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ABSTRACT  

Pathogen spillover from wildlife to domestic animals and humans, and the reverse, has caused 

significant epidemics and pandemics worldwide. Although pathogen emergence has been linked to 

anthropogenic land conversion, a general framework to disentangle underlying processes is lacking. 

We develop a multi-host model for pathogen transmission between species inhabiting intact and 

converted habitat. Interspecies contacts and host populations vary with the proportion of land 

converted; enabling us to quantify infection risk across a changing landscape. In a range of scenarios, 

the highest spillover risk occurs at intermediate levels of habitat loss. Whereas the largest, but 

rarest, epidemics occur at extremes of land conversion. This framework provides insights into the 

mechanisms driving disease emergence and spillover during land conversion. The finding that the 

risk of spillover is highest at intermediate levels of habitat loss provides important guidance for 

conservation and public health policy. 
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INTRODUCTION 

Anthropogenic or human-driven land conversion has led to loss of natural habitat across the globe 

(Hansen et al. 2013). The processes of agricultural intensification and urbanization transform 

contiguous natural habitats into smaller, discrete remnant patches embedded in a matrix of human-

modified land (Skole & Tucker 1993; Forman 1995). The proportion of the landscape that consists of 

core habitat is an essential structural feature of a landscape, as is the edge surrounding these 

habitats (Turner & Gardner 2015). The core may be intact natural habitat or similar, whereas edges 

form the boundary between the core and matrix habitats (Fagan et al. 1999). Initially, all forms of 

land conversion increase edge density, the total length of edge per unit area (Gardner & O’Neill 

1991; McGarigal & McComb 1995; Ritters et al. 1995; Hargis et al. 1998; Fahrig 2003). However, at 

high levels of habitat conversion edge density declines – the point of habitat conversion when edge 

density is maximum depends on the shape of matrix patches and the processes by which reminant 

core habitat is converted (Zipperer 1993; Hargis et al. 1998). Land cover transformation and changes 

in edge densities relative to proportion of land converted have cascading ecological effects that 

influence resource availability, population carrying capacities, species persistence, and the 

community composition of plants and animals (Laurance 2000; Ries et al. 2004; Ewers & Didham 

2007). In addition to these ecological implications, mounting evidence suggests that land conversion 

influences how infectious diseases are transmitted within and between animal species. Spillover 

across core-matrix boundaries has led to outbreaks (Gonzalez et al. 2005; Calvignac-Spencer et al. 

2014), declines in populations (Thorne & Williams 1988; Berger et al. 1998), panzootics (Li et al. 

2005; Keele et al. 2006), and even species extirpation (De Castro & Bolker 2004). 

Human-driven land conversion has been associated with infectious disease emergence (Patz et al. 

2004; Jones et al. 2008; Gottdenker et al. 2014), although clear mechanisms have been difficult to 

infer from empirical data. One hypothesis is that edges between core and matrix landscapes 

facilitate interspecies contact and pathogen transfer during land conversion (Chapman et al. 2005; 

Wolfe et al. 2005). Length of edge habitat is positively correlated with interspecies contact rates and 
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increases pathogen sharing between wildlife and humans in some systems (Goldberg et al. 2008; 

Walsh 2013; Paige et al. 2014). Yet there is minimal understanding about whether this increase is 

driven solely by changing contact patterns, or other consequences of land use change, such as 

changing habitat, altered resource availability, or changing species composition. 

Models of emerging infectious diseases rarely focus on the pathogen spillover stage of emergence 

(Lloyd-Smith et al. 2009; Plowright et al. 2017). Explicit models of spillover often rely on fixed 

interspecies transmission rates from reservoir hosts to new hosts (Rogers 1988; Choi et al. 2002; 

Chaves & Hernandez 2004) or on an environmental reservoir that determines spillover risk 

(Rosenquist et al. 2003; Nauta et al. 2007). Time variation in interspecies transmission rates has 

been explored using a seasonally forced multi-host model (Ghosh & Tapaswi 1999), but this forcing 

was not linked to biological or environmental data. Moreover, these models do not consider 

landscape scale processes affecting transmission. Models that explore relationships between disease 

transmission and land conversion are primarily agent-based and parameterized for specific locations 

and diseases (Nunn et al. 2007; Li et al. 2012; Lane-deGraaf et al. 2013). Despite the common belief 

that land conversion leads to disease emergence, there is no theoretical framework integrating land 

conversion and critical transmission components of disease spillover.  

We present a general mechanistic framework for understanding pathogen transmission among core 

and matrix species during land conversion. This framework can be adapted to a variety of systems 

with applications for public health, veterinary health, and conservation (Figure 2; Table S1). We 

develop a mathematical model of host populations and pathogen dynamics for two host species: 

one occupying core habitat and one occupying matrix habitat. We observe how variation in species’ 

carrying capacities, contact rates between species, and efficiency of pathogen transmission between 

species are associated with pathogen spillover during land conversion. To explore the conditions 

under which the habitat of recipient hosts becomes permeable to pathogens, we use a deterministic 

multi-host model. We then use stochastic simulations to investigate how land conversion affects the 
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probability and size of outbreaks . We also adapt the deterministic simulations to examine how the 

magnitude and rate of land conversion affects transient and equilibrium pathogen prevalence. 

Methods  

Model assumptions 

We model a single pathogen shared with two host species: one that primarily occupies core habitat 

and the other that primarily occupies converted matrix habitat. We assume that: (1) both species’ 

carrying capacities are determined by the area of their respective key habitat, (2) species dwelling in 

the matrix landscape are humans or domestic animals, (3) wildlife live in core habitat, and (4) 

pathogens have a higher R0 in endemic hosts. These assumptions can be adjusted to reflect many 

spillover scenarios (Figure 2). The equilibrium abundance of core species, KC[ϕ], and matrix species, 

KM[ϕ], are functions of the proportion of converted habitat (ϕ varies from an initial value of 0, when 

no core habitat has been converted, to 1.0 when all natural habitat is converted to matrix; Figure 1).  

Species-specific parameters are denoted by a subscript for core (C) and matrix (M) hosts. For the 

deterministic simulations in the main text, all species specific parameters (including birth rates, 

death rates, disease recovery rates, disease induced mortality) were fixed and the same for all 

simulations (Table S2). Sensitivity analyses exploring how these parameters affect model predictions 

are detailed in the supporting information (Figure S4). 

Deterministic model framework 

In this two host system: Sc, Ic, Rc are susceptible, infected and recovered core hosts and we assume 

that the total host population (Nc = Sc + Ic + Rc) contributes to reproduction. SM, IM, RM and NM are the 

corresponding numbers for matrix hosts. We use coupled ODEs  (Equations 1-6) to simulate the 

dynamics of both density-dependent (𝜅 = 1) and frequency- dependent (𝜅 = 0) pathogens. 

Adaptations of the SIR model - including SI, SIS, and SIRS structures - are detailed in the 

supplementary information (Figures S4-S7; Tables S5-S7). 



