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In this paper, the potential use of laser-induced breakdown spectroscopy (LIBS) for the rapid discrimina-
tion and identification of bacterial pathogens in realistic clinical specimens is investigated. Specifically,
the common problem of sample contamination was studied by creating mixed samples to investigate the
effect that the presence of a second contaminant bacterium in the specimen had on the LIBS-based iden-
tification of the primary pathogen. Two closely related bacterial specimens, Escherichia coli strain ATCC
25922 and Enterobacter cloacae strain ATCC 13047, were mixed together in mixing fractions of 10:1,
100:1, and 1000:1. LIBS spectra from the three mixtures were reliably classified as the correct E. coli
strain with 98.5% accuracy when all the mixtures were withheld from the training model and classified
against spectra from pure specimens. To simulate a rapid test for the presence of urinary tract infection
pathogens, LIBS spectra were obtained from specimens of Staphylococcus epidermidis obtained from
distilled water and sterile urine. LIBS spectra from the urine-harvested bacteria were classified as
S. epidermidis with 100% accuracy when classified using a model containing only spectra from other
Staphylococci species and with 88.5% accuracy when a model containing five genera of bacteria was uti-
lized. Bacterial specimens comprising five different genera and 13 classifiable taxonomic groups of spe-
cies and strains were compiled in a library that was tested using external validation techniques. The
importance of utilizing external validation techniques where the library is tested with data withheld
from all previous testing and training of the model was revealed by comparing the results against
“leave-one-out” cross-validation results. Last, the effect of using sequential models for the classification
of a single unknown spectrum was investigated by comparing the misclassification of two closely related
bacteria, E. coli and E. cloacae, when the classification was first performed using the five-genus bacterial
library and then with a smaller model consisting only of E. coli and E. cloacae specimens. This result
shows the utility of using successively more targeted analyses and models that use preliminary classi-
fications from more general models as input. © 2012 Optical Society of America
OCIS codes:  140.3440, 170.4580, 280.1415, 300.6210, 300.6365.

1. Introduction can be used for bacterial discrimination, classifica-
tion, and identification [1-10]. The success of the
technique has been due in part to several recent tech-
nological advances. One is the use of advanced
computerized chemometric methods to analyze LIBS
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Only in the past decade has it begun to be recognized
that laser-induced breakdown spectroscopy (LIBS)
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combined with sensitive CCD and intensified-CCD
(ICCD) detectors [12]. Yet another is the availability
of light-weight, inexpensive, high-powered lasers. By
integrating these advances, LIBS can form the plat-
form technology of an instrument that could be used
for rapid point-of-care bacterial pathogen diagnosis.
This offers a potentially faster, more reliable, and
more robust diagnostic than other methods for the
detection and identification of harmful pathogens
in real time.

One example of a particular medical condition that
could be greatly impacted by the use of a LIBS-based
test is the diagnosis and treatment of urinary tract
infections (UTIs). In 1995, 11.3 million women in
the United States had at least one UTI, and 25%—
40% of women in the United States aged 20—40 years
have had a UTI [13]. Some estimate that UTIs cost at
least $1 billion per year, and the overall cost of pre-
scriptions alone to treat UTIs in 1995 was more than
$218 million [13]. In hospitals, doctors order urine
tests for their patients (most often women) to make
sure that the kidneys and other organs are function-
ing well or when the patient may have an infection in
his or her kidneys or bladder. Upon a positive diag-
nosis obtained from traditional culturing techniques
(taking 24 to 48 h or from two to four clinical working
days), therapy may be initiated with the proper
antibiotic [14].

Staphylococcus epidermidis is a Gram-positive
bacterium commonly found in the natural skin
flora that sometimes causes human illness, including
UTIs [15]. Infection caused by S. epidermidis is
usually associated with medical devices such as in-
dwelling catheters because it has the ability to form
biofilms which will grow on those devices [16]. Hall
and Snitzer investigated urinary tract infections in
children without catheters that may be caused by
S. epidermidis. In their study, they concluded that
the presence of S. epidermidis bacteria in the urine
culture should not automatically be considered a con-
taminant, especially when the clinical findings are
compatible with urinary tract infection [17]. There-
fore a reasonable UTI detection technology must be
able to detect and identify a microorganism in a sam-
ple of urine (ordinarily sterile) and also should be un-
affected by bacterial contaminations (small numbers
of cells) from naturally occurring flora (“mixed
samples”). This paper will investigate these two
situations.

