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Abstract

Background

Worldwide, the number of emerging and re-emerging infectious diseases is increasing,

highlighting the importance of global disease pathogen surveillance. Traditional population-

based methods may fail to capture important events, particularly in settings with limited

access to health care, such as urban informal settlements. In such environments, a mixture

of surface water runoff and human feces containing pathogenic microorganisms could be

used as a surveillance surrogate.

Method

We conducted a temporal metagenomic analysis of urban sewage from Kibera, an urban

informal settlement in Nairobi, Kenya, to detect and quantify bacterial and associated antimi-

crobial resistance (AMR) determinants, viral and parasitic pathogens. Data were examined

in conjunction with data from ongoing clinical infectious disease surveillance.

Results

A large variation of read abundances related to bacteria, viruses, and parasites of medical

importance, as well as bacterial associated antimicrobial resistance genes over time were

detected. Significant increased abundances were observed for a number of bacterial patho-

gens coinciding with higher abundances of AMR genes. Vibrio cholerae as well as rotavirus

A, among other virus peaked in several weeks during the study period whereas Cryptospo-

ridium spp. andGiardia spp, varied more over time.
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Conclusion

The metagenomic surveillance approach for monitoring circulating pathogens in sewage

was able to detect putative pathogen and resistance loads in an urban informal settlement.

Thus, valuable if generated in real time to serve as a comprehensive infectious disease

agent surveillance system with the potential to guide disease prevention and treatment. The

approach may lead to a paradigm shift in conducting real-time global genomics-based sur-

veillance in settings with limited access to health care.

Introduction

Globally, infectious diseases are responsible for approximately 22% of all human deaths [1]

and cause a substantial burden on health systems. Rapid detection of outbreaks, known patho-

gens or emerging novel pathogens is critical for the prevention and control of infectious dis-

eases. The proportion of deaths in urban settlements due to infectious diseases, inadequate

health care access, lower socioeconomic status and malnutrition is generally higher in low and

middle income settings, where, among many other factors, an increasing proportion of the

world’s population resides [1,2]. However, conducting infectious disease surveillance among

urban settlement dwellers using conventional disease surveillance methods can be challenging

and costly due to the dense settlements, poor sanitation, and inadequate health care access.

Thus, novel local and global surveillance systems for detection and response in such settings

are needed to improve containment and control of infectious diseases [3].

Sewage has been used previously for the surveillance of selected infectious disease agents,

including poliovirus, hepatitis viruses A and E, non-polio enteroviruses, norovirus, parecho-

virus, and astrovirus [4–6]. However, such studies have only focused on a single or a limited

number of the possible pathogens found in sewage. Despite metagenomics being in its infancy,

several recent studies have shown the feasibility of this methodology to identify and quantify a

wide range of bacteria, viruses, and antimicrobial resistance (AMR) genes from complex sam-

ples such as sewage and wastewater [5,7–12].

In this study, we used metagenomic sequencing of urban sewage to monitor the presence of

pathogens and bacterial AMR genes in Kibera, an urban informal settlement in Nairobi,

Kenya, and examined the findings in conjunction with other ongoing disease surveillance

work in the same area.

Materials andmethods

Ethics

This study was conducted in accordance with the Danish Act on scientific ethical treatment of

health research (Journal no.: H-14013582) and fulfills the requirements of the Nagoya Proto-

col. Data collection in the Population-Based Infectious Disease Surveillance (PBIDS) system is

approved by institutional review bodies of Kenya Medical Research Institute (KEMRI) and US

Centers for Disease Control and Prevention (CDC).

Written informed consent is obtained from heads of households for their household mem-

bers to participate in PBIDS. Household member’s�18 years are free decline participation in

the surveillance. Additional written informed consent is obtained from participant (or parent/

guardian) before blood and/or stool sample collection at the clinic. No additional approval was

required for collection of the sewage samples. The samples were collected from open sewage
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runoffs draining the study area, with verbal permission of household heads who were living

near the collection points.

