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Abstract

Background: Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host.

Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial resistance genes

allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome

compositions, functioning, and disease, it is essential to identify virulence factors and antimicrobial resistance genes

in situ. At present, there is a clear lack of computational approaches to simultaneously identify these factors in

metagenomic datasets.

Results: Here, we present PathoFact, a tool for the contextualized prediction of virulence factors, bacterial toxins,

and antimicrobial resistance genes with high accuracy (0.921, 0.832 and 0.979, respectively) and specificity (0.957,

0.989 and 0.994). We evaluate the performance of PathoFact on simulated metagenomic datasets and perform a

comparison to two other general workflows for the analysis of metagenomic data. PathoFact outperforms all

existing workflows in predicting virulence factors and toxin genes. It performs comparably to one pipeline

regarding the prediction of antimicrobial resistance while outperforming the others. We further demonstrate the

performance of PathoFact on three publicly available case-control metagenomic datasets representing an actual

infection as well as chronic diseases in which either pathogenic potential or bacterial toxins are hypothesized to

play a role. In each case, we identify virulence factors and AMR genes which differentiated between the case and

control groups, thereby revealing novel gene associations with the studied diseases.

Conclusion: PathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence

factors, bacterial toxins, and antimicrobial resistance genes in metagenomic data. Additionally, our tool combines

the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides

further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, PathoFact’s

modules for virulence factors, toxins, and antimicrobial resistance genes can be applied independently, thereby

making it a flexible and versatile tool. PathoFact, its models, and databases are freely available at https://pathofact.

lcsb.uni.lu.
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Background
Most of the microorganisms constituting the human

microbiome are commensals [1]. They contribute essen-

tial functions to the human host and contribute to its

physiological development. In contrast, pathogenic mi-

croorganisms including bacteria, viruses, fungi, and

protozoa cause disease by invading, colonizing, and

damaging the host. Virulence factors, including bacterial

toxins among others, contribute to this pathogenicity by

enhancing not only the infectivity of pathogenic bacteria

but also by exacerbating antimicrobial resistance which

in turn restricts treatment options [1].

Virulence factors enable pathogenic microorganisms

to colonize host niches ultimately resulting in tissue

damage as well as local and systemic inflammation.

These factors are important for pathogens to establish

an infection and span a wide range, thus contributing

both directly and indirectly to disease processes [2].

These virulence traits include cell-surface structures, se-

cretion machineries, siderophores, regulators, etc. [3, 4].

However, of all virulence factors employed by pathogens,

bacterial toxins often have a crucial function in the

pathogenesis of infectious diseases [5]. Different types of

bacterial toxins have evolved over time to counteract hu-

man defenses. These bacterial toxins can be coarsely cat-

egorized into two groups: the cell-associated endotoxins

and the extracellular diffusible exotoxins. Exotoxins are

typically polypeptides and proteins that act to stimulate

a variety of host responses either through direct action

with cell receptors or via enzymatic modulation [5, 6].

Partly through the utilization of these virulence fac-

tors, and toxins in particular, pathogenic microorgan-

isms have been a major cause of infectious diseases

including in the context of viral co-infections [1]. The

development and medical use of antibiotics has limited

the development and spread of these pathogens by pro-

viding an effective treatment for bacterial infections.

However, the over- and mis-use of antibiotics has re-

sulted in a global increase in antimicrobial resistance

(AMR) which now threatens human health through the

emergence and spread of multidrug resistant bacteria [1,

7]. As a result, many pathogenic bacteria have now ac-

quired resistance against the main classes of antibiotics

which has led to a dramatic rise in untreatable infec-

tions, resulting in the emergence of so-called “superb-

ugs” [8]. Consequently, AMR is an urgent and growing

threat to public health with an estimated number of

deaths exceeding ten million annually by 2050 [9, 10].

The acquisition of antimicrobial resistance genes

(ARGs) is not restricted to a single strain or species of

bacteria. While commensal bacteria provide a source of

ARGs, antimicrobial resistance can be transferred to

pathogenic species through horizontal gene transfer, e.g.,

conjugation or transduction [11–13]. Therefore, to

understand the emergence and spread of ARGs, it is ne-

cessary to monitor microbial communities in situ. Meta-

genomic sequencing, in this context, represents a

pertinent technique for in situ studies as it provides less

biased views of the genomic complements of individual

microbial populations compared to amplicon-based

methods [14, 15].