Rehse et al. have shown that LIBS has the capabil-
ity of identifying the majority bacterium in mixed
samples, specifically discriminating between Myco-
bacterium smegmatis and Escherichia coli [7]. In that
study, bacteria were successfully identified in several
mixture concentrations, including an 80 : 20 mixture.
In real-world clinical situations where the LIBS-
based identification is needed, it is anticipated that
the pathogen causing the infection will be the major-
ity species in any specimen of urine, blood, etc. (i.e.,
present in a mixed sample at concentrations far great-
er than any contaminant bacterial species). Investiga-
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tions of these types of realistic mixing conditions are
reported in this paper for two similar bacterial speci-
mens relevant to UTIs, E. coli and Enterobacter cloa-
cae. We also report on the use of LIBS to identify S.
epidermidis cells isolated from otherwise sterile urine
samples without washing. This was done to investi-
gate ifthe presence of soluble salts and other biochem-
icals in the sterile urine interfered with the LIBS
spectral identification when the model training set
was constructed from bacterial spectra obtained from
cells in deionized water samples.

A LIBS spectral library model consisting of five
genus classes composed of 13 uniquely identifiable
species and strains was tested using data sets with-
held from the construction and training of the model
(external validation). The ability of a discriminant
function analysis (DFA) to accurately identify bacter-
ia from spectra not represented in the model (.e.,
grown on new or unique nutrient media or harvested
from urine samples) will be presented.

Last, the use of a smaller, more focused model sub-
sequent to a classification made by a model containing
amore general but larger library was investigated. An
improvement in the accuracy of classification was
noted when similar bacterial spectra were tested in
a model containing only the closely related spectra.
This suggests that questionable identifications or
identifications made on bacteria known to be highly
similar to another type of bacteria should be
confirmed or retested using a different model with
a library specifically chosen to accentuate the antici-
pated differences.

2. Experiment

A. Bacterial Preparation of Mixed Samples and Sterile
Urine Specimens

M. smegmatis bacteria were prepared by us in the
same manner described in our previous work [7],
while S. epidermidis, E. coli strain ATCC 25922,
and E. cloacae strain ATCC 13047 specimens were
prepared in a similar manner using similar growth
media in the clinical microbiology lab of the Detroit
Medical Center University Laboratories by Dr.
Robert Mitchell. The two bacterial species used in this
mixing test were specifically selected due to their si-
milarity to each other. E. coli and E. cloacae both be-
long to alarge family of Gram-negative rods called the
enterobacteriaceae. These bacteria are referred to as
“enteric pathogens” and can cause diarrheal disease
[18]. These bacteria exhibit similar phenology and
were expected to possess highly similar LIBS spectra,
complicating the accurate classification of their mix-
tures. As well, both can be expected to be found in the
human colon and in contaminated water or sewage.
Therefore their presence together as a mixture is rea-
listic. However, in a person exhibiting symptoms of
enteric infection, only one of these pathogens would
be responsible and would be dominant in any subse-
quently obtained culture. This is the motivation for
our chosen mixing fractions.



Two separate suspensions of E. coli ATCC 25922
and E. cloacae ATCC 13047 were prepared prior to
mixing, again using deionized water. To be a reason-
able test, the two suspensions must have the same
bacterial concentration. To do this, the turbidity or
the optical density of each suspension was measured
using a spectrophotometer at 600 nm (OD600). In
this device, light is scattered as it passes through
a bacterial suspension, and the amount of scatter
is proportional to the number of bacteria in the sus-
pension. The measured optical density was 0.78 for
both. The measurements were conducted in the la-
boratory of Dr. Takeshi Sakamoto (Wayne State
University, Department of Physics and Astronomy).
After establishing the initial bacterial concentration,
five separate mixtures were prepared with a ratio of
E. coli ATCC 25922 (A) and E. cloacae ATCC 13047
(B) given by A;_,: B, withx = 1.00.1, 0.01, 0.001 and
0.0 (three mixtures and two pure specimens). The
three mixtures were prepared to give essentially
10:1, 100:1, and 1000:1 titers, and the mixtures
will be referred to by these mixing fractions in this
paper. These are clinically realistic contamination
mixing fractions. Multiple 1.5 ml aliquots of these
mixtures were prepared, thoroughly agitated via vor-
tex mixing, then centrifuged at 5000 rpm for 3 min to
form a dense bacterial pellet. The supernatant was
discarded, and 10 ul of the dense pellet was mounted
on an agar surface prior to LIBS testing as has been
described in our previous work [7].