Study setting and collection of surveillance data

Kibera is one of the largest informal settlements in East Africa with a population size ranging

between 250,000–500,000 individuals (Kenya National Bureau of Statistics, The 2009 Kenya

Population and Housing Census Results. 2010: Nairobi, Kenya. p. 34). The surveillance is con-

ducted in two (Gatwekera and Soweto) out of twelve villages in Kibera. The area covers

approximately 0.4 km2 and is densely populated (~70,000 persons/ km2) with high burden of

infectious diseases [2,13,14]. Human fecal waste from households’ latrines in the study area,

flow into a network of ditches draining the area. Samples were collected at points of confluence

of the drainage ditches, in two areas with the highest surface flow accumulation; cluster 9 (lati-

tude/ longitude: -1.314199/ 36.78492, altitude 1722.55) and cluster 10 (latitude/ longitude:

-1.314704/ 36.78666, altitude 1722.55). There are ten geographic units referred to as clusters in

the study area (Fig 1) [15].

Since 2005, CDC and KEMRI have jointly operated the PBIDS system [2]. Household mor-

bidity and health care usage data were collected every two weeks through home visits. Mem-

bers with fever, respiratory illness or diarrhea during the home visits were advised to seek care

at a centrally located Tabitha clinic (located within a ~1Km radius of all PBIDs households.)

which offered free medical care for acute illnesses. Still, the’ participants can freely seek care at

other private and public health care facilities, chemists/pharmacies, drug shops as well as tradi-

tional healers. At the clinic patients with acute febrile illness (AFI) defined as measured axillary

temperature�38.0˚C, respiratory syndrome defined as cough or difficult breathing plus one

of IMCI danger signs or diarrhea defined as reported�3 loose stools in 24 hours [2], had their

blood and/or stool samples collected for testing by culture methods [16][13].

For more details, see S1 File.

Sample collections, storage and shipment

Sewage samples were collected each Monday andWednesday. 500 mL of sewage was collected

from each site during the study period (June 16 to August 26, 2014), typically a ‘dry season’ in

Nairobi, resulting in a total of 42 samples [15] (Fig 1).

(S1 File, Fig 1). Collected samples were kept in cooler boxes and transported to a KEMRI

laboratory in the study area within 2 hours of collection. At KEMRI laboratory the samples

were stored with no presentation at -80 C˚ and further shipped frozen without coolers in

batches to the Technical University in Denmark for DNA extraction and downstream metage-

nomics analysis. All samples arrived still frozen to Technical University in Denmark.

Without the knowledge of the authors responsible for the analysis, samples taken at both

clusters 9 and 10 in week 28 were spiked with a 1-μl culture of Salmonella enterica serovar

Typhi (S. Typhi) to test the sensitivity of the sewage metagenomics approach.

Genomics

DNA and RNA extraction and whole community sequencing. Sewage samples were

centrifuged at 8,000g for 30 min. The pellet was tested for bacterial and parasitic DNA, and the

supernatant was extracted for DNA and RNA viruses. Genomic DNA (from bacteria, parasites

and DNA viruses) was extracted from the samples using the QIAamp Fast DNA Stool mini kit

as previously described [17]. Viral RNA and DNA were co-extracted using the Nucleospin

RNA XS kit. The DNA- and RNA-based samples were sequenced using Illumina HiSeq (bacte-

rial and parasitic DNA) and MiSeq (DNA and RNA viruses). Initially, trimming and removal
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Fig 1. Geographical overview and location and description of the residence clusters 9 and 10 of the urban slum city of
Kibera, Nairobi, Kenya. Sampling points marked with a red circle, brown lines indicate hill contours, dark green mark the
PBIDS, black lines separate the residence clusters, light green mark the urban slum city. Photograph provided by the author
Eric Ngeno.

https://doi.org/10.1371/journal.pone.0222531.g001
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of adaptor sequences was done using cutadapt [18]with settings for minimum read length

being 30 bp and a minimum Phred quality score of 30, to trim low-quality reads before adaptor

removal (cutadapt parameter—quality-cutoff). Raw sequence data have been submitted to the

European Nucleotide Archive under study accession no.: PRJEB13833.

Metagenomics analysis. Bacteria, viruses, parasites, and AMR genes within the samples

were identified and quantified using MGmapper v2.2 (https://cge.cbs.dtu.dk/services/

MGmapper/) [19]. Paired-end reads from each metagenomic sample were mapped against

several following databases composed of genome sequence data obtained from Genbank

(http://www.ncbi.nlm.nih.gov/genbank/) and other resources (Analysis conducted from June

2016) (S1 File, S1 and S2 Tables).