Pathogenic microorganisms have modified and adapted

their virulence to host defense systems over millions of years.

Similarly, AMR is thought to have evolved over extensive pe-

riods of time in bacteria, indicating that it is an ancient

phenomenon [16]. However, with an increase in selective

pressure through the use of antibiotics, an excessive increase

in the spread and evolution of AMR has been observed in

the last 50 years. Yet, despite differences in evolutionary

paths, virulence factors and AMR share common character-

istics. Most importantly, virulence factors and AMR are ne-

cessary for pathogenic bacteria to adapt to, and survive in,

competitive microbial environments [7]. Additionally, both

virulence and resistance mechanisms are frequently trans-

ferred between bacteria by horizontal gene transfer [13]. Fur-

thermore, both processes make use of similar systems (i.e.,

cell wall alterations, efflux pumps, two-component systems

and porins) that activate or repress the expression of various

genes [17–19]. Therefore, although AMR in itself is not a

virulence factor, in environments with selective antibiotic

pressure, opportunistic pathogens are able to colonize

through acquisition or presence of AMR [1].

Considering the burden of bacterial infections in

which virulence factors and ARGs play crucial roles, it is

important to be able to identify these in microbial com-

munities. The advent of high-throughput DNA sequen-

cing provides a powerful means to profile the full

complement of DNA derived from genomic extracts ob-

tained from a wide range of environments [20]. How-

ever, currently there is a lack of automated pipelines to

simultaneously identify these different factors in metage-

nomic datasets. Various tools exist for the prediction of

ARGs themselves, such as DeepARG [20], RGI [21],

ResFinder [22], and ARGsOAP [23], with a very few pre-

diction tools for virulence factors existing, such as MP3

[24] and VirulentPred [25]. Most of the latter tools are

based on outdated databases of virulence factors which

have since been expanded greatly. Moreover, there is a

lack of recent bioinformatics tools for the prediction of

bacterial toxin genes in particular. Furthermore, al-

though various AMR prediction tools exist, these pri-

marily focus on the prediction of genes without

considering their location, i.e., these tools do not differ-

entiate between localization on mobile genetic elements

(MGEs) or on bacterial genomes. Since MGEs are the

main mechanism by which ARGs are transmitted, it is

crucial to identify the relationship between ARGs and

MGEs. Outside of these prediction tools, it is common
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practice to use standard homology search algorithms

against specific databases. However, such practices re-

quire several intermediate steps which may vary from

lab to lab. Additionally, using these methods is restrict-

ive in the sense that only a single database can be

searched at a time.

Here, we present PathoFact, a pipeline for the simul-

taneous prediction of virulence factors, bacterial toxins

in particular, and ARGs. Our tool furthermore contextu-

alizes these with respect to their localization on MGEs.

Moreover, PathoFact aggregates the information ob-

tained via different prediction tools and databases into a

single output, allowing both novices and experts in bio-

informatics alike to parse information as needed. Patho-

Fact thus provides a unified perspective on pathogenic

mechanisms. We provide evaluation results on our tool’s

sensitivity, specificity, and accuracy, and demonstrate

PathoFact’s versality using both a simulated metage-

nomic dataset and public case-control metagenomic

datasets for Parkinson’s disease, psoriasis, and Clostri-

dioides difficile infection. Using the simulated metage-

nomic dataset, we further perform a comparison of

PathoFact to other metagenomic characterization work-

flows, namely MOCAT2 [26] and HUMANn3 [27].

Implementation
PathoFact architecture

PathoFact is a command-line tool for UNIX-based sys-

tems that integrates three distinct workflows for the pre-

diction of (i) virulence factors, (ii) bacterial toxins, and

(iii) antimicrobial resistance genes from metagenomic

data (Fig. 1a). Each workflow can be applied individually

or in combination with the other workflows. Our tool is

written in Python (version 3.6) and uses the Snakemake

(version 5.5.4) workflow management software [28]. This

implementation offers several advantages, including

workflow assembly, parallelism, and the ability to resume

processing following an interruption. Each step of the

pipeline is implemented as a rule in the Snakemake

framework specifying the input needed and the output

files generated. We use conda (version 4.7) environ-

ments wherever possible thus reducing the need for ex-

plicit installation of software dependencies. Moreover,

the use of conda environments makes it possible to in-

corporate prediction tools dependent on older Python

versions incompatible with version 5.5 of Snakemake. As

such, Python, Snakemake, and (mini)conda (version 4.7)

[29] installations are required. PathoFact is open-source

and freely available at https://pathofact.lcsb.uni.lu.