To prepare urine specimens, S. epidermidis was col-
lected from the growth plates and then suspended in
separate 1.5 ml tubes of deionized water and sterile
urine, using vortex mixing as described above to fully
suspend the bacteria. After sitting in the tubes for
some time (30 min or longer) samples of both were col-
lected (using centrifugation and pipetting) without
washing or any additional preparation to perform
the LIBS experiment. All other control bacteria (E.
coli, streptococci, and staphylococci) were collected
from the growth plates of trypticase-soy agar and sus-
pended in 1.5 ml deionized water prior to centrifuga-
tion and LIBS testing.

For the construction of the bacterial library, which
contains LIBS spectra from almost every experiment
conducted in our laboratory over the last three years,
all bacteria were prepared in as similar a manner as
possible given their preparation by numerous per-
sonnel over multiple years and in several different
labs. The spectra therefore represent bacteria grown
on hundreds of differently poured nutrition plates
and mounted on dozens of nutrient-free agar sub-
strates. Where noted, some of these bacteria have
been intentionally exposed to various environmental
conditions to test the alteration of the LIBS spectra
(UV radiation exposure, starvation, autoclaving, etc.)
as we have described in previous work.

B. LIBS Experimental Setup

The experimental setup used to perform LIBS on the
bacterial samples is the same setup that has been

described in our previous studies. 1064 nm pulses
of 10 ns duration and approximately 10 mdJ were
used to ablate live bacteria mounted on nutrient-free
bacto-agar plates. Specifically, 10 ul of bacterial pel-
let were transferred to 1.4% nutrient-free bacto-agar
[7]. LIBS spectra were acquired in an argon environ-
ment at atmospheric pressure at a delay time of 2 us
after the ablation pulse, with an ICCD intensifier
gate width of 20 us duration. For the identification
of bacteria in mixed samples and in sterile urine, five
laser pulses were used to collect the spectra at one
location, and five accumulations at five different lo-
cations were collected and averaged, resulting in a
spectrum of 25 averaged laser pulses [7,9].

3. Results and Discussion

A. Identification of Bacteria in Mixed Samples

Figure 1 shows plots from a DFA of the LIBS spectra
from pure samples of M. smegmatis, E. coli strain
ATCC 25922, and E. cloacae strain ATCC 13047,
as well as the mixtures with the mixing fractions
mentioned earlier. In Fig. 1(a) all spectra were in-
cluded in the construction of the model and were clas-
sified as unique classes. No relationship between the
classes was provided. As can be seen from the plot of
the first two discriminant function scores, the LIBS
spectral fingerprint of the E. cloacae ATCC 13047
(group 1) bacterium was easily distinguishable from
a spectrum obtained from a sample of pure E. coli
ATCC 25922 (group 5). Spectra from the three mix-
tures (groups 2—4) were essentially indistinguishable
from the spectra of E. coli ATCC 25922. When indi-
vidual spectra from the mixtures were omitted from
the model in a “leave-one-out” (LOO) cross validation
they were always correctly classified as E. coli with
100% accuracy. This confirms the fact that the bacter-
ial cells of E. coli ATCC 25922 were the dominant
contributors to the LIBS spectrum in all the mixture
samples.

In this analysis, notice that the discriminant func-
tion two (DF2) score of the centroid (which is the
effective “center of mass” of the distribution of mea-
surements) of the M. smegmatis samples was zero.
On the other hand, the specimens of E. coli and E.
cloacae (both pure and mixtures) possessed almost
the same DF1 score (indicating their strong similar-
ity). The interpretation of this is that the discrimina-
tion between the LIBS spectra from E. coli ATCC
25922 and E. cloacae ATCC 13047 and their mixtures
was based on the difference between their DF2 scores
only. There is a slight shift downward in the centroid
ofthe 10:1 mixture (downward toward the DFA space
of the minority component) as expected. In our pre-
vious work we noted a similar shift in DFA space,
and a corresponding decrease in accuracy, as the frac-
tion of the majority bacterium dropped below 80%.