 

 7 

𝑑𝑆𝑐

𝑑𝑡
=  𝑏𝑐𝑁𝑐 (1 −

𝑁𝑐

(1 − 𝜙)𝐾𝑐
) − (

𝛽𝑐𝑆𝑐𝐼𝑐

𝑁𝑐
𝜅 +

𝜀[𝜙]𝜓𝛽𝑀𝑆𝑐𝐼𝑚

(𝑁𝑐 + 𝜀[𝜙]𝑁𝑚)
) − 𝑑𝑐 

𝑑𝐼𝑐

𝑑𝑡
=  

𝛽𝑐𝑆𝑐𝐼𝑐

𝑁𝑐
𝜅 +

𝜀[𝜙]𝛽𝑀𝑆𝑐𝐼𝑚

(𝑁𝑐 + 𝜀[𝜙]𝑁𝑚)
− (𝑑𝑐 + 𝛼𝑐 + 𝛾𝑐)𝐼𝑐 

𝑑𝑅𝑐

𝑑𝑡
= 𝛾𝑐𝐼𝑐  − 𝑑𝑐𝑅𝑐 

𝑑𝑆𝑚

𝑑𝑡
=  𝑏𝑚𝑁𝑚 (1 −

𝑁𝑚

𝜙𝐾𝑚
) − (

𝛽𝑚𝑆𝑚𝐼𝑚

𝑁𝑚
𝜅 +

𝜀[𝜙]𝜓𝛽𝑐𝑆𝑚𝐼𝑐

(𝑁𝑚 + 𝜀[𝜙]𝑁𝑐)
) − 𝑑𝑚 

𝑑𝐼𝑐

𝑑𝑡
=  

𝛽𝑚𝑆𝑚𝐼𝑚

𝑁𝑚
𝜅 +

𝜀[𝜙]𝜓𝛽𝑐𝑆𝑚𝐼𝑐

(𝑁𝑚 + 𝜀[𝜙]𝑁𝑐)
− (𝑑𝑚 + 𝛼𝑚 + 𝛾𝑚)𝐼𝑚 

𝑑𝑅𝑐

𝑑𝑡
= 𝛾𝑚𝐼𝑚  − 𝑑𝑚𝑅𝑚 

 

The rate of within species transmission (βM, βC) is independent of landscape conversion (but see 

Figure S1-S2 for extensions that do not assume this). Transmission rates are calculated from a fixed 

R0 within a species (R0.C or R0.M) in a landscape that is entirely its natural habitat (𝜙 = 0, 𝜙 = 1; 

respectively). Unique transmission rates are calculated for density-dependent (𝜅 = 1) and 

frequency-dependent (𝜅 = 0) transmission (Table S2). Density-dependent transmission is 

appropriate for modelling pathogens with transmission rates that increase with host density, 

whereas frequency- dependent transmission is appropriate for modelling pathogens with 

transmission rates that do not change with host density (McCallum et al. 2001). These formulations 

represent two extremes on a continuum of potential transmission assumptions and are therefore 

useful for understanding the spectrum of possible transmission scenarios (McCallum et al. 2017).  

Between species (core-matrix) transmission rates are a product of the source species transmission 

rate (βM or βC), the efficiency of between species transmission (a proportion, 𝜓), and the the 

boundary between the core and matrix habitats (edge effects; ε). We use a third order polynomial 
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function (Equation S5) to model edge effects, ε, as a function of landscape conversion φ (Figure 1). 

This function was parameterized using a representative dataset of land conversion (Wang et al. 

2014). We assume that interspecies contact is most likely  200 m on either side of the edge and we 

use this to create a buffer area. Edge effects in this model can be thought of as the proportion of 

total habitat where both species are likely to interact; ε can exceed 1 when some regions are within 

more than one edge buffer. Variations of epsilon are explored in the supporting information and 

exemplify different patterns and processes during land conversion (Figure S10). 

To explore a range of scenarios detailed in Figure 2, we calculate the community R0 for three 

pathogen case studies. We explore how community R0 changes for both density- and frequency-

dependent transmission in these scenarios - 1) a pathogen that is endemic in core hosts (𝑹𝟎.𝑪 >

𝑹𝟎.𝑴, Figure 2A/B), 2) a pathogen that is endemic in matrix hosts (𝑹𝟎.𝑪 < 𝑹𝟎.𝑴, Figure 2C/D), and 

3) a pathogen that is equally adapted to both species (𝑹𝟎.𝑪 = 𝑹𝟎.𝑴, Figure 2 E/F). The community 

R0, or expected number of secondary cases when an infected individual is introduced to a completely 

naïve community, is calculated by linearizing the transmission terms using a next-generation matrix 

(Equations S1-S4) (Diekmann et al. 1990).  

 

Stochastic simulations. We also model pathogen emergence as a closed stochastic SIR epidemic in 

matrix populations. Gillespie’s direct method (Gillespie 1977) is used to simulate exponentially 

distributed variables and the event time between discrete events. The initial matrix population size 

is determined by the proportion of converted land and all individuals are assumed to be susceptible. 

Within-matrix transmission, recovery, and disease-induced mortality rates are parameterized based 

on a 2001 Ebola epidemic in Uganda (CDC (2001)); Ferrari et al. (2005); Table S4). Finally, the 

spillover rate is a product of the (1) size of core population (only for DD pathogens, 𝐾𝐶[𝜙]), (2) 

transmission rate within core populations( 𝛽𝐶), (3) between species transmission efficiency (here 
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𝜑 = 0.5 ), and (4) edge effects (ε[𝜙]) – the spillover rate is therefore specific to the level of land 

conversion (𝜙, Figure S12). All of these processes are stochastic in our model. 

We iterated the model over one year, keeping track daily of whether or not any individuals were 

infected in the matrix population, the total number of individuals infected during the epidemic (size 

of epidemic), and how many infections were caused by relative to the force of spillover 

(matrix:spillover cases). Simulations were run 10,000 times and the probability of spillover at a given 

level of land conversion was calculated as the proportion of simulations with at least one infected 

individual in the matrix population after 1 year. 

Changes in the frequency and scale of land conversion. To examine the impact of spatial and 

temporal differences in the land conversion process on disease dynamics, we adapt the 

deterministic model framework to examine variation in the frequency and proportion of land 

converted. All simulations are run with the same demographic parameters (Table S2) and the 

pathogen is endemic in the core species (Table S3). Land conversion events begin after the system is 

at endemic equilibrium (t = 150 years) in a landscape that has a small population of matrix hosts 

(𝜙 = 0.01). We assume that each conversion event is instantaneous: changing the carrying 

capacities of each host and the potential contacts between them. There are delays between the 

conversion events and adjustment of populations to the new carrying capacities, as the birth rate 

increases or decreases according to the species. The simulations are run with a gradient of land 

conversion frequencies (conversion events biannually to every decade) and size of land converted 

(4%, 8%, or 12% every conversion event). There are nine conversion events and the number of hosts 

in each class (S ,I, R) is recorded in the core and matrix until the system returns to equilibrium (an 

additional 150 years). 

RESULTS 

Pathogen invasion in naïve communities is highest at intermediate levels of land conversion.  
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We determine R0 for multi-host systems in the context of changing landscapes. We consider this 

community R0 to be a proxy for invasion potential. We explore three scenarios in which a pathogen 

is endemic in core hosts (𝑅0.𝐶 > 𝑅0.𝑀, Figure 2A/B), a pathogen is endemic in matrix hosts (𝑅0.𝑐 <

𝑅0.𝑀, Figure 2C/D), and a pathogen is equally adapted to both species (𝑅0.𝑐 = 𝑅0.𝑀, Figure 2 E/F). 

When transmission is density-dependent; invasion potential is affected by both endemic and non-

endemic species’ carrying capacity and edge effects (Figure 3A, C, E). If efficiency of between species 

transmission (𝜓) is low, community R0 tracks that of the species with the highest R0 for the given 

amount of habitat conversion. Increasing efficiency of between species transmission  magnifies the 

community R0 beyond that of either species individually. This nonlinear relationship has the potential 

to lead to intermediate levels of habitat loss driving disease emergence, whereas community R0 is 

lower at the extremes of habitat conversion (Figure 3). Depending on R0 of endemic and spillover 

hosts, invasion of the pathogen is not possible (community R0 < 1) over small (Figure 3E) or large 

(Figure 3A) proportions of habitat conversion. This relationship is driven by edge effects, 

replacement of one species with another host, and high between-species transmission efficiency. 

While these calculations assume a completely naïve population, as land conversion splinters the 

landscape, pathogens are likely to go extinct in isolated habitat patches. Subsequent introduction of 

pathogens into intermediate levels of converted landscape can be more likely (higher community R0) 

relative to completely intact ecosystems (Figure 3C) or completely converted ecosytems (Figure 3A) 

depending on the habitat of the endemic host.  