The input to the PathoFact pipeline consists of an as-

sembly FASTA file containing nucleotide sequences of

the contigs. PathoFact subsequently predicts the ORFs

using Prodigal (version 2.6.3) for the prediction of viru-

lence factors, toxins, and antimicrobial resistance genes.

The MGEs are predicted from the initial assembly file,

and a mapping file is generated by PathoFact which ag-

gregates all the results. PathoFact aggregates the infor-

mation obtained from the different sub modules into

both module-specific reports as well as a complete final

report. The reports describe all virulence factors, bacterial

toxins, and antimicrobial resistance genes identified from

the input as well as their assigned confidence level (viru-

lence factors/bacterial toxins), their resistance mecha-

nisms (AMR), and their corresponding localization on

MGEs.

Workflow for the prediction of virulence factors

For the prediction of virulence factors, we created a pre-

diction tool consisting of two parts: (i) a database con-

sisting of virulence factor HMM profiles (HMMER3

v3.2.1) [30] and (ii) a random forest model. Hits against

the virulence factor HMM database are then combined

with the classification of the random forest model to re-

sult in the final prediction (Fig. 1b). The development of

the tool was inspired by the MP3 software tool for the

prediction of virulence factors which has not received an

update since 2014 and was thus outdated [24]. In

addition, PathoFact combines these annotations with the

prediction of signal peptides by SignalP (v5.0) [31] to

distinguish between secreted and non-secreted virulence

factors.

Dataset for the prediction of virulence factors

A dataset, consisting of both a positive and negative sub-

set, was constructed for the training of the virulence fac-

tor prediction tool. The positive subset consisted of

known virulence factor sequences retrieved from the

Virulence Factors Database (8945 sequences) (VFDB)

[3]. All sequences were obtained from the VFDB core

dataset containing (translated) gene sequences associated

with experimentally verified virulence factors. The nega-

tive subset of the training set consisted of protein se-

quences that were retrieved from the Database of

Essential Genes (DEG) (7995 sequences) [32] and which

were known not to be virulence factors. For both sub-

sets, all sequences were clustered with CD-HIT [33], and

sequences with a 90% sequence identity were collapsed

to prevent redundancy within the subsets. This 90% cut-

off is routinely used to reduce redundancy in similar

protein datasets, improving efficiency without foregoing

specificity given the large metagenomic database sizes

[34, 35]. The resulting training set was used for (i) the

implementation of the HMM profiles and (ii) the train-

ing of the random forest model.

Construction of the virulence factor HMM database

For the construction of the virulence HMM database,

HMM profiles were annotated for the training set using
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HMMER3 (version 3.2.1) against multiple pre-compiled

and in-house annotation databases [36]: PFAM-A [37],

TIGR [38], KEGG [39], MetaCyc [40], and Swissprot

[41]. The best hit in each HMM set was assigned to each

gene in the training set if the HMM score was higher

than the binary logarithm of the number of target genes,

in accordance with the recommendations in the HMMer

manual. HMM profiles were subsequently retrieved and

the databases were concatenated to form the virulence

HMM database. Binary compressed data files were con-

structed with the hmmpress (HMMER3 v3.2.1) [30]. For

the prediction of virulence factors by the virulence

HMM database, identified HMM profiles are separated

by those matching to the positive or negative subset of

the training set, as well as HMM profiles ambiguous for

both positive and negative subset.

Machine learning model for the prediction of virulence

factors

In addition to the virulence HMM database, we created

a random forest model [42]. A random forest model

operates from decision trees and output classification of

the individual trees while correcting for overfitting of

the training set. While overfitting, in which models per-

form highly on the training set but poorly on the test

set, is a common problem in machine learning, a ran-

dom forest model corrects for overfitting by continu-

ously creating trees on random subsets. This does not

Fig. 1 The PathoFact pipeline. a Framework of the PathoFact pipeline. The pipeline consists of three different modules related to (i) virulence

factors, incl. (ii) bacterial toxins, and (iii) antimicrobial resistance genes. SignalP is incorporated for the prediction of secreted toxins and virulence

factors. All modules can either be run independently or jointly. b Classification framework for the prediction of virulence factors. The prediction of

virulence factors depends on two different aspects: (i) a HMM domain database, (ii) a random forest classifier. Sequences predicted positive from

