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Abstract: Hepatocellular carcinoma (HCC) is the most frequent liver cancer with high lethality and
low five-year survival rates leading to a substantial worldwide burden for healthcare systems. HCC
initiation and progression are favored by different etiological risk factors including hepatitis B virus
(HBV) and hepatitis C virus (HCV) infection, non-/and alcoholic fatty liver disease (N/AFLD),
and tobacco smoking. In molecular pathogenesis, endogenous alteration in genetics (TP53, TERT,
CTNNB1, etc.), epigenetics (DNA-methylation, miRNA, lncRNA, etc.), and dysregulation of key
signaling pathways (Wnt/β-catenin, JAK/STAT, etc.) strongly contribute to the development of
HCC. The multitude and complexity of different pathomechanisms also reflect the difficulties in
tailored medical therapy of HCC. Treatment options for HCC are strictly dependent on tumor staging
and liver function, which are structured by the updated Barcelona Clinic Liver Cancer classification
system. Surgical resection, local ablative techniques, and liver transplantation are valid and curative
therapeutic options for early tumor stages. For multifocal and metastatic diseases, systemic therapy
is recommended. While Sorafenib had been the standalone HCC first-line therapy for decades, recent
developments had led to the approval of new treatment options as first-line as well as second-line
treatment. Anti-PD-L1 directed combination therapies either with anti-VEGF directed agents or with
anti-CTLA-4 active substances have been implemented as the new treatment standard in the first-line
setting. However, data from clinical trials indicate different responses on specific therapeutic regimens
depending on the underlying pathogenesis of hepatocellular cancer. Therefore, histopathological
examinations have been re-emphasized by current international clinical guidelines in addition to the
standardized radiological diagnosis using contrast-enhanced cross-sectional imaging. In this review,
we emphasize the current knowledge on molecular pathogenesis of hepatocellular carcinoma. On
this occasion, the treatment sequences for early and advanced tumor stages according to the recently
updated Barcelona Clinic Liver Cancer classification system and the current algorithm of systemic
therapy (first-, second-, and third-line treatment) are summarized. Furthermore, we discuss novel
precautional and pre-therapeutic approaches including therapeutic vaccination, adoptive cell transfer,
locoregional therapy enhancement, and non-coding RNA-based therapy as promising treatment
options. These novel treatments may prolong overall survival rates in regard with quality of life and
liver function as mainstay of HCC therapy.

Keywords: HCC; NAFLD; NASH; non-alcoholic fatty liver disease; non-alcoholic steatohepatitis; lenva-
tinib; atezolizumab; pembrolizumab; trans-arterial chemoembolization (TACE); immune checkpoint
inhibition; PDL1; CTLA4; P53; TERT; Barcelona Clinic Liver Cancer classification system (BCLC);
Tyrosine kinase inhibition (TKI)

1. Introduction

Liver cancer is worldwide one of the major health problems and recommends high
standards in diagnostics and medical care. In 2020, liver cancer was the sixth most common
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cancer, with 905,677 new cases per year [1–5]. Despite advances in diagnosis and treatment,
mortality from liver cancer remains high. Liver cancer is the second most lethal tumor,
following pancreatic cancer, with 830,180 deaths yearly. The relative five-year survival rate
is only 18% [6]. Within primary liver tumors, hepatocellular carcinoma (HCC) represents
the most critical tumor entity. It accounts for approximately 75% to 90% of all cases [1–5].
After HCC, intrahepatic cholangiocarcinoma is the second most frequent entity, with about
10%–15% of all cases [1]. Besides, there are rare types of primary liver cancer, including
fibrolamellar carcinoma, angiosarcoma, and hepatoblastoma.

Regardless of the etiology (hepatitis C virus (HCV) infection, hepatitis B virus (HBV)
infection, metabolic syndrome, chronic alcohol abuse, hemochromatosis, α1-antitrypsin
deficiency), liver cirrhosis is the leading risk factor for developing HCC. Approximately
one-third of all patients with liver cirrhosis will develop HCC during their lifetime. In
patients with HBV-associated liver cirrhosis, approximately 2% per year, and in patients
with HCV-associated liver cirrhosis, 3–8% develop HCC [7–10]. Besides viral hepatitis,
non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), have
become significant risk factors for HCC in recent years, but with high heterogeneity of
newly diagnosed HCC annually [11,12].

Depending on tumor stage and liver function, a wide range of treatment options for
HCC is indicated. The prognosis of patients with HCC depends highly on performance
status and liver function. Therefore, HCC in liver cirrhosis is classified by the updated
Barcelona-Clinic-Liver cancer (BCLC) Classification system. As already mentioned, the
treatment concepts suggested by the BCLC classification system strongly depend on the
preserved liver function in these patients as the underlying condition is liver cirrhosis.