Determination of the abundance of bacteria, viruses, and parasites. Of the bacteria,

viruses, and parasites detected, we focused on pathogens of relevance to the global burden of

infectious diseases [1,2,20–24]. The read abundance data were visualized using ggplot2 [25]

and heatmap plotting systems for R [26]. To account for differences in sequencing depth

between samples and to remove the influence of variation in bacterial/human reads, the fol-

lowing transformations were implemented: Bacteria and parasite mapped reads were shown as

reads per million (RPM), calculated as (the number of reads mapped to a specific taxonomic

group / total number of reads in the sample) �106. For the viruses, the viral read count per mil-

lion (VRPM) was calculated by normalizing the read count for each specific virus relative to

the total viral read count for each sample as follows: (read count virus A/total viral read

count)�106. Several different algoritms have been developed to assist in outbreak detection,

however, for simplicity we identified significant increases in abundance of individual patho-

gens during the study period. An upper limit was calculated as the mean read abundance plus

1.96 times the standard deviation [27]. Cases, where the observed weekly number of reads for

specific bacteria, viruses or AMR genes were above the upper limit, these were defined as an

“upsurge” of a sudden occurrence; all of those cases were excluded from the recalculation of

the average and the upper limit (S3–S8 Tables). The number of S. Typhi reads at both clusters

9 and 10 in week 28 were removed from the calculation due to the spiked samples.

In addition, the relative abundance of the top 20 most abundant bacterial species were

determined independent of their known relevance to infectious diseases (S9 Table).

Determination of the abundance of antimicrobial resistance. To calculate relative abun-

dance of AMR genes (S10 Table), the raw counts (S11 Table) for each reference gene were con-

verted to fragments per kilobase of transcript per million mapped reads (FPKM) before

summing to gene class level as previously described [28]. For gene-level abundances, refer-

ence-level counts were summed to gene-level and were then transformed using regularized log

transformation in DESeq2 as previously described [28].

Abundances were visualized in heatmaps produced using the R package ‘pheatmap’. For

the AMR heatmaps, Euclidean distances between AMR features were clustered using complete

linkage to draw dendrograms. For visualization, each AMR feature was transformed to Z-

scores to enable easy between-sample comparison within a single AMR feature.

Results

Surveillance data and laboratory-confirmed cases

For cluster 9, cluster 10, and all clusters combined, a few weekly diarrhea and fever cases

reported from the household surveillance as well as AFI cases, diarrhea cases and the all-cause

clinic visits from the clinic data are presented in Fig 2. For all clusters, the highest number of

household diarrhea cases occurred in weeks 28 (n = 37), 29 (n = 34), and 33 (n = 33), while the

highest number of household fever cases were in weeks 29 (n = 74) and 31 (n = 72). For all

Metagenomic surveillance in an informal settlement
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clusters, the highest number of clinic diarrhea cases occurred in week 25 (n = 26), clinic fever

cases in week 31 (n = 37), and all-cause clinic visits in week 26 (n = 509).

Very few bacterial pathogens were detected by culture of stool obtained from diarrhea cases

from residents of clusters 9 and 10 visiting the clinic during the study period. One Shigella flex-

neri infection was detected the 17th of August 2014 (week 34) (S12 Table).

Genomic analysis

Sequencing data from DNA purification. An average of 10% and 9% of the reads

mapped to the complete and draft bacterial genome databases, respectively. On average, 76%

of the reads did not map to any of the queried reference databases. Rarefaction curves indi-

cated that acceptable depth was obtained for bacteria and resistance genes, whereas greater

depth could be desired for virus and parasites (S1 File). Summary mapping and read counts

information can be found in S2 and S9 Tables.

Abundance of selected bacterial pathogens. A large variation in bacterial read abun-

dances was observed over time with several peaks above the calculated upper limit, especially

around weeks 25–27 and week 32 (Fig 3, S1 Fig, S7 and S8 Tables).

A high read abundance of Shigella spp. was observed in cluster 10 onWednesday in week

26 with all four species exceeding the calculated upper limit (Fig 3). Similarly, bacterial read

abundance of Shigella spp. was observed in cluster 9 onWednesday in week 26 also exceeding

the calculated upper limit but in lower read abundance compared with cluster 10 (Fig 3).