both are classified as virulence factors. The incorporation of SignalP in the framework allows integration of information regarding the likely

secretion of the virulence factors
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mean that random forest classifiers are not capable of

overfitting. However, they are less sensitive to variance,

and effects of overfitting are therefore rarely observed

[43]. For training of the random forest model, the fol-

lowing five features of the sequences were selected and

implemented: amino acid composition (AAC), dipeptide

composition (DPC), composition (CTDC), transition

(CTDT), and distribution (CTDD) [44]. A feature matrix

was built with rows corresponding to the sequence com-

position of the features. The random forest model was

implemented using pandas (v 0.25.0) [45], Numpy (v

1.17.0) [46], and scikit-learn (v0.21.3) [47] and consisted

of 1600 trees with a maximum depth of 340.

Workflow for the prediction of toxin genes

For the prediction of toxin genes, a workflow consisting

of a toxin HMM database combined with SignalP ver-

sion 5.0 [31] was developed. The toxin HMM database

consists of bacterial toxin domains to identify toxin-

related domains in the query sequences. Using the

hmmsearch function of the HMMER3 (v3.2.1) program

[30], the input query sequences are searched against the

collection of profiles present in the toxin HMM data-

base. In addition, analyses are combined with SignalP

[31] to differentiate between secreted and non-secreted

toxins.

Construction of the toxin HMM database

For the toxin HMM database, an HMM model based on

a training set of known toxins was developed and imple-

mented. The training set was compiled from the Toxin

and Toxin Target Database (T3DB) [48] and the training

set derived from the DBETH prediction tool [5]. Protein

sequences from within the training set with a similarity

greater than 90% were clustered and collapsed with CD-

HIT-2D to reduce redundancy [33]. The corresponding

toxin HMM profiles were identified from the same five

HMM databases as used for the virulence factors (see

above). The datasets were extended with HMM profiles

already annotated as bacterial toxin domains in the

PFAM, TIGR, KEGG, MetaCyc, and Swissprot databases.

Finally, in order to have a short description of all HMM

profiles present in the toxin HMM database, a toxin

library was created. This lists (i) all HMM profiles, (ii)

their names, (iii) their alternative names, and (iv) the

original database from which the HMM profile was

derived.

Workflow for the prediction of antimicrobial resistance

genes

For the prediction of ARGs, the workflow is separated

into two parts: (i) the prediction of ARGs and (ii) the

prediction of MGEs. For the prediction of ARGs, the

tools DeepARG (v1.0.1) [20] and RGI (v5.1.0) [21] are

used. DeepARG uses a deep learning approach that im-

proves classification accuracy while at the same time re-

ducing false negatives. It offers a powerful approach for

metagenomic profiling of ARGs as it expands on the

available databases for ARGs by combining the widely

used CARD [49], ARDB [50], and UNIPROT [51] data-

bases. Additionally, RGI [21] is included which is able to

identify mutation-driven AMR within genes, allowing for

a strain-resolved profiling of AMR genes.

MGEs: plasmids and phages

The prediction of MGEs is split into two parts focusing

on the prediction of (i) plasmids and (ii) phages. For the

prediction of plasmids, PlasFlow (v1.1) [52] is used,

while for the prediction of phages VirSorter (v1.0.6) [53]

and DeepVirFinder (v1.0) [54] were incorporated. All

three tools were selected because of their performance

compared to other, similar tools [52–54]. The predic-

tions of these different tools are merged with the predic-

tion of ARGs to provide localization information of the

resistance genes to either MGEs or genomes. Consider-

ing the different predictions of MGEs, the final classifi-

cation includes plasmid, phage, genome, unclassified,

and ambiguous when localization predictions contradict

each other, for example predicted to be both phage and

plasmid.

Evaluation of the PathoFact pipeline

To evaluate the performance of PathoFact, validations

were conducted for the prediction of toxins, for viru-

lence factors, and for ARGs. The prediction quality was

evaluated by sensitivity, specificity, and accuracy criteria

as defined below.