The treatment concept is curative in the very early stage (BCLC stage 0) and early stage
(BCLC stage A). Curative therapeutic approaches are liver resection, local ablation therapy,
or transplantation (Figure 1). The 2022 updated BCLC classification system addresses some
additional issues in comparison to previous versions. For BCLC B stage, the 2022 BCLC
version stratifies 3 groups of patients according to tumor burden and liver function. This
subgroup includes patients with well-defined HCC nodules that are still candidates for liver
transplantation if they meet the “extended criteria for liver transplantation”. Downstaging
has emerged as a reliable tool to select patients for liver transplantation. The goal is
reduction of tumor burden with the residual viable tumor reaching the Milan criteria as
the most common endpoint of downstaging. Besides reduction of viable residual tumor
biological response in terms of decrease of AFP values (decrease at least <500 ng/mL) have
been sought to expand Milan criteria.

The second subgroup comprises patients that are clear candidates for TACE without
the option of liver transplantation. They present with preserved portal vein flow, defined
tumor burden and feasible access to the feeding tumor arteries.

If patients neither meet the “extended criteria for liver transplantation” nor criteria
suggesting therapeutic success of TACE systemic therapy should be considered. In this
third subgroup of patients in BCLC-B, diffuse infiltration with extensive tumor burden
TACE is not beneficial and systemic therapy should be recommended.

Another step forward in the updated BCLC classification system is the incorpora-
tion of an expert clinical decision-making component and stratification after radiological
progression after initial diagnosis. Radiological progression and/or treatment-related ad-
verse events may lead to treatment recommendations even if BCLC stage has not changed
(see Figure 1, BCLCp-B; BCLCp-C1; BCLCp-C2). Therefore, the term “treatment stage
migration” has been introduced.
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Figure 1. The BCLC classification system offers treatment recommendations based on tumor stage
and liver function of patients with HCC. Treatment options are adjusted to the 5 stages of HCC (from
very early to terminal stage). The prognosis is based on the tumor burden, liver function and physical
performance status of the patient. Besides the recommended treatments, the BCLC system also
includes prognosis and the expected survival time. Updated classifications and treatment options
are illustrated as red boxes and arrows. This updated BCLC system further contains new workflows
during radiological progression within between the stages (BCLCp-B, BCLCp-C1, BCLCp-C2) [13,14].

In case of multifocal tumor manifestation, macrovascular portal vein invasion, extra-
hepatic tumor spread (BCLC stage C), or slightly reduced performance status (ECOG 1-2),
the guidelines recommend systemic therapy. In the first line setting of systemic ther-
apy, physicians choose either therapies with tyrosine kinase inhibitors (TKI) such as so-
rafenib and lenvatinib, or immune-oncological (IO) approaches with atezolizumab and
bevacizumab or durvalumab/tremelimumab [10,15,16] (Figure 2). In the pivotal trials, sub-
group analysis demonstrated patients with HCC secondary to viral hepatitis as the primary
beneficiaries of the initiation of IO-based therapies [16]. On the other hand, patients with
HCC based on NAFLD or NASH appeared with higher beneficials from therapy with TKI,
such as lenvatinib or sorafenib.

In this regard, it is evident to identify clinical and molecular subtypes for a better
tailored and individualized medicine in systemic therapy of HCC. Due to the global disease
burden, it is of utmost importance to better understand HCC pathogenesis to develop new
treatments and approaches with promising therapeutic targets. This review aims to provide
an overview of the current state of molecular pathogenesis and treatment options for HCC.
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Figure 2. Algorithm of systemic therapy in HCC (BCLC stage C) based on approval by EMA
and FDA. Scientific data supporting a therapy algorithm after 1st line therapy with Atezolizumab/
Bevacizumab is missing. Sorafenib is approved in the therapy of HCC regardless any other / previous
therapy. Cabozantinib, ramucirumab and regorafenib are approved after previous therapy with
sorafenib; Regorafenib for patients that has previously responded to sorafenib; Ramucirumab in
patients with AFP-overexpressing tumors (AFP > 400 ng/mL).

2. Etiology and Risk Factors in HCC Pathophysiology

As already introduced, HCC is an ever-growing health problem and the second
leading cause of cancer-related death worldwide. It is the ninth most common cancer
in women and the fifth most common cancer entity in men [17]. Various risk factors are
known for the development of HCC (Figure 3). Chronic hepatitis B or C virus infections,
hereditary diseases, e.g., hemochromatosis, α1-antitrypsin deficiency as well as tyrosinemia
or glycogen storage disease type 1a play a role in HCC pathogenesis [5,18]. In addition,
lifestyle components, such as excessive alcohol consumption or nicotine abuse, favor the
development of this neoplasia [18–21].

The common feature of all these factors is induction of liver cirrhosis as a possible
complication [5]. Clinical studies have shown that about 8% of all patients with liver
cirrhosis develop HCC [22]. Hence, patients with liver cirrhosis are defined as high-
risk group to be included in structured surveillance for early detection of HCC. The
Guidelines published by the American and European Association for the Study of liver
disease (AASLD and EASL) recommend in adults with cirrhosis a close surveillance with
abdominal ultrasonography at intervals of 6 months and an optional alpha-fetoprotein
(AFP) screening [23].
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Figure 3. Etiology and risk factors promoting HCC carcinogenesis. Continuous chronic exposure to
hepatic injuries caused by environmental factors (viral hepatitis, alcohol abuse, NASH, exposure to
toxins, etc.) repeatedly damage the hepatocytes and induce inflammation eventually leading to liver
cirrhosis. In this stage, the liver is susceptible to genomic instabilities. That is why it is more likely
for the hepatocytes to accumulate somatic mutations, epigenetic changes, and gene rearrangements
which can lead to metabolic changes and molecular pathway alterations. These dysregulations drive
tumor progression and metastasis.