In Fig. 1(b) all of the mixture specimens were de-
classified so that the model was not constructed with
mixtures and had never been tested or trained with a
spectrum from a mixed sample. We will refer to this
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type of testing of the model as “external validation,”
meaning the test spectra are external to the model,
having been withheld from its construction. The un-
classified mixtures [represented with the “x” symbols
in Fig. 1(b)] were then classified using the model of
pure E. coli, E. cloacae, and M. smegmatis. In this
analysis, 67 of 68 spectra (98.5%) obtained from mix-
tures were classified correctly as E. coli. The remain-
ing spectrum was classified incorrectly as E. cloacae.
The success of this external validation of a model
that was not created specifically to deal with mix-

12 4 O 1: E. cloacae ATCC 13047 (a)
A 2: E. coli ATCC 25922 : E. cloacae ATCC 13047 (10:1)
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Fig. 1. (Color online) DFA plots showing the first two discrimi-

nant function scores from a DFA of LIBS spectra obtained from
pure samples of three bacteria, E. cloacae strain ATCC 13047,
E. coli strain ATCC 25922, and M. smegmatis, as well as three mix-
tures of the E. coli and E. cloacae at various mixing fractions.
(a) All classes were input to the model, but no relationships were
input, indicating the high similarity between the pure E. coli spec-
tra and those of the mixtures. (b) Spectra from the three mixtures
were declassified and tested against the model constructed only
from spectra from pure specimens. All mixture spectra but one
were correctly identified as E. coli.
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tures demonstrates the strength of the DFA classifi-
cation of the unknown specimens and again shows
that a model need not contain every potential class
that may be encountered to still be highly effective.
These results suggest that spectra from E. coli
ATCC 25922 bacteria could be identified with a high
accuracy even in the presence of low concentrations
of E. cloacae ATCC 13047, a common clinical con-
taminant. The result is in good agreement with what
we obtained in a previous study [7] in which we ob-
served that in clinical samples that may contain
more than one microorganism the infection will most
likely be caused by the microbe that has the higher
concentration (often by orders of magnitude).

B. Identification of S. epidermidis Bacteria in a Sterile
Urine Suspension

LIBS spectra from bacterial cells of E. coli strain C, S.
viridans, and S. epidermidis that were suspended in
water were acquired as described earlier. In addition
to these three specimens, LIBS spectra were also col-
lected from S. epidermidis bacterial cells that were
suspended in sterile urine. Generally, normal urine
consists of 96% water and 4% solutes. Organic so-
lutes include urea, ammonia, creatinine, and uric
acid. Inorganic solutes include sodium chloride, po-
tassium sulfate, magnesium, and phosphorus.
Figure 2 shows the results of a discriminant function
analysis performed on the LIBS spectra of S. epider-
midis cells harvested from the urine samples.

Figure 2(a) shows the first two discriminant func-
tion scores of a DFA performed on spectra acquired
from the three specimens mentioned above. The
urine-harvested samples were entered unclassified
into this analysis, and none of the other bacterial
cells used to construct this model had ever been ex-
posed to urine or its constituent solutes at any time
during growth. In Fig. 2(a), it can be seen that the
LIBS spectral fingerprint from urine-exposed bacter-
ial cells (unclassified “x” symbols) was essentially
identical to the fingerprint from the same bacterial
cells when harvested from water and was thus cor-
rectly classified with 100% accuracy. The effect of
the presence of organic or inorganic solutes in the ur-
ine on the LIBS spectrum of the bacteria was
negligible.

To verify our results in a more difficult test, the
LIBS spectra from the S. epidermidis samples were
tested against a model containing only staphylococci
by adding S. aureus and S. saprophyticus to the model.
This is shown in Fig. 2(b). Again, the LIBS spectra
from S. epidermidis cells harvested from a urine sus-
pension were entered as unclassified cases in a model
composed of spectra from cells of the three staphylo-
cocci species obtained from water specimens. In this
analysis all the LIBS spectra of S. epidermidis cells
harvested from urine were again essentially identical
to the spectra from bacterial cells that were collected
from water and were again classified with 100% accu-
racy. When the spectra of S. epidermidis cells har-
vested from a urine specimen were unclassified in a