By contrast, when transmission is frequency-dependent, the community R0 never goes below 1 

because we assume the pathogen is endemic in at least one species and this maintains the same 𝑅0 

regardless of either host population size. Therefore, frequency-dependent pathogens (Figure 

3B,D,F), are able to invade the community at any level of land conversion even if R0 < 1 in one 

species, as long as R0 > 1 in the other. For frequency-dependent pathogens, invasion potential is also 

highest at intermediate levels of land conversion, because the frequency of contacts increases with 
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length of the edge between habitats. The efficiency of between-species transmission affects the 

magnitude of the community R0, but not the range of habitat loss over which a pathogen can invade 

a community. 

Beyond community R0, each species’ peak prevalence and equilibrium prevalence is affected by a 

unique subset of demographic and disease parameters (Tables S5-S7). For example at intermediate 

conversion (𝜙 = 0.5), across an epidemic the number of  infected non-endemic hosts is most 

affected by increasing interspecies transmission efficiency, but equilibrium prevalence increases 

most with birth rate (Figure S4).   The magnitude and direction of influence of these parameters is 

also affected by the stage of habitat conversion and specifics of the disease process (SIR, SIRS, SI, SIS; 

Figures S4-S7; Tables S5-S7). 

Probability of individual infection and occurrence of outbreaks is highest at intermediate levels of 

land conversion. We use stochastic models to understand the probability and average size of 

epidemics in matrix populations across a gradient of land conversion. We show that land conversion 

can drive a range of outcomes: from no transmission events, stuttering chains of transmissions, to 

epidemics (Figure 4). At low levels of converted habitat, the large infectious pool of core species 

creates a high force of infection and is combined with intermediate edge effects (see spillover rate; 

Figure S10). But as there are few susceptible individuals in the matrix habitat, these outbreaks tend 

to die out. As more habitat is converted, spillover risk from core habitats remains relatively high 

while matrix populations grow. These larger matrix populations sustain local chains of transmission 

(Figure 4). The key result is that the highest probability of an outbreak occurrs at intermediate levels 

of conversion, with high edge effects, and relatively large populations in the matrix.  

At higher levels of land conversion (𝜙 > 80%), spillover declines because the force of infection from 

dwindling core populations and edge effects are reduced. The highest levels of land conversion lead 

to the largest, but also rarest, epidemics (Figure 4C; median outbreak size = 0, mean outbreak size = 

80). At these higher levels of habitat conversion, the distribution of outbreak sizes is bimodal. If 
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spillover occurs, the final outbreak size is large because of the large pool of susceptible hosts, but 

likelihood of spillover is low because core populations are small and edge is minimal. These patterns 

are similar in a model that excludes edge effects and simply changes the relative abundance of the 

two host populations. 

Spatial scale and rate of land conversion affect transient and equilibrium disease dynamics. 

Regardless of the amount and frequency of land conversion, infection prevalence in the matrix 

population increases in the medium term (Figure 5) and similar patterns occur in the number of 

infected individuals (Figure S11). Initial decreases in prevalence are followed by a rise in the 

prevalence in infected core species and a delayed peak in matrix host prevalence. The magnitude of 

the change in prevalence is dependent upon both the amount and frequency of core habitat 

converted. When only a small amount of land (4% habitat) is transformed, increases in the frequency 

of land conversion events more quickly reach peak prevalence of infection in both the core and 

matrix hosts, but it is lower in magnitude compared to slower land transformation. By contrast, 

when a large amount of land (12% habitat) is transformed,  increases in the frequency of land 

conversion events from decadal to biannual reduce peak and long-term prevalence in both core and 

matrix hosts below the initial levels. The combination of rapid rates of area and land conversion 

pushes the system past the risky intermediate land conversion phase (where edge effects are 

greatest) towards a system with lower edge effects. Thus, transient dynamics are dependent on both 

the rate and amount of land cleared and the interaction between the two. 

 

DISCUSSION 

The number of emerging infectious disease events are thought to be increasing and environmental 

change, such as land conversion, play a role in this increase (Jones et al. 2008; Jones et al. 2013; 

Gottdenker et al. 2014). Despite a correlation between pathogen transmission and land conversion, 
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specific mechanisms underlying increased infection risk in changing landscapes have been difficult to 

pinpoint (Gillespie & Chapman 2006; Plowright et al. 2008). Our mechanistic models of the dynamics 

of reservoir and recipient host populations highlight changing host population densities and edge 

effects as mechanisms driving disease emergence in converted landscapes. We show that a hump-

shaped relationship of pathogen transmission occurs across a gradient of land conversion between 

two species, with highest disease risk at intermediate levels of habitat loss. The framework we 

developed provides a series of predictions about how pathogen transmission changes with land 

clearing and provides viable explanations for observed patterns of spillover events (Table 1).  

The models emphasize two mechanisms driving spillover dynamics in converted landscapes: changes 

in host carrying capacities and changes in edge effects, using functions of edge density as a proxy for 

interspecies transmission. Land conversion modifies the carrying capacity for hosts (increasing 

carrying capacity for matrix species, decreasing carrying capacity for core species), which in turn 

affects transmission chains within each habitat type and across the patch-matrix interface. For 

density-dependent pathogens, dead-end spillover events are common during initial habitat 

conversion when there is a small matrix population size and infrequent interspecies contact events 

with small edge effects (Figure 4D). For example, outbreaks of monkeypox and Ebola in humans  are 

linked to hotspots of deforestation (Rimoin et al. 2010; Olivero et al. 2017; Rulli et al. 2017). The 

recent Ebola outbreak in Guinea underscores the importance of high human population sizes in the 

matrix. Previous outbreaks of Ebola in Central Africa did not lead to major epidemics; however, in 

Guinea, when infected individuals sought medical treatment in large town centers, the ensuing chain 

of transmission sparked a major epidemic mirroring stochastic simulations presented here (Genton 

et al. 2014; Pigott et al. 2014). 

Similar relationships between land conversion, host population size, and pathogen transmission can 

be expected in many systems. Fungal pathogen epidemics are driven by the most abundant plant 

hosts across a landscape (Fabiszewski et al. 2010). Agricultural intensification of pig farms (an 
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increased matrix population) adjacent to bat-attracting mango plantations in Malaysia provided the 

conditions for Nipah virus emergence in pig populations after spillover from bats (Pulliam et al. 

2011). The carrying capacity of both core and matrix habitats will change the likelihood of onward 

transmission in the naïve species and is important to consider when predicting the extent of an 

outbreak.  

Concomitant to risk mediated by changing population sizes in the matrix and core, land conversion 

alters edge density . We have assumed that the boundary between discrete habitat types (core and 

matrix) is a reasonable proxy for interspecies contact rates. This assumption is supported by 

empirical data showing that bushmeat consumption rates (Poulsen et al. 2009) and hunting contact 

rates (Friant et al. 2015) increase with habitat conversion. Transmision of enteric pathogens has also 

been documented between species at habitat interfaces (Johnston et al. 2010; Parsons et al. 2015). 

Additionally, distance to forest edge has been highlighted as a risk factor for cutaneous leishmania 

incidence in humans from wildlife reservoirs (Chaves et al. 2008; Quintana et al. 2010). Interspecies 

contact is key for studies of landscape spillover and can explain seasonal and interannual epidemics 

(Fabiszewski et al. 2010). How edge changes during conversion will affect the timing and magnitude 

of spillover (Figures S9,S10). While edge effects driving interspecies contact is an assumption built on 

the structural properties of how edge habitat changes during land conversion, there are other 

associated processes that can facilitate heightened interspecies transmission at intermediate levels 

of habitat conversion (Despommier et al. 2006). Species movement, especially when resources 

decline disproportionally to remaining core habitat during land conversion, can be facilitated by 

higher edge densities (Taylor et al. 1993 

; Umetsu & Pardini 2007; Driscoll et al. 2013) . Edge density is also likely positively scale with contact 

rates driven by distribution of resources in converted landscapes (Rand et al. 2006). Habitat edges 

are a dominant feature globally – approximately 70% of forest habitat is within 1 km of the forest’s 

edge (Haddad et al. 2008). Empirical investigation that explicitly quantifies how interspecies 
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transmision rates between core and matrix habitats differ as a function edge is an important future 

research focus for disease ecology and epidemiology studies.  