2.1. Viral Risk Factors

Approximately 54% of HCC cases are due to HBV infection [22]. Vaccination-programs
reduce the transmission risk by 90%. As a result, the incidence of HCC, especially in male
adolescents, has been significantly dropped [24,25]. Despite these vaccination initiatives
against HBV, the risk is still very high in endemic areas, such as Africa or East Asia. In
these areas, HCC pathogenesis is initiated in average 10 years earlier than in patients in
Europe and North America. This is most likely due to early infection, mostly through
vertical transmission during pregnancy or birth. In up to 90% of cases, chronic viral disease
develops. In contrast, when HBV prevalence is low, as in most Western industrialized
nations, horizontal transmission of the virus predominates.

Another 31% of HCC are due to HCV infection. In contrast to HBV, HCV is usually
not acquired at birth but later. Therefore, HCV-related liver tumors usually only occur at
later ages [22]. Transmission often occurs predominantly through contaminated application
equipment in drug abuse or through infected blood products. The degree of HCV-induced
liver damage determines the risk of HCC. Without confirmed liver cirrhosis, HCV-infected
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patients show only a slightly increased for HCC with an annual incidence of 0.48% [5]. In
contrast, patients with liver cirrhosis based on chronic HCV infection have a high risk to
develop HCC with an annual incidence of 3–8% [7,9]. The risk of HCC in patients with
chronic HCV decreases significantly to 0.33%–0.9%/year after successful antiviral therapy
with sustained virological response (SVR) [11,26]. With already existing cirrhosis of the
liver, the risk of HCC continues to be high despite SVR. The literature indicates an HCC
risk of 1.5% to 2.4%/year for these patients [9,11,27].

2.2. Aflatoxin

In addition to viral factors, toxins also play a crucial role in the development of
HCC. Widespread contamination of cereals, maize, and tree nuts with aflatoxins is known,
especially in East Asia and southern African countries, particularly in rural areas [28]. Four
different chemical groups are distinguished, aflatoxin B1, B2, G1 and G2, of which B1 is
considered the most dangerous. Aflatoxins induce mutations of the tumor suppressor p53
at the third base of codon 249, which are detectable in 30 to 60% of HCC patients exposed
to aflatoxin. There is a 4-fold increased risk of cellular degeneration upon mutation of p53.
In addition, in most areas with high aflatoxin exposure, there is also a high prevalence
of HBV. In combination with chronic HBV infection, Aflatoxin can lead to up to a 60-fold
increased probability of developing HCC compared to healthy individuals not exposed to
aflatoxin. Thus, a synergistic effect of the two risk factors can be assumed [28].

2.3. Alcohol Consumption

Inflammatory processes, hepatocyte necrosis and regenerative processes associated
with oxidative stress condition the development of hepatic cirrhosis with regular alcohol
consumption [18]. In most cases, HCCs in viral hematogenesis are also cofounded by
alcohol consumption. This also highlights the synergistic effect of alcohol abuse and HBV
or HCV disease [16,26]. In a prospective study in patients with chronic HCV infection
and liver cirrhosis, even with simultaneous mild to moderate alcohol consumption, there
is a significantly increased HCC risk with a cumulative 5-year HCC incidence of 23.8%.
In comparison, the incidence of HCC in patients who did not consume alcohol at all
was 10.6%, only [29]. However, even without the pre-existence of infections, alcohol is
a major risk factor for HCC pathogenesis. On the one hand, synergistic effects between
alcohol and obesity are assumed. On the other hand, ethanol increases HCC risk in relation
to concentration, especially in societies with an otherwise low risk of HCC and a low
prevalence of viral hepatitis [28].