Sensitivity ¼
tp

tpþ fn
Specificity

¼
tn

tnþ fp
Accuracy

¼
tpþ tn

tpþ fnþ tnþ fp

where tp represents true positives (i.e., virulence factors

(incl. bacterial toxins) or AMR gene is predicted cor-

rectly), tn (i.e., a gene is correctly predicted not to be a

virulence factor, toxin genes, or AMR gene), fp false

positive (i.e., a gene incorrectly identified as a virulence

factor, toxin genes or AMR gene), and fn false negatives

(i.e, a virulence factor, toxin genes or AMR gene is in-

correctly identified as non-pathogenic). We evaluated

the sequence similarities between the training and valid-

ation (test set) datasets after removing the sequences

from the validation set with 90% identity to the training

set sequences using sourmash [55] (Additional File 1:

Figure S1).
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Validation of virulence factors

A validation dataset was constructed to assess the per-

formance of the prediction of virulence factors. Analo-

gous to the training set, the validation set consisted of a

positive subset of 2639 sequences (VFDB database) and

a negative subset of 2628 (DEG database) sequences. Im-

portantly, the sequences in the validation dataset were

removed from the training set to avoid overfitting. The

test set for virulence predictions was used to run both

the standalone MP3 (v1.0) tool and our newly generated

tool for prediction of virulence factors. For MP3, the

standard advised parameters were used: set on metage-

nomic protein fragments, a minimum length of 90 bases

and a threshold value of 0.2 for the svm module [24].

Validation of toxin genes

For the validation of toxin genes, a validation dataset

containing both positive and negative subsets was con-

structed. The positive subset was constructed from se-

quences in the EMBL-EBI database annotated as bacterial

toxins. The results were limited to protein sequences de-

scribed in the UniProtDB. Further filtering of the protein

sequences removed sequences with uncertain predictions

(i.e., hypothetical, probable). To limit redundancy within

the dataset, sequences were clustered in terms of similarity

by using a 90% sequence identity cutoff. Furthermore, to

limit redundancy between the validation and the training

set, sequences with a similarity of greater than 90% were

discarded. The remaining 202 positive sequences were

combined with 202 random-selected sequences from the

negative dataset, consisting of housekeeping genes repre-

senting the validation dataset.

Validation of AMR prediction

For the prediction of AMR genes, both the DeepARG

and RGI prediction tools were used. DeepARG has

proven to be more accurate than most AMR prediction

tools with a great reduction in false negatives [20], while

RGI is capable to annotate SNPs contributing to AMR.

For further validation, before inclusion in the pipeline,

the prediction tools were tested using the NCBI’s resist-

ance gene database (5265 sequences) [56]. This positive

subset was combined with a negative subset (consisting

of sequences retrieved from the Database of Essential

Genes) of equal size. For DeepARG default settings were

applied, while parameters for model were set to LS and

type was set to prot. Similar to DeepARG, default set-

tings of RGI were applied while input-type was set to

protein.

Data analysis and data availability of publicly available

datasets

Metagenomic sequences for the publicly case-control

metagenomic datasets were obtained from the European

Bioinformatics Institute-Sequence Read Archive data-

base, with accession numbers PRJNA297269 (Milani

et al. [57]), PRJNA281366 (Tett et al. [58]), and

ERP019674 (Bedarf et al. [59]). Information on the ana-

lyzed samples per study can be found in Additional File

1: Table S1. Metagenomic reads were processed and as-

sembled using IMP (v2) [60]. The resulting FASTA files

containing the assembled contigs and genes were used

as input for PathoFact. For analyses of the predictions,

FeatureCounts (v1.6.4) [61] was used to extract the

number of reads per functional category. Thereafter, the

relative abundance of the toxin genes was calculated

using the Rnum_Gi method described by Hu et al [62].

Additionally, the DESeq2 (v1.24) [63] package was used

to analyze the differential abundance of virulence factors,

toxins, and AMR genes.

Data analysis and data availability of a simulated dataset

To evaluate the performance of PathoFact compared to

other metagenome characterization workflows, a high-

complexity stimulated dataset consisting of 5 time series

samples with 596 genomes and 478 circular elements

was obtained from CAMI [64]. As with the case-control

metagenomic dataset reads were processed and assem-

bled using IMP (v2), after which the dataset was run

through PathoFact. In addition, both MOCAT2 and

HUMAnN3 were run on the stimulated metagenomic

dataset using default settings of both workflows. Further

data analysis was performed as described for the case-

control datasets.

Results and discussion
Benchmarking

The PathoFact pipeline has an in-built multi-threading

option to improve computational efficiency. In fact, cer-

tain tools, e.g., DeepVirFinder, are memory intensive

and may require additional resources. Table 1 corre-

sponds to the runtime of a metagenomic dataset (363,

933 metagenomic sequences) with differing numbers of

threads. A minimum usage of 8 threads, in this case cor-

responding to 28 GB/thread, is advised for running the

pipeline. Additionally, for the installation of PathoFact,

an initial storage of 6.3 GB is required.