Pathogens at each end of the density-dependent and frequency-dependent transition spectrum are 

expected to have different risk patterns associated with pathogen invasion during land conversion. 

Density-dependent pathogens may be less likely to persist in declining endemic core populations, 

and may require high rates of between species transmission to bolster infection risk at intermediate 

levels of habitat conversion. For frequency-dependent pathogens (such as vector-borne 

arboviruses), increased land conversion and contact between reservoir and recipient hosts will lead 

to increased disease incidence in the matrix and increased probability of spillover over a large range 

of parameter space. For example, in the Neotropics, leishmania spillover tends to occur in 

landscapes where forests dominate deforested matrices, suggesting high densities of core species 

are necessary to facilitate spillover (Chaves et al. 2008; Dantas-Torres et al. 2017). The impact of 

edge habitats on interspecies contact is the most important mechanism influencing transmission, as 

demonstrated by yellow fever that transmits from primate reservoirs into humans in both highly 

deforested landscapes and intact natural habitats (Bicca-Marques & de Freitas 2010; Almeida et al. 

2012; Romano et al. 2014). Regardless, in both density-dependent and frequency-dependent cases, 

pathogens vulnerable to extinction in small isolated core populations may persist in a growing matrix 

population that maintains R0 > 1.  

Land conversion and disease emergence are dynamic processes. Our simulations show that time 

since initial habitat loss, in addition to the rate and scale of land conversion, may drive dynamic 

changes in infectious disease transmission. These results are supported by a number of empirical 

studies. For example, zoonotic malaria risk due to Plasmodium knowlesi is highest in areas that have 

65% forest in a 5 km radius and have been deforested in the last 5 years (Fornace et al. 2016). The 

working hypothesis is that declining resources for reservoir hosts (Macaca fascicularis) drove them 

from their habitat, leaving infected vectors to obtain bloodmeals from the more readily available 
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human hosts (ref). This example supports the idea that host population sizes and contact patterns 

change following landscape modification. A survey of henipavirus antibody prevalence in humans in 

Cameroon revealed high exposure risk in recently deforested areas and low risk in intact rainforest, 

even though reservoir hosts were present in both locations (Pernet et al. 2014) ; the data are silent 

as to whether this is linked to changing host populations, contact rates or other processes. Our 

simulations point towards higher disease risk in non-endemic populations in these modified habitats.  

The simulations also suggest that slow land conversion (e.g., selective logging) may increase spillover 

risk compared to rapid widespread land conversion (e.g., commercial agricultural development). 

Mismatches between the time-scales of conversion and the time-scales of species responses may 

drive interesting patterns of edge effects. For example, long-lived species may persist in rapidly 

changing landscapes beyond the point that their populations exceeded carrying capacity (Ewers et 

al. 2013). We did not account for such lags (known as extinction debts) in our simulations, but these 

lags may exacerbate disease risk.  

Host demographic and disease transmission parameters have significant impacts on transient 

infection dynamics and equilibrium prevalence in a converted landscape. The impact of these 

parameters depends on the host abundance in the landscape and changes during the conversion 

process (Table S5-S7). It is important to consider how key reservoir species are affected by edges 

(Pfeifer et al. 2017) and these in turn influence key host demographics to either increase 

suspeptibility to spillover or change demographics to facilitiate additional spillover risk. 

Pathogen spillover is a complex phenomenon that is influenced by many processes, including 

pathogen dynamics in reservoir hosts, environmental processes that determine pathogen survival 

and transport outside of these hosts, as well as the behavior and susceptibility of recipient hosts 

(Plowright et al. 2017). Each one of these factors may respond to changing landscapes and shape the 

relationship between land conversion and disease emergence. For instance, land conversion has 

been documented to affect individual nutrition, immunological responses, and population densities 
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(Chapman et al. 2006; Zylberberg et al. 2013; Becker et al. 2015; Chapman et al. 2015; Young et al. 

2016; Seltmann et al. 2017). Specifically, nutritional stress after loss of winter nectar sources may 

drive Hendra virus shedding and spillover from fruit bats (Plowright et al. 2016). Land conversion can 

also affect behavior and therefore species interaction networks (Pellissier et al.). For example, 

increases in primate crop raiding frequency following land conversion increases E. coli transmission 

between humans and primates (Goldberg et al. 2008). Loss of important host predators has been 

highlighted as driving an increased risk of Mycobacterium ulcerans, the causative agent of Buruli 

ulcer, at intermediate levels of deforestion (Morris et al. 2016). These additional mechanisms were 

not incorporated into the models but could be extensions of the framework outlined here. 

While our models represent common mechanisms of land conversion– forest clearing for agriculture 

or mixed human use—they can be applied to other systems with paired core and matrix habitats. For 

example, the equations can be applied to examine pathogen dynamics at the interface of primary 

and secondary forests, irrigated and non-irrigated agricultural lands, managed rangelands for 

separate species (elk and cattle). To assume changes in edges and carrying capacities, the habitats 

would have to be non overlapping.  

Our core-matrix multi-host transmission model points to increased infection risk at intermediate 

levels of conversion given our assumptions about edges as a proxy for interspecies contacts. To 

synergize disease mitigation and conservation outcomes, conservation efforts should focus on 

minimizing the length of the core-matrix boundary (thus reducing edge densities) and preserving the 

integrity of core areas to reduce the likelihood that core species rely on resources in matrix 

populations. Large landscape conservation and minimizing edge effects are foundational principles 

of conservation biology (Wilcove et al. 1986) that should also reduce the risk of infectious disease 

spillover in changing landscapes. Managing disease emergence in concert with conservation 

objectives could also help focus resources on understanding species and contact patterns in areas 

undergoing dynamic landscape transformation. Integrated management could lead to a reduction in 
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the rate at which novel pathogens emerge (Woolhouse 2011), but more work will be needed to 

understand in what land conversion scenarios the model assumptions hold. 

There is increasing speculation that anthropogenic landscape modification affects disease 

emergence (Daszak et al. 2001; Patz et al. 2004; Jones et al. 2013; Murray & Daszak 2013). Most 

primary literature on these topics are conceptual papers or reviews (Gottdenker et al. 2014). Model-

guided research is needed to measure relationships between species pathogen transmission 

efficiency, matrix and host carrying capacities, and how edge density tracks between species 

contacts. Concrete empirical evidence linking land use change and disease requires long-term, cross-

scale evaluation of core densities, edge densities, and matrix habitat structure, and surveillance of 

core and matrix hosts, vectors, and pathogens within these changing landscapes. Our model also 

suggests that research should focus on quantifying variations in host populations and interspecies 

contact rates as mechanisms leading to changes in disease incidence. Management of spillover and 

emerging pathogens will require an integrated understanding of how cascading impacts of land 

conversion affect disease outcomes. 
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PATHOGEN CORE 

SPECIES 
MATRIX 
SPECIES 

INFECTION 
METRIC 

LEVEL OF 
CONVERSION 
W/ HIGHEST 
RISK 

PROPOSED 
MECHANISM 

CITATION 

Escherichia coli guenons  
humans and 
livestock 

genetic 
relatedness 
between 
isolates 

forest 
fragmentation 
increased 

Increased contact 
between reservoirs 
and hosts 

(Goldberg et al. 
2008) 