model containing every bacterial spectrum we have
taken (discussed in Subsection 3.C), 88.5% of the spec-
tra were correctly classified as S. epidermidis
(in water).
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Fig. 2. (Color online) DFA plots showing the first two discrimi-
nant function scores from a DFA of LIBS spectra from S. epider-
midis bacterial cells harvested from both urine and deionized
water specimens. (a) The model was constructed from E. coli strain
C, S. epidermidis cells harvested from water, and S. viridans. None
of the spectra in the model were obtained from any urine-exposed
cells. Spectra from S. epidermidis cells harvested from urine sus-
pensions were tested with this model, and 100% of the specimens
were correctly identified as S. epidermidis. (b) To complicate the
test, the S. viridans and E. coli spectra were replaced with spectra
from two other staphylococci species: aureus and saprophyticus.
All cells were obtained from deionized water specimens. Spectra
from S. epidermidis cells harvested from urine suspensions were
tested with this model, and again 100% of the specimens were cor-
rectly identified as S. epidermidis.

C. Five-Genus Bacterial Spectral Library

LIBS spectral fingerprints collected from ongoing ex-
periments over the past three years have been com-
piled to form a spectral library model. The library
contains five bacterial genera composed of 13 unique
bacterial constituents (strains and species) and 32
completely distinct sets of data (taken on different
days, under different growth conditions, etc.) that
can be omitted entirely from a DFA to allow a true
external validation of the model. This is shown in
Table 1. The library contains 669 LIBS spectra.

This library can be constructed, trained, and
tested differently depending on whether the model
consists of five classes (the five genera shown in col-
umn one of Table 1) or 13 classes (the 13 unique bac-
terial constituents shown in column two of Table 1).
The resulting effect on classification, however, was
not dramatic. This is shown in Fig. 3, which shows
the first three discriminant function scores of a
DFA of the 669 spectra when they were grouped into
five classes [Fig. 3(a)] or 13 classes [Fig. 3(b)]. The
first three DF scores are highly similar (but not iden-
tical) whether there were four discriminant functions
calculated [Fig. 3(a)], or 12 [Fig. 3(b)]. To assist in a
comparison of Fig. 3(a) and Fig. 3(b), the symbols of
the 13 classes in Fig. 3(b) have been made uniform
with the genus symbols in Fig. 3(a), and for clarity
the group centroid and labels of the 13 classes are
omitted. The striking similarity between Fig. 3(a)
and Fig. 3(b) shows that the DFA does not need to
“force” different bacterial spectra into arbitrary
classes but that the LIBS spectra from the 13 bacter-
ial taxonomic classifications naturally group in this
way.

An external validation test was performed on the
five-class, genus-level model of the bacterial spectra.
To do this, one by one each of the 32 unique sets of
data listed in Table 1 was withheld from the five-
class model and entered as unclassified data. The
DFA then assigned these spectra to one of the five
genus classes. This was not possible with data where
only one data set existed (i.e., set 15: E. coli Hfr-K-12
or set 17: S. saprophyticus), so those data were not
classified in this way. Truth tables were constructed
for each of the genera, and the results are shown in
Table 2. For comparison, truth tables for a LOO cross
validation are also shown. The truth tables compare
rates of sensitivity (true positives) and specificity
(true negatives). As expected, the sensitivity and se-
lectivity are both (artificially) higher in the LOO
cross validation. The truth table values shown for
the external validation data are much more likely
to represent the true sensitivity and specificity of
this LIBS-based test. Sensitivities with our current
apparatus range from 62% to 90%, and specificities
are all greater than 95%. The staphylococci data pos-
sessed the lowest sensitivity, but these data repre-
sent the oldest data in the library, obtained quite
some time ago before our testing, harvesting, and
growth protocols were standardized. Nonetheless,
we include them for completeness here. We expect
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Table 1. Identities of the Classes Used to Construct a Spectral Library Model Composed of 669 Bacterial LIBS Spectra
Genus Bacterial ID Data set

1: Escherichia 1: E. coli ATCC 25922 1: E. coli ATCC 25922
1: E. coli ATCC 25922 2: E. coli ATCC 25922/E. cloacae (10:1)
1: E. coli ATCC 25922 3: E. coli ATCC 25922/E. cloacae (100:1)
1: E. coli ATCC 25922 4: E. coli ATCC 25922/E. cloacae (1000:1)
2: E. coli O157:H7 (EHEC) 5: E. coli O157:H7
3: E. coli C 6: E. coli C
3: E. coli C 7: E. coli C—cultured on MacConkey agar
3: E. coli C 8: E. coli C—starved for 1 day
3: E. coli C 9: E. coli C—starved for 4 days
3: E. coli C 10: E. coli C—starved for 6 days
3: E. coli C 11: E. coli C—starved for 8 days
3: E. coli C 12: E. coli C—autoclaved
3: E. coli C 13: E. coli C—UV exposed/killed
4: E. coli HF4714 14: E. coli HF4714
5: E. coli Hfr-K12 15: E. coli Hfr-K12