Validation of the PathoFact pipeline

For the prediction of virulence factors, the prediction

tool consists of two parts: a virulence factor HMM

Table 1 PathoFact runtimes with different threads/

computational resources

Threads Memory Running time

8 224 GB 25 h 19 min

16 448 GB 15 h 58 min
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database and a random forest classifier. The random for-

est classifier’s out-of-bag (OOB) error value reported an

accuracy of 0.822. To improve performance for virulence

prediction, the random forest model was combined with

the HMM database which resulted in an overall sensitiv-

ity of 0.886, specificity of 0.957, and an accuracy of 0.921

(Table 2). Additionally, we compared our tool to the

MP3 tool for the prediction of virulence factors (Add-

itional File 1: Table S2). PathoFact scored overall higher

than MP3 which scored 0.125, 0.992, and 0.558, respect-

ively. In addition to the prediction of virulence factors,

for the prediction of bacterial toxins, an overall sensitiv-

ity of 0.777, specificity of 0.989, and accuracy of 0.832

were obtained. Finally, for the prediction of ARGs, the

sensitivity, specificity, and accuracy of both DeepARG

and RGI were determined at 0.720, 0.996, 0.858 and

0.920, 0.997, 0.958, respectively. A combined approach

merging the use of both tools resulted in the highest

scores with an overall sensitivity of 0.963, specificity of

0.994, and accuracy of 0.979 for the prediction of AMR

genes.

Performance evaluation using a simulated dataset

To further evaluate the performance of PathoFact and

compare it to other existing tools, the PathoFact pipeline

was run on a simulated metagenome comprised of high-

quality annotated genomes, i.e., the CAMI high com-

plexity toy test dataset. Both MOCAT2 [26] and

HUMAnN3 [27] were run on the original reads of the

simulated CAMI datasets, while the same read datasets

were processed and assembled with IMP followed by

execution of PathoFact. Subsequently, annotations

resulting from the different workflows were compared to

evaluate the performance of PathoFact (Fig. 2a). Patho-

Fact demonstrated increased numbers of predictions

compared to both MOCAT2 and HUMAnN3 regarding

virulence and toxin predictions (< 0.05, ANOVA) while

performing similarly regarding AMR prediction com-

pared to MOCAT2. Furthermore, and importantly, no

additional curation or data-wrangling is needed for

PathoFact compared to the other workflows tested

above.

Additionally, we aimed to further characterize the per-

formance of the metagenomic workflows against annota-

tions of the CAMI high complexity toy test dataset. To

achieve this, we annotated the underlying genomic data

using the NCBI database of resistance genes [56], as well

as a BLAST search of the original 450 genomes against

known virulence factors and toxin genes [3, 5]. The

resulting annotations were compared to the prediction

reports of PathoFact, MOCAT2, and HUMAnN3. Patho-

Fact identifies a similar number of virulence factors and

toxin genes in the annotated genomes compared to the

original annotations, while MOCAT2 and HUMAnN3

identified a significantly lower number (Fig. 2b). Regard-

ing antimicrobial resistance, PathoFact was able to iden-

tify many more gene variants compared to MOCAT2

and HUMAnN3 (Fig. 2c).

Performance of PathoFact on metagenomic datasets

Virulence factors and toxins may contribute to dysbiosis

of the microbiome and favor a pro-inflammatory envir-

onment [65]. In addition, particular pathogenic bacteria

may adapt to, and survive in, the presence of antimicro-

bials through acquisition or expression of AMR.

Thereby, virulence factors, toxins, and AMR may all

contribute to the pathogenic potential of the micro-

biome, which in turn may have an effect on the onset

and development of disease and infection. The perform-

ance of PathoFact was demonstrated using three publicly

available case-control metagenomic datasets which were

chosen considering the following criteria: representing

an actual infection or a chronic disease in which either

pathogenic potential or toxins are believed to play a role.

The Milani et al.’s [57] study represents actual infections

with Clostridioides difficile (CDI) in the human gut

microbiome of five patients along with five healthy con-

trols. Furthermore, skin metagenomes of five psoriasis

patients along with five healthy controls from Tett et al.

[58] were chosen to represent a chronic disease in which

a pathogenic potential is believed to have a function.