Rabies virus 
vampire 
bats 

cattle, 
humans 

incidence of 
rabies in cattle 

edge habitats  

Increased edge which 
led to increased bat 
contact with cows 

(Carrasco-
Hernández et 
al. 2009) 

Borrelia 
burdorferi s.l. 

small 
rodents 
and birds humans 

PCR prevalence 
in tick vectors 

woodland with 
higher 
fragmentation 
(larger edge) 

Increased 
populations of more 
competent hosts 
(small mammals) 

(Halos et al. 
2010) 

Hendra virus Fruit bats 
Horses and 
humans 

virus spillover 
event Peri-urban 

areas 

Increased contact 
between reservoirs 
and hosts 

(Plowright et al. 
2011)  

Trypanosoma 
cruzi  

wild 
mammals 

humans, 
domestic 
mammals 

prevalence in 
vectors 

highest in 
highly 
fragmented 
areas; lowest 
in completely 
deforested 
(pasture) 
areas 

Change in host 
community structure 
led to a change in 
contact with infected 
of vectors 

(Gottdenker et 
al. 2012) 

Henipavirus Fruit bats  humans 

seroprevalence 
in humans in villages 

with 
deforestation 

increased contact due 
to consumption and 
butchering of 
bushmeat  

Pernet et al. 
(2014) 

Plasmodium 
knowlesi 

Macaca 
fascicularis 
& other 
monkeys humans 

case incidence 
in humans 

>60% forest 
cover, 
deforestation 
in last 5 year 

Increase in human – 
vector contact driven 
by loss of reservoir 
species 

Fornace et al. 
(2016) 

Mycobacterium 
ulcerans 

waterbugs 
& 
freshwater 
fish  humans 

mean bacteria 
load per 
organism 
(qPCR) 

intermediate 
deforestation 

Loss of core species 
predators 

Morris et al. 
(2016) 

Ebola virus 

fruit bats, 
apes, 
duikers  humans 

outbreak 
location 

forest 
fragmentation 
hotspots 
(rapid rates 
and extent of 
deforestation) 

Edge effects change 
wildlife composition 
and lead to increased 
interspecies contact  

Rulli et al. 
(2017) 

Ebola virus 

fruit bats, 
apes, 
duikers  humans 

outbreak 
location 

deforestation 
in last 2 years 
+ >83% 
closed canopy 

contact between 
humans and wildlife 
increases following 
recent deforestation 

Olivero et al. 
(2017) 

 

FIGURE LEGENDS 

Figure 1. Land conversion and hypothesized effect on host carrying capacity and edge effects. Prior 

to land conversion, intact core habitat supports large populations of core species and few matrix 

hosts. We assume changes in carrying capacity are monotonic across land conversion and are simply 

a function of the proportion of habitat for the respective species. In addition to carrying capacity 

varying with land conversion, edge density peaks at intermediate levels (function fitted to data from 
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Wang et al. (2014), but different functional forms are in SI). In our models, edge effects is used as a 

proxy for interspecies contact. The proportion of land converted in which edge effects are 

maximum, and the magnitude of edge effects, will depend on the relative sizes and shapes of 

converted land and processes governing conversion (Hargis et al. 1998). The relationships shown 

here are a simplification of land transformation effects in real systems but offer a tractable series of 

assumptions for understanding impacts on infectious disease transmission within and between 

hosts. 

Figure 2. Schematic diagram of pathogen spillover between core and matrix hosts. The diagram 

details the different routes of pathogen spillover among core (green) and matrix (tan) habitats and 

the species that dwell in these habitats. Blue arrows indicate the direction of movement of hosts and 

orange arrows indicate the direction of transmission between hosts (from endemic to spillover host). 

(A) Humans have contracted Ebola virus, HIV and monkeypox through bushmeat hunting in forested 

(core) areas in Africa (Leroy et al. 2004; Shchelkunov 2013). (B) When wildlife move into matrix 

habitats searching for resources or dispersing to other natural habitat areas, pathogens may move 

with these species and transmit into hosts living in the modified environments- such as Hendra virus 

spillover from flying foxes to horses in Australia (Plowright et al. 2015). While we often have an 

anthropocentric view of spillover, humans or livestock species can cause spillover of pathogens to 

core species; for example, (C) measles transmission from humans to apes during ecotourism 

activities (Rwego et al. 2008; Parsons et al. 2015), or (D) canine distemper from free ranging 

domestic dogs into carnivores within reserves (Viana et al. 2015). (E) Vectors can also facilitate 

transmission, as is the case with sylvatic dengue, zoonotic malaria, and yellow fever (Lounibos 2002; 

Brock et al. 2016). (F) Lastly, parasites like E. coli can be shared bidirectionally and transmission is 

facilitated by the movement of hosts (Thompson & Smith 2011). 

Figure 3. Transmission potential as a function of land conversion. Within host 𝑅0 for core (green) 

and matrix hosts (tan) species for density-dependent transmission (A-C) and frequency-dependent 
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transmission (D-F). The greyscale lines indicate the community 𝑅0 at a given level of interspecies 

transmission efficiency (𝜓). When the pathogen is endemic in core hosts (A,D), a density-dependent 

pathogen is unable to invade highly converted habitats, in contrast to density-dependent pathogens 

that are adapted matrix hosts (B). The final scenario (C, F), is an example of a pathogen that is 

equally adapted to core and matrix hosts. 

Figure 4. Stochastic simulations of spillover into matrix populations. (A) At intermediate levels of 

land conversion, the probability of spillover is high (measured as the number of simulations that had 

at least one infected core individual. (B) The mean of epidemic  size in the matrix is shown. (C) This 

violin plot show the density of stochastic simulations at a given outbreak size for five habitat 

conversion levels (𝜙 = 0.1, 0.3, 0.5,0.7, 0.9). Solid points indicate the median outbreak size at the 

given level of conversion and open squares indicate the mean outbreak size. At intermediate (𝜙 =

0.5) conversion, the statistics are similar, however the median number of outbreaks is 0 at 𝜙 = 0.9, 

where there are either very large outbreaks (that increase the average epidemic size) or, more 

frequently, none. (D) A heat map of 1000 simulations showing the number of simulations that 

resulted in a given epidemic size for each proportion of converted land.  

Figure 5. Spatial and temporal variation of land conversion and its affect on disease dynamics. A 

density-dependent pathogen that is endemic in core species (R0 > 1) increases in prevalence as 

habitat is converted (each conversion event is indicated in grey horizontal line). Decreasing the rate 

of conversion (left, biannual land conversion , to right, conversion every 10 years) increases the 

magnitude of change in prevalence in core and matrix hosts. The amount that is converted each 

time (4%, 8%, or 12%) is indicated by line thickness. After nine conversion events, there is between 

76% (4% conversion rate) and 4% (12% conversion) of core habitat remaining.  

 

REFERENCES 



 

 22 

1. 

Almeida, M.A.B.d., Santos, E.d., Cardoso, J.d.C., Fonseca, D.F.d., Noll, C.A., Silveira, V.R. et al. (2012). 
Yellow fever outbreak affecting Alouatta populations in southern Brazil (Rio Grande do Sul 
State), 2008–2009. American Journal of Primatology, 74, 68-76. 

2. 

Becker, D.J., Streicker, D.G. & Altizer, S. (2015). Linking anthropogenic resources to wildlife–
pathogen dynamics: a review and meta‐analysis. Ecology letters, 18, 483-495. 

3. 

Berger, L., Speare, R., Daszak, P., Green, D.E., Cunningham, A.A., Goggin, C.L. et al. (1998). 
Chytridiomycosis causes amphibian mortality associated with population declines in the rain 
forests of Australia and Central America. Proceedings of the National Academy of Sciences, 
95, 9031-9036. 

4. 