2.4. Metabolic Syndrome, Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic
Steatohepatitis (NASH)

In Western world countries, metabolic diseases are risk factors for hepatocarcinogenesis
as well [30]. Metabolic diseases favor liver steatosis as a precursor to fibrosis or cirrhosis.
The extent to which steatosis or fibrosis can be considered independent risk factors for the
development of HCC has not been determined, conclusively [28]. In addition, NAFLD
is considered a risk factor for HCC, as well [18]. Especially in industrialized nations, the
proportion of patients with an HCC based on the presence of NAFLD without cirrhosis is
increasing [30]. The most severe form of NAFLD, the NASH based cirrhosis, may further
increase the HCC risk [18]. NASH is characterized by steatosis, inflammation, degenerative
changes, and fibrosis. Progression to marked fibrosis occurs in 15 to 50% of cases, progression
to cirrhosis in 7 to 25% [28]. The incidence of HCC is reported to be 0.02% per year in patients
with NASH but without cirrhosis. The HCC increases up to 1.5% per year in the presence
of cirrhosis. Therefore, it is recommended that patients with NASH without cirrhosis, i.e.,
with advanced liver fibrosis, should be monitored closely [31,32]. In the presence of NAFLD
or NASH without evidence of advanced fibrosis, the risk of HCC is lower but still present.
Recommendations for surveillance in this population are missing [10,33,34].
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Other, rare diseases may also be at increased risk for developing HCC. Among others,
the presence of glycogen storage disease, in particular type Ia and Ib, is associated with
the occurrence of hepatic adenomas [35]. In addition, patients with M. Gaucher show a
significantly increased risk of developing HCC even without cirrhosis and tyrosinemia
type I (HT I), when left untreated, is the most common cause of HCC in children [36,37].

3. Somatic Mutations in HCC Pathogenesis

Somatic mutations are the most common cause for a healthy cell turning into an
abnormal cell. Single gene mutations are most commonly the initiators (driver genes)
of consecutive accumulations that eventually lead to cancerogenic progression. Apart
from Melanoma and lung cancer, which have the highest proportion of mutations per
genome, HCC has an intermediate number of mutations per genome [38]. However, among
other solid tumors, the development of HCC is most strongly correlated with influential
environmental factors (e.g., virus-related) [39]. HBV and HCV are viruses either integrating
their genetic material into the host genome or inducing double-strand breaks resulting
in numerous genetic alterations. Molecular studies have identified the most frequent
alterations in HCC, including mutations in the TERT promoter, TP53, CTNNB1, and
epigenetic aberrations [40,41]. In the following, the commonly observed somatic mutations
in HCC are discussed in detail (see Table 1).

3.1. The Tumor Suppressor p53

TP53 is the most frequently mutated gene in human cancer [42]. In its physiological
state, p53 executes a monitoring and tumor-suppressive function [43–45]. Due to the
accurately regulated expression, degradation, and fined tuned protein isoform ratio of p53,
the cell can rapidly react to DNA damages and initiate an appropriate cellular response [46].
Its versatility allows p53 to operate as a transcription factor, a recruiting factor for DNA-
repair proteins at damaged sites, or a direct protein interaction partner [47–49]. Thus, p53
also executes many regulatory functions [50]. Most notably, p53 is known for its central
role in triggering various types of cell death. Among them, intrinsic apoptosis is initiated
by direct interaction of p53 with anti-apoptotic Bcl-2-family members, namely Bcl-2 and
Bcl-XL. In response to inhibition of Bcl-2 and Bcl-XL, pro-apoptotic Bax and Bak form
pores in the mitochondrial outer membrane (MOM), which leads to cytochrome C release
and formation of the cytosolic death platform, the apoptosome [49]. p53 activation is also
known to promote upregulation of genes involved in accumulation of intracellular iron
and reactive oxygen species (ROS). Abnormally high levels of Fe2+ lead to generation of
hydroxide anions and thus lipid-peroxidation. The latter proves to be highly toxic for
cells. This type of programmed cell death is known as ferroptosis [51]. Especially the
inactivation of glutathione peroxidase 4 (GPX4) is especially a major driver of ferroptosis.
Normally, GPX4 catalyzes incurring lipid-peroxidases into harmless lipid-alcohols by
using glutathione as cofactor. P53 is capable of either boosting glutathione production via
upregulation of p21, or to prevent further glutathione supply by suppressing SLC7A11.
Particularly, mutated p53 preferably binds to NRF2 protein and massively reduces cellular
glutathione concentration, thus indirectly decreasing GPX4 activity [52].

Other p53 family members including p63 and p73 also possess essential regulatory
properties. Either in concert with or as a substitution for p53, p63 and p73 tightly regulate
proliferation, metabolic activity, cell differentiation and initiation of apoptosis and/or
ferroptosis [51,53–56]. However, p63 and p73 have a lower mutational rate than p53 [57].
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Table 1. Pathophysiological factors involved in HCC carcinogenesis (gene mutation, miRNA, lncR-
NAs, epigenetic changes, alteration in signaling pathways, etc.). The right column contains the
corresponding references.

Category Gene/Pathway Incidence Reference

Somatic mutations

Tumor suppressor p53

AFB1 induced R249S [58–60]

AFB1 induced V157F [58,60,61]

HBV promoted Mdm2 promoter polymorphism (SNP309,
rs2279744) [61,62]

ZNF498 [51]

SLC7A11 [52]

GPX4 [52]

ATM [63]

RPS6KA3 [63]

Telomerase promoter TERT promoter C to T
transition (−228 to −250) [64,65]

HBV-promoted

HBV-DNA integration
in TERT [66–68]

MLL4, KMT2B [69,70]

CCNE1, CCNA2 [69,70]

SENP5 [71]

RARβ [72]

ROCK1, ARHGEF12 [69,70]

FN1 [73]

CYP2C8 [73]

PHACTR4 [73]