Other bacterial pathogens were also found to exceed the upper limit at week 26 in cluster

10, including E. coli, Campylobacter spp. and Clostridium difficile (Fig 3). No concurrence

between the clusters was observed in the weeks where significantly higher read abundances to

Fig 2. Data from the PBIDS from the Kibera clusters 9 and 10 in the period from June 18, 2014 (week 25) to
August 20, 2014 (week 34). All cluster: black; cluster 9: red; cluster 10: green; X-axis is cases.

https://doi.org/10.1371/journal.pone.0222531.g002
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Fig 3. Relative read abundance (in RPM: Reads per million) of 27 human pathogens, (10 viral, 5 parasites, 12 bacterial) in sewage from Kibera.
Red: cluster 9; blue: cluster 10. The dotted horizontal lines show upper limits for each cluster. Note that viral data are shown on the logarithmic scale
(log10). Note that scale is individual for each pathogen.

https://doi.org/10.1371/journal.pone.0222531.g003
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Vibrio cholerae and Yersinia enterocolitica exceeded the upper limit (Fig 3). None of the signifi-

cantly higher increases were reflected in the PBIDS data (S12 Table).

The spiked sensitivity test with S. Typhi (collected from clusters 9 and 10 in week 28) lead

to a large change in the relative abundance of S. enterica (from 0.04% to 86% of all sequencing

reads within seven days), and the presence of S. Typhi was later confirmed with the identifica-

tion of 238.439 unique reads to S. Typhi str. P-stx-12 (CP003278.1) (S9 and S14 Tables).

Abundance and clustering of selected antimicrobial resistance genes and classes. The

relative abundance of AMR genes was very low during the study period with only a few weekly

point increases, for example, the high relative abundances onWednesday of week 26 in cluster

10 of both tetracycline (tetA and tet40) and fluoroquinolones (Fig 4, S3 Fig, S10 and S11

Tables). In addition, a high relative abundance of metronidazole resistance genes was observed

at cluster 9 onWednesdays of weeks 30 and 32 (Fig 4). A sudden and considerable increase in

the relative abundances of a number of AMR genes and classes was observed onWednesday of

week 27 in cluster 10 (Fig 4, S3 Fig and S10, S11 and S15 Tables). However, no corresponding

increase in any of the bacterial pathogens was observed at the same time point (S4 Fig and S9

Table).

The spiked S. Typhi had several resistance genes, leading to high relative abundances of

aminoglycoside (strA, strB), sulphonamide (sul1, sul2, sul3), trimethoprim (dfrA), beta-lactam

(blaTEM, and phenicol (catA) resistance genes in the samples fromMonday of week 28 (Fig 4

and S3 Fig).

Abundance of selected viral pathogens. The most abundant viruses in the sewage sam-

ples were plant pathogens and members of the family Virgaviridae, but bacteriophages of the

families Siphoviridae and Podoviridae were also found consistently (S5 Fig). Several human

viral pathogens were detected during the course of the study, sometimes leading to substantial

shifts in the sewage virome (S5 Fig). These viruses included rotavirus A, enterovirus C,

mamastrovirus 1, enterovirus A, enterovirus B, astrovirus MLB3, and norovirus, and they all

had their highest reads counts in weeks 25, 26, 30, and 31, respectively (Fig 3, S3 and S4

Tables). Putative enteric pathogens such as salivirus FHB, aichivirus A, and cosavirus A also

showed significantly higher read abundances exceeding the upper limit in week 26 ± 1 week in

one or both research clusters (Fig 3).

Abundance of selected parasitic pathogens. Giardia spp., Plasmodium spp., Ascaris spp.,

and Blastocystis spp. were the most abundant parasites throughout the study period. All

Fig 4. Heatmap showing changes in AMR abundance over time in clusters 9 and 10. Relative abundance (FPKM) was calculated for AMR at drug class level. AMR
classes (rows) are clustered according to co-abundance using complete linkage clustering of Euclidean distances. Data were mean-standardized (Z-scores) within each
drug class, enabling within-class, cross-sample interpretation. Colors represent log (ln) transformed relative abundances (FPKM).

https://doi.org/10.1371/journal.pone.0222531.g004
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observed parasites fluctuated during the study period with multiple increased abundances (Fig

3 and S5 and S6 Tables). Cryptosporidium spp. had significantly higher read abundances in

weeks 29 and 30 as well as week 32 in cluster 9 and on the Wednesday of week 30 and week 32

in cluster 10 (Fig 3). Similarly, Giardia spp. also showed significant increases several times dur-

ing the study period in both research clusters (Fig 3). Only one significant increase in read

abundances exceeding the upper limit was observed with Blastocystis spp. on the Monday of

week 27 (Fig 3).