Bicca-Marques, J.C. & de Freitas, D.S. (2010). The role of monkeys, mosquitoes, and humans in the 
occurrence of a yellow fever outbreak in a fragmented landscape in south Brazil: protecting 
howler monkeys is a matter of public health. Tropical Conservation Science, 3, 78-89. 

5. 

Brock, P.M., Fornace, K.M., Parmiter, M., Cox, J., Drakeley, C.J., Ferguson, H.M. et al. (2016). 
Plasmodium knowlesi transmission: integrating quantitative approaches from epidemiology 
and ecology to understand malaria as a zoonosis. Parasitology, 1-12. 

6. 

Calvignac-Spencer, S., Leendertz, S.A.J., Gillespie, T.R. & Leendertz, F.H. (2014). Wild great apes as 
sentinels and sources of infectious disease. Clinical Microbiology and Infection, 18, 521-527. 

7. 

Carrasco-Hernández, R., Manzano-Martínez, M.D., Bautista, C., deVega-Garcia, A., Flisser, A., 
Medellin, R.A. et al. (2009). Ecogeographic model of bovine 

paralytic rabies risk in Puebla , México. In: XX Conf RITA Quebec, Canada. 
8. 

Centers for Disease Control and Prevention (2001). Outbreak of Ebola hemorrhagic fever Uganda, 
August 2000-January 2001. MMWR. Morbidity and mortality weekly report, 50, 73. 

9. 

Chapman, C.A., Gillespie, T.R. & Goldberg, T.L. (2005). Primates and the Ecology of their Infectious 
Diseases: How will Anthropogenic Change Affect Host‐Parasite Interactions? Evolutionary 
Anthropology: Issues, News, and Reviews, 14, 134-144. 

10. 

Chapman, C.A., Schoof, V.A., Bonnell, T.R., Gogarten, J.F. & Calmé, S. (2015). Competing pressures on 
populations: long-term dynamics of food availability, food quality, disease, stress and animal 
abundance. Phil. Trans. R. Soc. B, 370, 20140112. 

11. 

Chapman, C.A., Speirs, M.L., Gillespie, T.R., Holland, T. & Austad, K.M. (2006). Life on the edge: 
gastrointestinal parasites from the forest edge and interior primate groups. American 
Journal of Primatology, 68, 397-409. 

12. 



 

 23 

Chaves, L.F., Cohen, J.M., Pascual, M. & Wilson, M.L. (2008). Social exclusion modifies climate and 
deforestation impacts on a vector-borne disease. PLoS Negl Trop Dis, 2, e176. 

13. 

Chaves, L.F. & Hernandez, M.-J. (2004). Mathematical modelling of American Cutaneous 
Leishmaniasis: incidental hosts and threshold conditions for infection persistence. Acta 
Tropica, 92, 245-252. 

14. 

Choi, Y.H., Comiskey, C., Lindsay, M.D.A., Cross, J.A. & Anderson, M. (2002). Modelling the 
transmission dynamics of Ross River virus in Southwestern Australia. IMA J Math Appl Med 
Biol, 19, 61-74. 

15. 

Dantas-Torres, F., Sales, K.G.d.S., Miranda, D.E.d.O., da Silva, F.J., Figueredo, L.A., de Melo, F.L. et al. 
(2017). Sand fly population dynamics and cutaneous leishmaniasis among soldiers in an 
Atlantic forest remnant in northeastern Brazil. PLOS Neglected Tropical Diseases, 11, 
e0005406. 

16. 

Daszak, P., Cunningham, A.A. & Hyatt, A.D. (2001). Anthropogenic environmental change and the 
emergence of infectious diseases in wildlife. Acta Tropica, 78, 103-116. 

17. 

De Castro, F. & Bolker, B. (2004). Mechanisms of disease-induced extinction. Ecology Letters, 8, 117-
126. 

18. 

Despommier, D., Ellis, B.R. & Wilcox, B.A. (2006). The Role of Ecotones in Emerging Infectious 
Diseases. EcoHealth, 3, 281-289. 

19. 

Diekmann, O., Heesterbeek, J.A.P. & Metz, J.A.J. (1990). On the definition and the computation of 
the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous 
populations. J. Math. Biol., 28, 365-382. 

20. 

Driscoll, D.A., Banks, S.C., Barton, P.S., Lindenmayer, D.B. & Smith, A.L. (2013). Conceptual domain of 
the matrix in fragmented landscapes. Trends Ecol Evol, 28, 605-613. 

21. 

Ewers, R.M. & Didham, R.K. (2007). The Effect of Fragment Shape and Species’ Sensitivity to Habitat 
Edges on Animal Population Size. Conserv Biol, 21, 926-936. 

22. 

Ewers, R.M., Didham, R.K., Pearse, W.D., Lefebvre, V., Rosa, I.M.D., Carreiras, J.M.B. et al. (2013). 
Using landscape history to predict biodiversity patterns in fragmented landscapes. Ecology 
Letters, 16, 1221-1233. 

23. 

Fabiszewski, A.M., Umbanhowar, J. & Mitchell, C.E. (2010). Modeling landscape-scale pathogen 
spillover between domesticated and wild hosts: Asian soybean rust and kudzu. Ecological 
Applications, 20, 582-592. 

24. 



 

 24 

Fagan, W.F., Cantrell, R.S. & Cosner, C. (1999). How habitat edges change species interactions. The 
American Naturalist, 153, 165-182. 

25. 

Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual review of ecology, 
evolution, and systematics, 34, 487-515. 

26. 

Ferrari, M.J., Bjørnstad, O.N. & Dobson, A.P. (2005). Estimation and inference of R0 of an infectious 
pathogen by a removal method. Mathematical Biosciences, 198, 14-26. 

27. 

Forman, R.T.T. (1995). Some general principles of landscape and regional ecology. Landscape 
Ecology, 10, 133-142. 

28. 

Fornace, K.M., Abidin, T.R., Alexander, N., Brock, P., Grigg, M.J., Murphy, A. et al. (2016). Association 
between Landscape Factors and Spatial Patterns of Plasmodium knowlesi Infections in 
Sabah, Malaysia. Emerging Infectious Diseases, 22, 201-208. 

29. 

Friant, S., Paige, S.B. & Goldberg, T.L. (2015). Drivers of Bushmeat Hunting and Perceptions of 
Zoonoses in Nigerian Hunting Communities. PLOS Neglected Tropical Diseases, 9, e0003792. 

30. 

Gardner, R. & O’Neill, R. (1991). Pattern, process, and predictability: the use of neutral models for 
landscape analysis. In: Quantitative Methods in Landscape Ecology (eds. Turner, M & 
Gardner, R). Springer-Verlag New York. 

31. 

Genton, C., Pierre, A., Cristescu, R., Lévréro, F., Gatti, S., Pierre, J.-S. et al. (2014). How Ebola impacts 
social dynamics in gorillas: a multistate modelling approach. Journal of Animal Ecology, 84, 
166-176. 

32. 

Ghosh, A.K. & Tapaswi, P.K. (1999). Dynamics of Japanese encephalitis—A study in mathematical 
epidemiology. Mathematical Medicine and Biology, 16, 1-27. 

33. 

Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reactions. 81, 2340-2361. 
34. 

Gillespie, T.R. & Chapman, C.A. (2006). Prediction of parasite infection dynamics in primate 
metapopulations based on attributes of forest fragmentation. Conserv Biol, 20, 441-448. 

35. 

Goldberg, T.L., Gillespie, T.R., Rwego, I.B., Estoff, E.L. & Chapman, C.A. (2008). Forest Fragmentation 
as Cause of Bacterial Transmission among Nonhuman Primates, Humans, and Livestock, 
Uganda. Emerging Infectious Diseases, 14, 1375-1382. 

36. 

Gonzalez, J.P., Herbreteau, V., Morvan, J. & Leroy, E.M. (2005). Ebola virus circulation in Africa: a 
balance between clinical expression and epidemiological silence. Bull Soc Pathol Exot, 98, 
210-217. 