Additionally, from Bedarf et al. [59], the metagenomes

of fecal microbiomes derived from 10 early stage Parkin-

son’s disease (PD) patients, as well as 10 age-matched

controls, was obtained to represent a chronic disease in

which bacterial toxins are believed to be involved [59].

Prediction of virulence factors and bacterial toxins

The predictions from PathoFact resulted in the identifi-

cation of virulence factors in all three case-control meta-

genomic datasets. Furthermore, predicted virulence

factors were characterized as secreted and non-secreted

through the incorporation of SignalP in the pipeline. No

statistically significantly (P value < 0.05, Wilcoxon rank

Table 2 Validation of the PathoFact pipeline

Toxin prediction Virulence factor prediction AMR prediction

Sensitivity 0.777 0.886 0.963

Specificity 0.989 0.957 0.994

Accuracy 0.832 0.921 0.979
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sum test) different relative abundance of the different

virulence factors was found in any of the three studies

when comparing diseased state and control (Fig. 3).

In addition to the general prediction of virulence fac-

tors using PathoFact, we identified bacterial toxins, as

well as their corresponding HMM domain by which they

Fig. 2 Performance evaluation of PathoFact on a high-complexity simulated dataset. a The relative abundances (%) of virulence factors, including

bacterial toxins, as well as antimicrobial resistance, as predicted by PathoFact, MOCAT2, and HUMAnN3, * two-way ANNOVA, P value < 0.05. b

Total number of virulence factors and toxin genes identified in the annotated genome and as predicted by PathoFact, MOCAT2, and HUMAnN3 c

Number of unique ARGs as annotated by the NCBI resistance database and as predicted by PathoFact, MOCAT2, and HUMAnN3
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were identified. Furthermore, both secreted and non-

secreted toxins were identified in both diseased and con-

trol groups in all datasets (Fig. 4a), and we identified sev-

eral differentially abundant bacterial toxins (Additional

File 1: Table S3-S5). Within the CDI dataset, three dis-

tinct toxin domains, PF13953, PF13954, and PF06609,

were identified to be differentially abundant in CDI over

control (Fig. 4b). Interestingly, none of these toxin do-

mains have yet been reported to be linked to CDI and

therefore are of interest for further research. Four dis-

tinct toxin domains (K12340, PF13935, PF14449, and

K11052) were found to be significantly abundant in

psoriasis over controls (Fig. 4c). Of these toxin domains,

only K12340 was previously linked to psoriasis [66]. Fi-

nally, regarding the PD study we found several differen-

tially abundant bacterial toxins when comparing PD and

control samples (Fig. 4d). Of these bacterial toxins, one

containing the PF09599 domains was more abundant in

PD and is among others found in invasin proteins in Sal-

monella typhimurium which has been hypothesized to

be involved in Parkinson’s disease [67]. Interestingly, in

all three datasets additional “unknown” toxin domains

were identified to be linked to the diseases, therefore

representing interesting candidates for further research.

Prediction of antimicrobial resistance

Using the PathoFact pipeline, we predicted the presence

of antimicrobial resistance genes in all three case-control

metagenomic datasets. Within the CDI datasets, 23 ARG

categories were identified (Additional File 1: Figure S2a)

of which six, i.e, diaminopyrimidine, elfamycin, fluoro-

quinolone, nucleoside, peptide, and multidrug, were sig-

nificantly higher abundant in individuals with CDI over

control (Fig. 5a). Antimicrobial resistance has previously

been found to be associated with CDI infections [68]. In

the metagenomic data of the skin microbiome, 22 cat-

egories of ARGs were identified (Additional File 1: Fig-

ure S2b). Interestingly, none of these resistance

categories were found to be significantly different, nei-

ther with the diseased nor the control group. Within the

PD study, 33 ARG categories were identified (Add-

itional File 1: Figure S2c) with glycopeptide resistance

significantly abundant in PD over controls, while

tetracycline resistance was found to be enriched in

the control group (Fig. 5c). The link between anti-

microbial resistance and Parkinson’s disease has been

mostly unexplored thus far. However, a recently pub-

lished study by Mertsalmi et al. [69] suggests a role

for antibiotics in PD through the influence on the gut

microbiome.

Although we propose the primary usage of Patho-

Fact for metagenomic analyses, as seen with these

three case-control metagenomic datasets, it can also

be applied to single genome assemblies. Using the

Klebsiella pneumoniae subsp. Pneumoniae HS11286

reference genome, we identified 86 resistance genes of

which 6 contained SNPs contributing to resistance

(Additional File 1: Table S6).

