; Bennett et al., 2011; Boyette-Davis
et al., 2011; Burakgazi et al., 2011; Pachman et al., 2011; Xiao et al.,
2012; Zheng et al., 2012). Additionally, mitotoxicity appears to be
a factor in common in the pathobiology of CIPN induced by the
taxane, paclitaxel, the platinum-complex agent, oxaliplatin, and
the proteasome-inhibitor, bortezomib, in rodent models (Zheng
et al., 2011, 2012; Xiao et al., 2012).

Although CIPN may share mediators in common with
other types of neuropathic pain, the disparity in efficacy of
anti-neuropathic agents suggests underlying mechanistic differ-
ences (Farquhar-Smith, 2011). For example, NGF deficiency
in peripheral nerves is a phenomenon in common between
cisplatin-induced CIPN (Cavaletti et al., 2002) and early diabetic
neuropathy (Anand, 2004). Hypersensitivity to heat is common
in the CCI-rat model of neuropathic pain, but it is very minor
or absent in rat models of CIPN (Bennett, 2010) and in patients
with either CIPN (Dougherty et al., 2004; Hershman et al., 2011)
or diabetic neuropathy (Sorensen et al., 2006; Nahman-Averbuch
et al., 2011). Such dissociations indicate that the pathophysio-
logical mechanisms responsible for peripheral nerve injury and
neuropathic pain are at least in part dependent upon the cause of
the nerve injury (Bennett, 2010).

CONCLUSION
CIPN is characterized by multiple sensory changes including the
development of (i) mechanical allodynia, whereby light pres-
sure or touch that would normally be perceived as innocuous,
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Table 4 | Molecular mechanisms implicated in the pathogenesis of CIPN.

Chemotherapy agents Rodent CIPN models and

human studies

Mechanism References

Cisplatin
Oxaliplatin

Male C57BL6 mice
Female Wistar
rats-cultured DRGs

Up-regulation of TRPV1, TRPA1
and TRPM8
TRPM8 and/or TRPA1
over-expression; respond to cold
allodynia

Anand et al., 2010; Ta et al.,
2010;
Descoeur et al., 2011;
Goswami, 2012

Cisplatin
Oxaliplatin

Male SD rats Activation of p38 MAPK and
ERK1/2, along with
downregulation of SAPK/JNK in
cultured DRGs

Scuteri et al., 2010

Vincristine
Paclitaxel

Male SD rats Calcium increase either by influx
of extracellular Ca2+or release
from mitochondrial intracellular
stores, binding to α2δ subunit of
Ca2+ channel; decreased calcium
flux

Xiao et al., 2007; Kaur et al.,
2010

Paclitaxel Human neuroblastoma cell
line, SHSY-5Y

Activation of calpain, degradation
of neuronal calcium sensor
(NCS-1), and loss of intracellular
calcium signaling

Benbow et al., 2012

Paclitaxel
Vincristine
Cisplatin
Oxaliplatin
Bortezomib

Female/male Wistar rats
Male SD rats

NMDA receptor antagonists
antagonize CIPN in prevention but
not intervention protocol or only
at high doses

Pascual et al., 2010; Mihara
et al., 2011

Oxaliplatin
Cisplatin
Vincristine

Male mice- C57BL6J
Male SD rats

DNA damage Brederson et al., 2012; Ta
et al., 2013

Oxaliplatin Male SD rats Increase in PKC activity in
supra-spinal regions

Norcini et al., 2009

Paclitaxel but Not Oxaliplatin Male SD rats- cultured
DRG

Increased release of substance P
and altered CGRP and
somatostatin release

Tatsushima et al., 2011

Cisplatin
Paclitaxel

Female patients
Female Wistar rats

Decrease in NGF levels by Total
Neuropathy
Score (TNS) in patient and in rat
plasma samples

Cavaletti et al., 2002, 2004

Oxaliplatin Patients
Rats

Dysfunction of axonal Na+
channels
Dysfunction of axonal K+channels

Park et al., 2011;
Kagiava et al., 2013

Vincristine Female Inbred C57BL mice Increase in 5-HT2A receptors in
dorsal horn and DRGs

Hansen et al., 2011

Paclitaxel Male C57BL/6 mice Antagonists of Kinin B1 and B2
receptors attenuate CIPN

Costa et al., 2011

Cisplatin
Paclitaxel

Male SD rats Activation of cannabinoid CB2
receptors

Deng et al., 2012

Paclitaxel Female WT and �
1-KO

CD-1mice
Antagonists of the sigma-1
receptor attenuate CIPN

Nieto et al., 2012

(Continued)
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Table 4 | Continued

Chemotherapy agents Rodent CIPN models and

human studies

Mechanism References

Oxaliplatin Patients Integrin beta-3 L33P is related
to CIPN severity but not the
development of CIPN

Antonacopoulou et al., 2010

Paclitaxel
Cisplatin

Male SD rats Inflammation Alaedini et al., 2008; Wang
et al., 2012

Taxol
Oxaliplatin

Balb/c mice Increased glial fibrillary acidic
protein expression in satellite
glial cells, and gap
junction-mediated coupling
between satellite glial cells

Warwick and Hanani, 2013

Oxaliplatin Male SD rats Activation of spinal astrocytes
accompanied by increased
expression of
astrocyte-astrocyte gap
junction connections via Cx43

Yoon et al., 2013

Activation of drug transporters
(nervous system transporters
including glutamate, copper
transporters, etc.)

Ceresa and Cavaletti, 2011

Patient’s genetic background Windebank and Grisold, 2008;
Broyl et al., 2010; Grisold
et al., 2012

CGRP, Calcitonin gene related peptide; IENFs, intraepidermal nerve fibers; MAPK, mitogen activated protein kinase; NMDA (N-methyl-D-aspartate) receptors; TRPV,

transient receptor potential vanilloid.

evokes pain, (ii) cold allodynia whereby cold temperature evokes
a painful sensation, (iii) slowing of SNCV, and (iv) loss of heat
sensitivity.

Although the precise pathobiology of CIPN remains to be fully
elucidated, recent research implicates “terminal arbor degenera-
tion” (Bennett et al., 2011) and the associated mitochondrial dys-
function and mitotoxicity (Podratz et al., 2011; Zheng et al., 2012)
as well as oxidative stress (Nasu et al., 2013). Additional investi-
gation is required to better define subtle between-chemotherapy
agent differences in the pathogenesis of CIPN as a means for
enhancing rational discovery of novel treatments with potential
to prevent and/or attenuate the development of CIPN.
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