2: Enterobacter 6: E. cloacae ATCC 13047 16: E. cloacae ATCC 13047

3: Staphylococcus 7: S. saprophyticus 17: S. saprophyticus
8: S. aureus 18: S. aureus

4: Streptococcus 9: S. mutans 19: S. mutans
10: S. viridans 20: S. viridans
10: S. viridans 21: S. viridans—starved for 1 day
10: S. viridans 22: S. viridans—starved for 6 days
10: S. viridans 23: S. viridans—starved for 9 days
10: S. viridans 24: S. viridans—UV exposed/killed
10: S. viridans 25: S. viridans—autoclaved

5: Mycobacterium 11: M. smegmatis WT 26: M. smegmatis WT—90% dilution
11: M. smegmatis WT 27: M. smegmatis WI—60% dilution
11: M. smegmatis WT 28: M. smegmatis WT—50% dilution
11: M. smegmatis WT 29: M. smegmatis WT
11: M. smegmatis WT 30: M. smegmatis WT—100% concentration
12: M. smegmatis TE 31: M. smegmatis TE
13: M. smegmatis TA 32: M. smegmatis TA

a more complete library, where all specimens are pre-
pared with the same protocol, to yield sensitivities
greater than 90%.

These sensitivities can be compared with alternate
techniques. In a study on the use of real-time poly-
merase chain reaction (PCR) for the detection of
methicillin-resistant Staphylococcus aureus (MRSA)
in a hospital, a sensitivity of 96% was determined for
the real-time PCR assay [19]. The gold-standard
method of culture and count has a sensitivity of
100%. A more useful and meaningful metric is the
positive predictive value (PPV). While the sensitivity
is determined by taking the ratio of true positive test
results to the actual number of positive specimens,
the PPV is the ratio of true positive test results to
the sum of the number of true positive and false po-
sitive test results. Because all “positive” results must
be responded to with appropriate measures in a clin-
ical setting (i.e., pharmaceutical treatment or patient
sequestration), the PPV is indicative of an assay’s ul-
timate utility and cost-effectiveness. When this me-
tric is used, the real-time PCR test returned a PPV of
only 65%. The LIBS classification tests reported here
using the external validation criteria possessed
PPVs of 95%, 60%, 92%, and 96% for the four genera
shown in Table 2. These high PPVs are the result of
very low rates of false positives, as can be seen in
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Table 2. By comparison, the gold-standard culture
and count method has a PPV of 100% [19].

D. Use of Sequential Classification Tests to Increase
Accuracy

The use of sequential chemometric models or algo-
rithms, each based on the result of the previous test,
to increase accuracy in the classification of LIBS
spectra is beginning to gain acceptance. See, for ex-
ample, Multari et al. [8]. To demonstrate the useful-
ness of this approach, we investigated the accuracy of
identification of E. coli strains by using a two-step
test. The first test classified an unknown spectrum
using the five-genus library described earlier. We
were interested in those spectra classified as Escher-
ichia or Enterobacter, already noted as being highly
similar. Bacterial spectra from those two genera
were then further tested in a DFA model that only
contained the E. coli spectra and the E. cloacae spec-
tra. The result of this second classification was an
increase in the E. coli identification relative to the
five-genus library.

Specifically, 299 E. coli spectra were classified
against the five-genus library. Again, an external va-
lidation was performed where entire sets of data
were excluded from the analysis so that no other
spectrum obtained from that data set was contained
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(Color online) Spectral library. Plots showing the first three discriminant function scores from a DFA of 669 bacterial LIBS spectra

collected in our laboratory over three years. (a) The spectra were classified into five distinct classes on the basis of bacterial genus. (b) The
spectra were classified into 13 unique bacterial classes (see Table 1). The symbols of the 13 classes have been made uniform with (a) to show
the similarities between the DFA when it is performed in these two different ways.