Abundance of the bacteriome. Overall, the relative abundance of the most common bac-

terial species such as Streptococcus spp. Klebsiella spp. and Enterobacter spp. etc. were observed

to fluctuate across the study period and among the clusters (S4 Fig). Besides the organisms

identified as increasing in abundance and known for their ability to cause human illness, such

as E. coli, a few bacterial genera were among the most abundant and were present once during

the study period. This included Burkholderia spp. and Brucella spp. which were observed with

a higher abundance on Monday of week 26 in cluster 9 (S4 Fig). This coincided with other bac-

terial genera of higher abundances in the same week such as Shewanella spp., Salmonella spp.,

Bacillus spp., Campylobacter spp. and Flavobacterium spp.

Epidemiological associations. There was a very low number of weekly reported counts of

fever and diarrhea cases (from both household and clinic), all-cause clinic visits, and enteric

pathogens identified from diarrhea cases presenting to the clinic. Thus, it was not possible to

detect any statistically variations based on the conventional surveillance data (Fig 2, S12

Table). We did however, observe a tendency of the higher abundances of bacterial, viral, and

parasitic pathogens as measured by metagenomics to coincide with reported increases in

household diarrhea and subjective fever cases as well as clinic visits due to diarrhea and AFI.

Discussion

Metagenomics has the potential to provide complete taxonomic and functional profiles of

environmental and human microbiomes and resistomes [7–10]. Here, we evaluated and dem-

onstrated that it is possible using a metagenomic approach to monitor pathogens circulating

in a population residing in two surveillance clusters of the Kibera settlement. Thus, it was pos-

sible to identify and quantify human pathogens (bacteria, viruses, and parasites) and AMR

determinants from sewage samples. The metagenomic surveillance approach provided a high

resolution of microorganisms compared with traditional disease surveillance, and it could lead

to new applications involving strategic genomics-based testing of environmental specimens in

disease hot spots replacing the currently limited conventional surveillance.

Our analysis revealed a significant increase in the read abundance of Shigella spp. in week

26 from clusters 9 and 10, likely associated with an increase in tetracycline and fluoroquino-

lones resistance genes commonly present in this genus [14]. The concurrence of significant

higher bacterial read abundances of Shigella spp. being present in both clusters could indicate

a possible increased presence of the pathogen in the community of these two clusters (Fig 3, S7

and S8 Tables). We identified the tet40 gene, which is an efflux-type resistance gene encoding

a predicted membrane-associated protein with 42% amino acid homology to the tetA gene.

Previously, tet40 has been detected in Clostridium spp., we however, could not detect a coin-

ciding read abundance with Clostridium spp. [29]. Shigella spp. is endemic in sub-Saharan

Africa with a high incidence in Kibera affecting 1 in 200 people annually [14]. Other increases

based on read mapping were observed for Campylobacter spp., V. cholerae, and Y. enterocoli-

tica, which similarly have been shown to cause substantial disease burden in sub-Saharan

Africa [1]. From a public health perspective, detection of endemic pathogens (e.g. Shigella

spp., Campylobacter spp., and Y. enterocolitica) from sewage is most relevant if the levels
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represent an increase from baseline. For non-endemic, outbreak-prone pathogens, such as V.

cholera or polioviruses, any detection of circulation is of interest to public health officials.

A number of human viral pathogens were observed during the study period. Among those,

rotavirus A, has been shown to be the leading cause of severe gastroenteritis in children in

Kenya as well as being responsible for an estimated 4,000 deaths among children<5 years of

age in 2013 [2,30]. Rotarix, a live attenuated rotavirus vaccine [2,31–33], was introduced in

Kenya in July 2014, in the midst of the study period. The rotavirus abundance observed in this

study could reflect circulating rotavirus. Read abundances could however also reflect vaccine

virus as it is possible for live vaccines to be shed in feces. Metagenomics surveillance

approaches for pathogens in sewage must be able to distinguish between pathogenic and vac-

cine strains, including rotavirus and oral cholera vaccines, in order to provide useful public

health information.