37. 



 

 25 

Gottdenker, N.L., Chaves, L.F., Calzada, J.E., Saldaña, A. & Carroll, C.R. (2012). Host life history 
strategy, species diversity, and habitat influence Trypanosoma cruzi vector infection in 
changing landscapes. PLoS neglected tropical diseases, 6, e1884. 

38. 

Gottdenker, N.L., Streicker, D.G., Faust, C.L. & Carroll, C.R. (2014). Anthropogenic Land Use Change 
and Infectious Diseases: A Review of the Evidence. EcoHealth, 11, 619-632. 

39. 

Halos, L., Bord, S., Cotté, V., Gasqui, P., Abrial, D., Barnouin, J. et al. (2010). Ecological factors 
characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in 
pastures and woodlands. Applied and environmental microbiology, 76, 4413-4420. 

40. 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A. et al. (2013). 
High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342, 850-853. 

41. 

Hargis, C.D., Bissonette, J.A. & David, J.L. (1998). The behavior of landscape metrics commonly used 
in the study of habitat fragmentation. Landscape ecology, 13, 167-186. 

42. 

Johnston, A.R., Gillespie, T.R., Rwego, I.B., Tranby McLachlan, T.L., Kent, A.D. & Goldberg, T.L. (2010). 
Molecular Epidemiology of Cross-Species Giardia duodenalis Transmission in Western 
Uganda. PLOS Neglected Tropical Diseases, 4, e683. 

43. 

Jones, B.A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M.Y. et al. (2013). Zoonosis emergence 
linked to agricultural intensification and environmental change. Proceedings of the National 
Academy of Sciences of the United States of America, 110, 8399-8404. 

44. 

Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L. et al. (2008). Global trends 
in emerging infectious diseases. Nature, 451, 990-993. 

45. 

Keele, B.F., Van Heuverswyn, F., Li, Y., Bailes, E., Takehisa, J., Santiago, M.L. et al. (2006). Chimpanzee 
reservoirs of pandemic and nonpandemic HIV-1. Science, 313, 523-526. 

46. 

Lane-deGraaf, K.E., Kennedy, R.C., Arifin, S.M., Madey, G.R., Fuentes, A. & Hollocher, H. (2013). A 
test of agent-based models as a tool for predicting patterns of pathogen transmission in 
complex landscapes. BMC ecology, 13, 35. 

47. 

Laurance, W.F. (2000). Do edge effects occur over large spatial scale. TREE, 15. 
48. 

Leroy, E.M., Rouquet, P., Formenty, P., Souquière, S., Kilbourne, A., Froment, J.-M. et al. (2004). 
Multiple Ebola virus transmission events and rapid decline of central African wildlife. 
Science, 303, 387-390. 

49. 



 

 26 

Li, S., Hartemink, N., Speybroeck, N. & Vanwambeke, S.O. (2012). Consequences of Landscape 
Fragmentation on Lyme Disease Risk: A Cellular Automata Approach. PLoS ONE, 7, e39612-
39612. 

50. 

Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H. et al. (2005). Bats are natural reservoirs of 
SARS-like coronaviruses. Science, 310, 676-679. 

51. 

Lloyd-Smith, J.O., George, D., Pepin, K.M., Pitzer, V.E., Pulliam, J.R.C., Dobson, A.P. et al. (2009). 
Epidemic Dynamics at the Human-Animal Interface. Science, 326, 1362-1367. 

52. 

Lounibos, L.P. (2002). Invasions by insect vectors of human disease. Annual Review of Entomology, 
47, 233-266. 

53. 

McCallum, H., Barlow, N. & Hone, J. (2001). How should pathogen transmission be modelled? Trends 
in ecology & evolution, 16, 295-300. 

54. 

McCallum, H., Fenton, A., Hudson, P.J., Lee, B., Levick, B., Norman, R. et al. (2017). Breaking beta: 
deconstructing the parasite transmission function. Phil. Trans. R. Soc. B, 372, 20160084. 

55. 

McGarigal, K. & McComb, W.C. (1995). Relationships between landscape structure and breeding 
birds in the Oregon Coast Range. Ecological monographs, 65, 235-260. 

56. 

Morris, A.L., Guégan, J.-F., Andreou, D., Marsollier, L., Carolan, K., Le Croller, M. et al. (2016). 
Deforestation-driven food-web collapse linked to emerging tropical infectious disease, 
Mycobacterium ulcerans. Science advances, 2, e1600387. 

57. 

Murray, K.A. & Daszak, P. (2013). Human ecology in pathogenic landscapes: two hypotheses on how 
land use change drives viral emergence. Current Opinion in Virology, 3, 79-83. 

58. 

Nauta, M.J., Jacobs-Reitsma, W.F. & Havelaar, A.H. (2007). A Risk Assessment Model for 
Campylobacter in Broiler Meat. Risk Analysis, 27, 845-861. 

59. 

Nunn, C.L., Thrall, P.H., Stewart, K. & Harcourt, A.H. (2007). Emerging infectious diseases and animal 
social systems. Evolutionary Ecology, 22, 519-543. 

60. 

Olivero, J., Fa, J.E., Real, R., Márquez, A.L., Farfán, M.A., Vargas, J.M. et al. (2017). Recent loss of 
closed forests is associated with Ebola virus disease outbreaks. Scientific reports, 7, 14291. 

61. 

Paige, S.B., Frost, S.D.W., Gibson, M.A., Jones, J.H., Shankar, A., Switzer, W.M. et al. (2014). Beyond 
Bushmeat: Animal Contact, Injury, and Zoonotic Disease Risk in Western Uganda. EcoHealth, 
11, 534-543. 

62. 



 

 27 

Parsons, M.B., Travis, D., Lonsdorf, E.V., Lipende, I., Roellig, D.M.A., Kamenya, S. et al. (2015). 
Epidemiology and Molecular Characterization of Cryptosporidium spp. in Humans, Wild 
Primates, and Domesticated Animals in the Greater Gombe Ecosystem, Tanzania. Plos 
Neglect Trop D, 9, e0003529-0003513. 

63. 

Patz, J.A., Daszak, P., Tabor, G.M., Aguirre, A.A., Pearl, M., Epstein, J. et al. (2004). Unhealthy 
landscapes: policy recommendations on land use change and infectious disease emergence. 
Environmental Health Perspectives, 112, 1092. 

64. 

Pellissier, L., Albouy, C., Bascompte, J., Farwig, N., Graham, C., Loreau, M. et al. Comparing species 
interaction networks along environmental gradients. Biological Reviews, n/a-n/a. 

65. 

Pernet, O., Schneider, B.S., Beaty, S.M., LeBreton, M., Yun, T.E., Park, A. et al. (2014). Evidence for 
henipavirus spillover into human populations in Africa. Nat Commun, 5, 1-10. 

66. 

Pfeifer, M., Lefebvre, V., Peres, C.A., Banks-Leite, C., Wearn, O.R., Marsh, C.J. et al. (2017). Creation 
of forest edges has a global impact on forest vertebrates. Nature, 551, 187. 

67. 

Pigott, D.M., Golding, N., Mylne, A., Huang, Z., Henry, A.J., Weiss, D.J. et al. (2014). Mapping the 
zoonotic niche of Ebola virus disease in Africa. eLife, 3. 

68. 

Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L. et al. (2015). Ecological 
dynamics of emerging bat virus spillover. Proceedings of the Royal Society B: Biological 
Sciences, 282, 20142124. 

69. 

Plowright, R.K., Foley, P., Field, H.E., Dobson, A.P., Foley, J.E., Eby, P. et al. (2011). Urban habituation, 
ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying 
foxes (<em>Pteropus</em> spp.). Proceedings of the Royal Society B: Biological Sciences, 
278, 3703-3712. 