SMAD5 [73]

Others

CTNNB1, AXIN1 [74]

mTORC1, ARID1A, ARID2 [74,75]

TTN [74,75]

JAK1 [74,75]

KEAP1 [74,75]

NRF2, NFE2L2 [76,77]

KRAS, NRAS, BRAF [78]

EGFR [78]

IDH1, IDH2 [78]

Epigenetic changes

DNA methylation

genes involved in Ras/Raf/ERK
and Wnt/β-catenin pathway [79]

GSTP1 [80]

FANCB [81]

KIF15 [81]

KIF4A [81]

ERCC6L [81]

UBE2C [81]

CDKN2A [82]

p16 [83]

DNMT1, DNMT3A, DNMT3A2 [84]

Histon and chromatin
modification

H3K3me3, H3K27ac,
H3K9ac, H3K4me2 [85]

H3Kme27, H3K4me3 [85,86]

Ash2 [87]

LSD1 [87]

MMP1/MMP3 [88]

VASH2 [87,88]

EZH2 [89]

SMARCD1 [90]

ARID2 [91]

Hbx-antigen interaction with
CREB-binding protein/p300 [92]
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Table 1. Cont.

Category Gene/Pathway Incidence Reference

Micro RNAs

miR-1/-122/-124/-132/-148/-200/-205 [93,94]

miR-210-3p [95]

miR224 [96]

miR-196a and miR-196b [97]

miRNA-1468 [96,97]

miRNA144 [98]

miR-342-3p [99]

miR-1/-124/-214/-34-A/-449 [100]

Long-non-coding RNAs

LINC01234 [101]

PTTG3P [102]

HULC [103]

HEIH [104]

MVIH [103–107]

MAIT [102]

MIR31HG [108]

Pathway dysregulations

Wnt/β-catenin

CTNNB1 [78]

AXIN1 [109,110]

AXIN2 [109,110]

APC [109,110]

UBE2T [111]

TFAP4 [112]

DDX39 [113]

circ_0004018 [114]

circ_0003418 [115]

Receptor tyrosine kinase

mTORC1, mTORC2 [116]

PTEN [117,118]

LZTS2 [119]

HJURP [120]

RSK2 [121]

miR155-5p/-494/-493/-519a [122]

VEGF

HIF-1, HIF-2 [123]

ERO1α [124]

lncRNA PAARH [125]

JAK/STAT

IL-6 [126]

GP130 [127]

JAK1 [128]

IL6R [128]

IL6ST [128]

TGF-β

SMAD2/3 [129,130]

PTPRε [129]

exosomes [131]

Due to the numerous tasks that p53 takes over, a disordered protein isoform pro-
portion [132], a subfunction, or complete breakdown can only be compensated by the
cell with great difficulty or not at all [53]. In HCC, the frequency of p53 gene mutation
ranges from 15% to 40%, depending on the underlying etiology [133]. For this reason,
TP53 mutation-related HCC is highly dependent on geography and ethnicity [2,134,135].
Dietary exposure to fungal aflatoxin B1 (AFB1), for instance, induces a multitude of ge-
netic alterations in the liver [58]. Since AFB1 metabolizes into a reactive epoxide species
named AFB1-E, it can rapidly react to guanine residues, leading to DNA damage and mu-
tations [60]. The most-reported aflatoxin B1 induced mutation in TP53 locates at codon 249,
evoking a missense mutation from arginine to serine (R249S) [59]. This codon lies within
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the DNA-binding domain. Alteration of arginine 249 into any other amino acid causes a
reduced binding affinity to the corresponding p53-response elements in the DNA. Another
AFB1-induced hotspot mutation in TP53 is V157F, which provokes a poor prognosis for pa-
tients with HCC. Together with HBV chronic inflammation, those mutations may advance
the development of HCC [61]. Conversely, previous chronic HBV infection was shown to
promote the transition from G/C to A/T after additional AFB1 exposure [60]. In addition to
mutations that directly affect the integrity of p53, genes involved in the negative feedback
loop also contribute to disease development. In principle, the 309T > G polymorphism
(SNP 309, rs2279744), located in the intronic p53-responsive promoter of MDM2, has the
effect of increasing Mdm2 protein levels and is associated with the early onset of HCC
in patients with chronic HCV infection [62,136]. Recently, KRAB-type zinc-finger protein
(ZNF498) was found to be upregulated and therefore suppress apoptosis and ferroptosis
by attenuating p53 Ser46 phosphorylation in hepatocellular carcinogenesis [51].

Other genes belonging to the p53 pathway and encoding p53-activating kinases,
namely ATM and RPS6KA3, were also recurrently mutated [63].