Fig. 3 Virulence factors in three case-control metagenomic datasets. The relative abundances (%) of both secreted and non-secreted virulence

factors as well as non-pathogenic sequences in three metagenomic datasets (Clostridioides difficile infection, Psoriasis, Parkinson’s disease)
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Prediction of mobile genetic elements linked to virulence

factors

Using the predictions generated by PathoFact, we re-

solved the genomic contexts and identified MGEs in all

three case-control metagenomic datasets (Fig. 6a) (Add-

itional File 1: Figure S3). Within all three datasets, the

presence of both phage- and plasmid-derived sequences

was detected, although no significant difference was ob-

served between diseased and control. We found that in

all datasets the majority of MGEs were found to be both

linked to virulence factors as well as AMR (~ 50%),

closely followed by MGEs linked solely to virulence fac-

tors, including bacterial toxins, with AMR contributing

to the remaining MGEs (Fig. 6b). Furthermore, a num-

ber of MGEs were found to be both linked to virulence

factors as well as AMR.

Of the ARGs linked to MGEs, the prevalence of the

different resistance categories were identified using our

tool. Within the CDI dataset, the majority of the MGEs

were linked to phenicol and beta-resistance in both

diseased and control groups (Additional File 1: Figure

S4a). Additionally, plasmids linked to diaminopyrimidine

and sulfonamide resistance were identified within the

disease group while found to be absent in the control.

Within the skin metagenomes, the majority of the pre-

dicted resistance genes linked to MGEs included beta-

lactam, tetracycline, and multidrug resistance in both

diseased and control groups (Additional File 1: Figure

S4b). However, MGEs linked to beta-lactam resistance

were found to be enriched in the diseased group. Finally,

of the resistance genes within the PD study, both peptide

and tetracycline resistances were found to be linked to

phage and plasmids. Peptide resistance was abundant in

controls whereas tetracycline was identified primarily in

diseased (Additional File 1: Figure S4c).

Conclusions
The identification of virulence factors, toxins, and anti-

microbial resistance genes are of immediate importance

for understanding the pathogenic state of microbiomes.

Fig. 4 Bacterial toxins in three case-control metagenomic datasets. Bacterial toxins in disease versus control datasets. a The relative abundance

(%) of both secreted and non-secreted bacterial toxins in diseased versus control subjects. b Volcano plot depicting differentially abundant

bacterial toxins in Clostridioides difficile infections versus control. c Volcano plot depicting differentially abundant bacterial toxins in Psoriasis versus

control. d Volcano plot depicting differentially abundant bacterial toxins in Parkinson’s disease versus control
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Using our newly developed tool, PathoFact, we were able

to identify virulence factors and bacterial toxins within

three publicly available case-control metagenomic data-

sets. Furthermore, we were able to identify differentially

abundant bacterial toxins when comparing diseased and

control groups in all datasets. Additionally, antimicrobial

resistance genes were identified in two of the datasets

with a significant difference of certain resistance categories

between diseased and control individuals. The inclusion of

MGEs is of particular importance in understanding the

possible transmission of MGE-born virulence factors.

With PathoFact, we identified MGEs in all three datasets

and were able to link these simultaneously to the corre-

sponding virulence factors, toxins, and antimicrobial re-

sistance genes.

Until now, no single tool has existed which has com-

bined these distinct aspects. Although several prediction

tools exist for AMR, DeepARG and RGI have been chosen

for their accuracy and ability to identify mutation contri-

bution to resistance, and were included in our pipeline.

Fig. 5 Antimicrobial resistance in three case-control metagenomic datasets. The relative abundance (%) of antimicrobial resistance categories with

statistically significantly differential abundance in a Clostridioides difficile infection versus control, b Parkinson’s disease vs control. *P-value < 0.05
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Limited or no tools were available on the other hand for

the prediction of toxins and virulence factors. PathoFact

utilizes the wealth of currently available software (e.g.,

AMR and MGE predictions) as well as newly generated

tools (e.g., virulence factors and toxins). Furthermore,

PathoFact can conveniently integrate updates and newly

developed prediction tools. In conclusion, our tool com-

bines the strength of AMR predictions linked to MGE

predictions and integrates this with the prediction of

toxins and virulence factors. PathoFact is a versatile and

reproducible pipeline by its ability to run either the

complete workflow or each module on its own, giving the

investigator flexibility in their analysis.
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