in the library. In this analysis, 269 of the E. coli spec-
tra were correctly classified as Escherichia (89.97%),
21 spectra (7.02%) were incorrectly classified as En-
terobacter, and the rest were incorrectly identified as
another genus. When these 299 spectra were classi-
fied using a model containing only the E. coli and the
E. cloacae spectra, 290 spectra (96.99%) were cor-
rectly classified as E. coli and only 9 (3.01%) were in-
correctly classified at E. cloacae. This improvement
of accuracy due to use of the more specialized model
demonstrates that spectra that are identified as be-
longing to closely related organisms such as Escher-
ichia and Enterobacter, or species within a given
genus (i.e., the streptococci viridans or mutans),

should be tested with a refined model specifically
constructed to resolve the smaller subtle differences
after a general genus-level classification has been
made.

For completeness, the same sequential test was
performed on the E. cloacae spectra. Because there
was only one data set obtained from this organism,
the external validation was not possible; therefore,
samples were tested using the LOO cross validation.
Using the five-genus model, 39 of 43 (90.70%)
E. cloacae spectra were correctly classified as
E. cloacae. The other four were identified as some-
thing other than Escherichia or Enterobacter. In the
model containing only E. coli and E. cloacae, 40
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Table 2. Truth Tables from a DFA Classification of 669 Bacterial LIBS Spectra in a Five-Genus DFA Model

External validation

Leave-one-out cross validation

Escherichia TRUE FALSE Escherichia TRUE FALSE
Positive 89.97% 4.28% Positive 94.31% 0.61%
Negative 95.72% 10.03% Negative 99.39% 5.69%
Staphylococcus TRUE FALSE Staphylococcus TRUE FALSE
Positive 62.16% 2.55% Positive 100.00% 0.51%
Negative 97.45% 37.84% Negative 99.49% 0.00%
Streptococcus TRUE FALSE Streptococcus TRUE FALSE
Positive 83.82% 2.04% Positive 95.59% 0.00%
Negative 97.96% 16.18% Negative 100.00% 4.41%
Mycobacterium TRUE FALSE Mycobacterium TRUE FALSE
Positive 89.61% 1.27% Positive 97.40% 0.00%
Negative 98.73% 10.39% Negative 100.00% 2.60%
spectra (93.02%) were correctly classified as  that contained only E. coli and E. cloacae spectra.

E. cloacae and three were classified as E. coli. This
result, which shows little difference between the
two models, demonstrates the fallibility of utilizing
“LOQO” cross-validation testing.

4. Summary

In this article we have reported the results of several
experiments that demonstrate that a LIBS-based
bacterial identification could be successfully applied
to identify pathogens in a clinical specimen. The is-
sue of mixed samples has once again been addressed
with mixtures prepared from two closely related bac-
teria (E. coli and E. cloacae) using clinically relevant
and realistic mixing fractions. This was intended to
represent situations of clinical infections with the
presence of additional background or contaminant
bacteria.

To simulate the use of a LIBS-based test to diag-
nose urinary tract infections, cells of S. epidermidis
were spiked into sterile urine samples and the bac-
teria were harvested from these samples with no
other preparation or washing. Using a discriminant
function analysis model that contained spectra from
S. epidermidis cells harvested from water as well as
two other staphylococci species, the urine-harvested
samples were identified with 100% accuracy. No
spectrum used to construct the model was obtained
from cells obtained from a urine sample.

A 669-spectrum library composed of spectra from
five bacterial genera and 13 distinct taxonomic
groups was compiled and tested using external vali-
dation techniques where the model did not contain
any spectra from samples acquired at the same time.
Little difference was observed between the five-class
model and the 13-class model. Truth tables con-
structed from the external validation of the five-
genus model yielded sensitivities of approximately
85% and specificities above 95%. These external va-
lidation tests were compared to LOO cross-validation
tests and, as expected, an artificially high accuracy
was observed in the LOO tests.

Last, the use of sequential classification testing
was investigated by identifying closely related E. coli
and E. cloacae spectra using first the five-genus mod-
el spectral library and then a more targeted model
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The improvement in accuracy obtained by using the
more targeted model demonstrated the utility of
using sequential testing to “filter” unknown spectra
as they are tested, first through a “coarse” (perhaps
genus-level) model and then through a more “fine”
species-level (or similar) model to eventually obtain
an accurate identification at the desired level. This
simple addition of sequential testing can be easily
implemented with little to no increase in complexity
or time required.
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