3.2. The Telomerase Promoter

In each cell of the human organism, the genetic material is subdivided into 46 chro-
mosomes. So-called telomeres cover the ends of chromosomes to protect genomic in-
tegrity. These telomeres consist of several kilobase pairs of long repetitive sequences,
that shorten by approximately 100 base pairs with every cell division. The telomerase
complex controls the telomere length. The telomerase complex comprises the telomerase
reverse transcriptase (TERT), telomerase RNA component (TERC), and several proteins
such as the shelterin components TRF1, TRF2, TIN2, RAP1, TPP1, and POT1 [137]. The liver
is a quiescent organ and therefore, shows low physiological telomerase expression [64].
During chronic liver injury and inflammation, hepatocytes undergo progressive telomere
shortening. However, in the absence of telomerase activity, chromosome erosion and
genomic instability are intercepted by p53-induced replicative senescence and apoptosis
in most critical cases [138–140]. Thus, tumor progression is usually impaired in healthy
hepatocytes [141]. Reactivation of the telomerase and the associated telomere regeneration
gives hepatocytes the ability to overcome telomere-shortening-induced senescence and
proliferate continuously [142,143]. TERT and TERC upregulation are critical events in liver
tumor progression, observed in 90% of the HCC patients [64]. The most prevalent somatic
mutation resulting in elevated telomerase expression is a C to T transmission in the TERT
promoter at positions -228 and -250 upstream of the start codon [65,66]. Several studies
indicate a preferential HBV-DNA integration into TERT or TERT-near regions [67,68,144].
While PROX1 (positive modulator of TERT) is downregulated by the presence of Hepatitis
B virus X (HBx) presence [84], other modulators of TERT expression such as NCOA3 are
enhanced in their specific binding to the TERT promoter at the -234 to -144 region [145].
Further, the methyltransferase DNMT3B is activated upon TERT upregulation, resulting
in a remodeling of the DNA-methylation landscape. For example, HCC-specific DNA
methylation remodeling by DNMT3B leads to AKT activation within the PI3K/AKT path-
way, resulting in inhibition of Bax and ultimately suppression of mitochondria-mediated
apoptosis [146]. Therefore, TERT promoter mutations represent one of the most critical
driver mutations in pathologic liver progression.

3.3. Hepatitis B Virus Integration Mediated Mutations

The ~3.2 kilobase (kb) pairs long genome of HBV consists of circular double-stranded
DNA and comprises four overlapping open reading frames (ORF), namely preS/S, P, preC/C,
and X, that result in seven different gene products [147,148]. These viral proteins are
mainly responsible for integrating viral DNA into preferential sites of the human genome.
HBV integration can cause several genomic alteration events such as (1) HBV-promoter
induced transcription of host genes, (2) viral-host transcript fusion, which may lead to
activation of proto-oncogenes or inactivation of tumor suppressor genes, and (3) gene dis-
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ruption [61]. The latter mainly occur in exons or regulatory regions, including TERT (Telom-
erase reverse transcriptase), MLL4 and KMT2B (Methyltransferases, chromatin remodeling),
CCNE1 and CCNA2, (Cyclin E1 and A2, cell cycle control), SENP5 (Sentrin-specific pro-
tease (5) [71], RARβ (Retinoic acid receptor beta), ROCK1 and ARHGEF12 (Rho-Rock
associated pathway) [63,67,69,70,72,149]. Additional recurrent integration sites are found
in FN1 (Fibronectin 1), CYP2C8 (cytochrome P450, family 2, subfamily C, polypeptide (8),
PHACTR4 (Phosphatase and actin regulator (4), and SMAD5 (SMAD family member (5) [73].
Therefore, HBV virus integration predisposes cancer initiation by promoting deletions or
translocations of the host genome and increasing chromosomal instability [150].

3.4. Other Somatic Mutations

Other mutations consistently found in HCC patients include CTNNB1 and AXIN1,
which are involved in the Wnt/β-catenin signaling pathway [74]. Additional mutations
are found in mTORC1, ARID1A, and ARID2 (chromatin remodeling) [75,76], in TTN (chro-
mosome segregation), in KEAP1 (involved in ubiquitination), in JAK1 (JAK/STAT signaling
pathway). Also, mutated NRF2 and NFE2L2 are upregulated upon oxidative stress [77,151].
Genes that are rarely mutated but rather typical in HCC include PIK3CA and PTEN
(PI3K/AKT signaling pathway), KRAS, NRAS, and BRAF (RAS/MAPK signaling pathway),
EGFR (growth factor signaling pathway), IDH1 and IDH2 (NADPH metabolism) [78].

4. Epigenetic Regulation in HCC

Epigenetics describes the heritable changes in phenotype provoked by alterations in
gene expression without affecting the DNA sequence. Epigenetic dysregulation includes
changes in transcriptional regulation, chromosomal stability, and altered differentiation
or proliferation status. Epigenetic alterations can strongly contribute to tumorigenesis
in numerous cancer types, including HCC. Epigenetic mechanisms comprise (a) changes
in methylation, hydroxy methylation, and acetylation of global or specific DNA regions,
(b) modifications of histone proteins that specify the packaging of the DNA and (c) gene
expression regulation through non-coding RNA molecules [152] (see also Table 1).