Interestingly, the PBIDS data did not show a peak in diarrheal cases during a time with sig-

nificantly high read abundances for astrovirus 1, norovirus and sapovirus observed in both

surveillance clusters in weeks 26 and 27. These viruses have recently been shown to be major

contributors to gastroenteritis in Kibera, both alone and as coinfections [34]. Astrovirus MLB3

was another viral pathogen observed that temporally increase and is suspected to cause gastro-

enteritis. Astrovirus MLB3 has previously been shown to be the most prevalent astrovirus type

in Kenya [35]. However, as no association with gastroenteritis was found in the study of Meyer

et al. (29), it is unclear to what extent Astrovirus MLB3 contributed to the diarrheal cases

detected at the clinic. Salivirus FHB, aichivirus A, cosavirus and human parechovirus were

detected throughout this study and are all putative causes of gastroenteritis [36,37]. Interest-

ingly, greater read depth would have been beneficial to the metagenomics analysis of virus and

parasite but resulted in a greater discrepancy between the number of diarrheal cases and a

higher abundance of virus. Of note, although a variety of viral pathogens was observed in the

virome of the urban sewage, it is difficult to establish the disease associations of these patho-

gens. Many viral pathogens can be found in the stool of healthy individuals and are not neces-

sarily the cause of diarrheal illness. Nonetheless, the broad range of enteric pathogens detected

highlights the need for sanitation improvements in urban settlement cities like Kibera.

In this study, we found Giardia spp., Plasmodium spp., Ascaris spp., and Blastocystis spp. to

be the most abundant parasite species throughout the study period. Giardia spp. is a very com-

mon intestinal parasite and is frequently reported from low- to middle-income countries,

especially among children [38]. A study investigating the prevalence of intestinal parasites in

children from another urban settlement of Nairobi, demonstrated that 26% of the tested chil-

dren with diarrhea were positive for at least one intestinal parasite, supporting our findings

and calling for an increased focus on intestinal parasites [39,40].

A number of limitations should be noted for the current study. The metagenomics analysis

is still evolving but currently it is very difficult to link an identified pathogen with a AMR gene

without a longer read technology applied or using metagenomics assemblies which is time and

computational demanding.

Environmental factors, such as rainfall, could affect the number of pathogens detected, as

the waste could either be accumulated in the sampling sites or drain away. These environmen-

tal factors along with the procedure of sewage sampling makes the surveillance strategy vulner-

able to stochastic events. Due to the small number of urban sewage samples, it was difficult to

detect outbreaks as no prior information concerning baseline pathogen abundance values exist

from these sites. As viral tests were not routinely performed on stools collected through PBIDS

surveillance during this study period, the presence of viruses among diarrhea cases could not

be confirmed, although the metagenomic findings were in line with previous studies [34]. The

PBIDS surveillance datasets were limited in the number of reported illnesses, diarrhea, AFI,
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subjective fever and clinic visits at the household level, making direct comparison between

population-based disease surveillance and the relative abundances observed in metagenomics

sewage surveillance very difficult and challenging. This might be improved if the household

visits were conducted more often than once every two weeks. It is, however, interesting that

several detected bacterial and viral pathogens in the metagenomics analysis coincide with

increased numbers of diarrheal cases despite the few isolated bacteria from the clinic. Although

this observation is intriguing, it could merely be a spurious correlation. Future investigations,

incorporating longer periods of time for observation and sample collection and with a greater

number of cases and more extensive or comprehensive clinic laboratory testing, should be

conducted to better elucidate the findings of our study.

Conclusion

This descriptive analysis of the metagenomic data obtained from urban sewage illustrates the

potential for this method to be used for future public health disease surveillance in challenging

settings and may even serve as predictors for increases in diarrheal cases and clinical visits, as

well as increased risk of exposure to specific pathogens from wastewater. This work represents

a proof of concept study and suggests that metagenomics have a high surveillance sensitivity,

and may as such become a valuable supplement for clinical and syndromic surveillance of

large, urban populations, where early recognition of potential outbreaks is crucial for timely

outbreak containment.
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