70. 

Plowright, R.K., Parrish, C., McCallum, H., Hudson, P.J., Ko, A.I., Graham, A. et al. (2017). Pathways to 
zoonotic spillover. Nature Reviews Microbiology. 

71. 

Plowright, R.K., Peel, A.J., Streicker, D.G., Gilbert, A.T., McCallum, H., Wood, J. et al. (2016). 
Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir–Host 
Populations. PLOS Neglected Tropical Diseases, 10, e0004796. 

72. 

Plowright, R.K., Sokolow, S.H., Gorman, M.E., Daszak, P. & Foley, J.E. (2008). Causal inference in 
disease ecology: investigating ecological drivers of disease emergence. Front Ecol Environ, 6, 
420-429. 

73. 

Poulsen, J., Clark, C., Mavah, G. & Elkan, P. (2009). Bushmeat supply and consumption in a tropical 
logging concession in northern Congo. Conserv Biol, 23, 1597-1608. 



 

 28 

74. 

Pulliam, J.R.C., Epstein, J.H., Dushoff, J., Rahman, S.A., Bunning, M., Jamaluddin, A.A. et al. (2011). 
Agricultural intensification, priming for persistence and the emergence of Nipah virus: a 
lethal bat-borne zoonosis. Journal of The Royal Society Interface, 9, 89-101. 

75. 

Quintana, M., Salomón, O. & Grosso, M.L.D. (2010). Distribution of Phlebotomine sand flies (Diptera: 
Psychodidae) in a primary forest-crop interface, Salta, Argentina. Journal of medical 
entomology, 47, 1003-1010. 

76. 

Rand, T.A., Tylianakis, J.M. & Tscharntke, T. (2006). Spillover edge effects: the dispersal of 
agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology 
Letters, 9, 603-614. 

77. 

Ries, L., Fletcher Jr, R.J., Battin, J. & Sisk, T.D. (2004). Ecological Responses to Habitat Edges: 
Mechanisms, Models, and Variability Explained. Annu. Rev. Ecol. Evol. Syst., 35, 491-522. 

78. 

Rimoin, A.W., Mulembakani, P.M., Johnston, S.C., Smith, J.O.L., Kisalu, N.K., Kinkela, T.L. et al. (2010). 
Major increase in human monkeypox incidence 30 years after smallpox vaccination 
campaigns cease in the Democratic Republic of Congo. Proceedings of the National Academy 
of Sciences, 107, 16262-16267. 

79. 

Ritters, K., O’Neill, R., Hunsaker, C., Wickham, J., Yankee, D., Timmins, S. et al. (1995). A factor 
analysis of landscape pattern and structure metrics. Landscape Ecology, 10, 23-39. 

80. 

Rogers, D.J. (1988). A general model for the African trypanosomiases. Parasitology, 97 ( Pt 1), 193-
212. 

81. 

Romano, A.P.M., Costa, Z.G.A., Ramos, D.G., Andrade, M.A., Jayme, V.d.S., Almeida, M.A.B.d. et al. 
(2014). Yellow Fever Outbreaks in Unvaccinated Populations, Brazil, 2008–2009. PLOS 
Neglected Tropical Diseases, 8, e2740. 

82. 

Rosenquist, H., Nielsen, N.L., Sommer, H.M., Nørrung, B. & Christensen, B.B. (2003). Quantitative risk 
assessment of human campylobacteriosis associated with thermophilic Campylobacter 
species in chickens. International Journal of Food Microbiology, 83, 87-103. 

83. 

Rulli, M.C., Santini, M., Hayman, D.T. & D’Odorico, P. (2017). The nexus between forest 
fragmentation in Africa and Ebola virus disease outbreaks. Scientific Reports, 7, 41613. 

84. 

Rwego, I.B., ISABIRYE-BASUTA, G., Gillespie, T.R. & Goldberg, T.L. (2008). Gastrointestinal Bacterial 
Transmission among Humans, Mountain Gorillas, and Livestock in Bwindi Impenetrable 
National Park, Uganda. Conserv Biol, 22, 1600-1607. 

85. 



 

 29 

Seltmann, A., Corman, V.M., Rasche, A., Drosten, C., Czirják, G.Á., Bernard, H. et al. (2017). Seasonal 
Fluctuations of Astrovirus, But Not Coronavirus Shedding in Bats Inhabiting Human-Modified 
Tropical Forests. EcoHealth, 1-13. 

86. 

Shchelkunov, S.N. (2013). An Increasing Danger of Zoonotic Orthopoxvirus Infections. PLoS 
Pathogens, 9, e1003756-1003754. 

87. 

Skole, D. & Tucker, C. (1993). Tropical deforestation and habitat fragmentation in the Amazon: 
satellite data from 1978 to 1988. Science, 260, 1905-1910. 

88. 

Taylor, P., Fahrig, L., Henein, K. & Merriam, G. (1993 

). Connectivity Is a Vital Element of Landscape Structure. Oikos, 3, 571-573. 
89. 

Thompson, R.C.A. & Smith, A. (2011). Zoonotic enteric protozoa. Veterinary Parasitology, 182, 70-78. 
90. 

Thorne, E.T. & Williams, E.S. (1988). Disease and Endangered Species: The Black-Footed Ferret as a 
Recent Example. Conserv Biol, 2, 66-74. 

91. 

Turner, M.G. & Gardner, R.H. (2015). Landscape Ecology in Theory and Practice: Pattern and Process. 
Springer-Verlag, New York. 

92. 

Umetsu, F. & Pardini, R. (2007). Small mammals in a mosaic of forest remnants and anthropogenic 
habitats—evaluating matrix quality in an Atlantic forest landscape. Landscape Ecology, 22, 
517-530. 

93. 

Viana, M., Cleaveland, S., Matthiopoulos, J., Halliday, J., Packer, C., Craft, M.E. et al. (2015). 
Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in 
domestic dogs and lions. Proceedings of the National Academy of Sciences, 112, 1464-1469. 

94. 

Walsh, M.G. (2013). The Relevance of Forest Fragmentation on the Incidence of Human Babesiosis: 
Investigating the Landscape Epidemiology of an Emerging Tick-Borne Disease. Vector-Borne 
and Zoonotic Diseases, 13, 250-255. 

95. 

Wang, X., Blanchet, F.G. & Koper, N. (2014). Measuring habitat fragmentation: an evaluation of 
landscape pattern metrics. Methods in Ecology and Evolution, 5, 634-646. 

96. 

Wilcove, D., McLellan, C.H. & Dobson, A.P. (1986). Habitat fragmentation in the Temperate Zone. In: 
Conservation Biology: Science of Rarity (ed. Soule, M) Sinaeur, MA, pp. 233-256. 

97. 

Wolfe, N., Daszak, P., Kilpatrick, A. & Burke, D. (2005). Bushmeat Hunting, Deforestation, and 
Prediction of Zoonotic Disease Emergence. Emerging Infectious Diseases, 11, 1822-1827. 

98. 



 

 30 

Woolhouse, M. (2011). How to make predictions about future infectious disease risks. Philosophical 
Transactions of the Royal Society of London B: Biological Sciences, 366, 2045-2054. 

99. 

Young, H.S., Dirzo, R., Helgen, K.M., McCauley, D.J., Nunn, C.L., Snyder, P. et al. (2016). Large wildlife 
removal drives immune defence increases in rodents. Functional Ecology, 30, 799-807. 

100. 

Zipperer, W.C. (1993). Deforestation patterns and their effects on forest patches. Landscape Ecology, 
8, 177-184. 

101. 

Zylberberg, M., Lee, K.A., Klasing, K.C. & Wikelski, M. (2013). Variation with land use of immune 
function and prevalence of avian pox in Galapagos finches. Conservation Biology, 27, 103-
112. 

  

 


	Wiley Cover Sheet (AFV)
	153361