4.1. DNA Methylation

The most profound way cells regulate their gene expression is through methylation
changes on individual CpGs or whole CpG islands in the DNA. On the one hand, hy-
permethylation of promoters or promoter-near regions downregulates the expression of
specific genes. On the other hand, hypomethylation correlates with increased gene activity.
Alterations in DNA methylation are frequently observed in HCC and play an essential role
in carcinogenesis [153]. Most hypermethylated regions are detected in promoters of tumor
suppressor genes, whereas hypomethylation occurs in regions responsible for cell-cycle
and proliferation regulation (oncogenes).

Epigenetically altered genes often correlate with certain etiological factors, such as
HBV and HCV infection. Deng et al. have shown 15 genes to be significantly downreg-
ulated upon HCV infection. These genes are mainly involved in the Ras/Raf/ERK and
Wnt/β-catenin pathway and strongly contribute to the progression of HCC [79].

Moreover, HBV may enhance or maintain GSTP1 and E-cadherin promoter methyla-
tion, affecting hepatocarcinogenesis [80]. HBV and HCV independently, 115 genes were
significantly up-or down-regulated in HCC tissue, also associated with poor prognosis.
In particular, the upregulated genes are involved in cell division, cell cycle, and prolif-
eration. The most considerable genes hypomethylated on CpGs around their promoter
are FANCB, KIF15, KIF4A, ERCC6L, and UBE2C [81]. CDKN2A, a key regulator of G1 cell
cycle arrest, is hypermethylated and inactivated in many cancer types [82]. It has also been
reported that CDKN2A inactivation influences the epigenetics of p16. p16, in turn, is a
profound tumor suppressor and is inhibited in HCC [83]. HBV infection and HBx antigen
expression further showed a total increase in DNMTs activity. Methyltransferases such as
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DNMT1, DNMT3A, and DNMT3A2 are significantly upregulated, contributing to further
epigenetic changes [84].

This chapter focuses on the importance of the methylation-related changes and their
role in tumor progression. Although epigenetic studies in cancer are still a comparatively
novel area of research, the massive data generation through Next Generation Sequencing
emphasizes the potential of essential strategies in discovering new biomarkers and novel
therapeutic approaches [85,154,155].

4.2. Histon Modification and Chromatin Remodeling

Histones are the packaging material of the DNA that can occupy different confor-
mations. Histone-DNA complexes (nucleosomes) are either densely (heterochromatin) or
less densely packed (euchromatin). Consequently, it leads to either weak or strong gene
activation. In several cancer models, including HCC, histone H3 modifications were inves-
tigated intensively. Major post-translational modifications comprise histone methylation,
acetylation, phosphorylation, and ubiquitination. Histone methylation and acetylation
changes were mainly investigated [156]. Liu et al. reported four histone modifications
that frequently occur in HCC. These are H3K3me3, H3K27ac, H3K9ac, and H3K4me2 [85].
Highly methylated H3Kme27 and H3K4me3 have been shown to correlate with poor
prognosis and aggressive behavior of HCC [86,157,158]. Increased histone methylations
may be explained by the markedly increased activity of the Ash2 methylation complex.
Demethylating enzymes such as LSD1 are predominantly absent in HCC [87].

Significant characteristics of tumor aggressiveness include cell invasion and metastasis.
Mixed lineage leukemia (MLL) is a methyltransferase responsible for the trimethylation of
H3K4. H3K4me3, in turn, is necessary for the interacting-complex MLL-ETS2 to occupy
the promoter of MMP1/MMP3 and ultimately increase their expression [88]. Therefore,
activating matrix metalloproteases by the HGF signaling pathway induces metastasis [156].
It has further been reported that putative vasohibin 2 (VASH2) abnormally overexpresses
in HCC to promote cell proliferation and inhibit apoptosis [159,160].

Another important player for chromatin remodeling is EZH2. It functions as a methyl-
transferase and belongs to the Polycomb Repressive Complex 2 (PRC2). EZH2 is strongly
upregulated in pathogenic liver tissue and fundamentally alters the chromatin struc-
ture. It promotes HCC progression by silencing β-catenin antagonists, thus activating
the Wnt/β-catenin signaling pathway. The Switch/Sucrose Non-Fermentable complex
(SWI/SNF) with a similar chromatin remodeling function is also frequently linked with
liver tumorigenesis. According to the current state of research, it is still inconclusive
whether SWI/SNF acts as a tumor suppressor or oncogene [89]. The SWI/SNF complex
comprises various active subunits (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCD1).
Mutation or dysregulation of these active subunits affects the cell physiology differentially.
The subunit SMARCD1 is considered an oncogene since its excess in the cell promotes
liver cancer growth by activating the mTOR signaling pathway [90]. In contrast, ARID2,
which encodes a regulatory subunit, mutates 18.5% of HCV-related liver cancer and is
believed to act as a tumor suppressor [91]. In addition, HBV infection also affects histone
modification. The incorporation and direct interaction of Hbx antigen with CREB-binding
protein/p300 increase the acetyl-transferase activity, which alters gene transcription and
promotes tumorigenesis [92].

4.3. Micro RNAs

Micro RNAs (miRNAs) are small non-coding RNA molecules with an average length
of 22 ribonucleotides that regulate the cell’s translational output. In complexation with
the RNA-induced silencing complex (RISC), miRNA and RISC can bind complemen-
tary mRNA sequences. In complexation, they degrade and downregulate specific gene
activities post-transcriptionally [93]. Since miRNAs are simply detectable in sera of pa-
tients, many studies drew attention to the altered levels of specific miRNAs in different
cancer types, including HCC. MiRNAs themselves belong to epigenetic gene-regulators.
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However, the transcriptional activity of the corresponding miRNA genes, in turn, can be
regulated by epigenetic changes directly on the DNA (e.g., methylation, acetylation) [94].
An example of miRNA genes affected by downregulation due to HBV infection includes
miR-1/-122/-124/-132/-148/-200 and miR-205 [161,162]. Their dysregulation has signifi-
cant effects on a variety of different signaling cascades that often modulate cell proliferation,
differentiation, migration, and maintenance. Thus, high levels of miR-210-3p were detected
in sera of HCC patients correlating with increased micro-vessel density in HCC tissue.

Previously harvested exosomes from HepG2 cell culture containing miR-210-3p pro-
moted in vitro tubulogenesis of endothelial cells. Lin et al. further revealed the molecular
pathomechanism: miR-210 represses SMAD4, an essential transcription factor of the TGF-β
signaling pathway. SMAD4 repression enhances angiogenesis by increasing the proliferation
of endothelial cells [95]. miR-224 are at high expression levels in HCC patients with poor
prognoses. miR224 targets glycine methyltransferases. Their downregulation consequently
leads to globally altered DNA methylation and increased proliferation in liver cells [96].
Another signaling cascade influenced by the deterioration in liver cells is the JAK/STAT
pathway through abnormally high miR-196a and miR-196b levels. These miRNAs arouse
the progression of HCC by targeting SOCS2 and thereby stimulate JAK/STAT signaling [97].
The clinical analysis further revealed that downregulation of CITED2 and UPF1 stimulates
the peroxisome proliferator-activated receptor-γ (PPAR-γ)/Akt inducing pathway, which
inhibits apoptosis by repressing pro-apoptotic Bcl-2 proteins while stimulating cell growth
and proliferation through mTORC1 and mTORC2 [163,164].

In contrast, some miRNAs suppress typical tumor characteristics. For example, overex-
pression of miRNA144 suppresses cell proliferation, migration, and invasion by inhibiting
CCNB1 [98]. Therefore, miR144 is believed to be a tumor suppressor that is downregulated
during tumor progression. Likewise, tumor suppressor miR-342-3p is high in HCC and low
in regressing tumors [99]. Further tumor-suppressive miRNAs, including miR-1, miR-124,
miR-214, miR-34-A, and miR-449, target downstream mRNA involved in tumor progres-
sion and usually are downregulated in HCC [100]. Both etiologic factors and epi-/genetic
alterations can completely change the miRNA profile of a cell. Since circulating miRNAs
are easily accessible through liquid biopsies, they are promising biomarkers for detecting
early-stage hepatocellular carcinoma [165,166].

4.4. Long Non-Coding RNAs

Long non-coding RNAs (lncRNA) are another class of RNA molecules that regulate
gene expression post-transcriptionally. Most of these lncRNAs are transcribed at a low level
and, therefore, hardly detectable. However, a change in lncRNA-signature, measured via
blood, can indicate a tumorigenic progression in the liver [167]. As a result, numerous stud-
ies have shown that lncRNAs play an essential role in the development and progression of
cancer, including HCC [168–170]. LncRNAs regulate gene expression and protein synthesis
by diverse mechanisms. From a physiological state, divergent expression of lncRNA can
promote oncogenes and repress tumor suppressor genes involved in hepatocarcinogenesis,
proliferation, cell growth, invasion, and metastasis [171].

The Cancer Genome Atlas (TCGA) analysis shows that upregulation of lncRNA
LINC01234 is associated with poor prognosis in patients with HCC. LINC01234, in concert
with melanoma-associated antigen A3 (MAGEA), was demonstrated to bind to tumor sup-
pressor miR-31-5p and eventually mediate proliferation, invasion, and cis-platin chemore-
sistance in HCC cell lines [101]. Huang et al. have found another lncRNA, named PTTG3P,
to promote cell growth and metastasis by upregulating PTTG1 and activating PI3K/AKT
signaling [102]. LncRNA HULC was first characterized in 2007 as Highly Upregulated in
Liver Cancer [103] and is elevated in HBV-related-HCC. Thereby, virus antigen HBx protein
facilitates cell proliferation via downregulation of CDK4- and CDK6-inhibitor p18 [105,106].
Further, lncRNAs significantly upregulated in HCC are lncRNA-HEIH, -MVIH, and -MAIT.
High Expression in Hepatocellular carcinoma (lnc-HEIH) promotes tumor growth by di-
rectly associating with enhancer of zeste homologue 2 (EZH2) to suppress its enzymatic
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activity [104]. LncRNA-associated microvascular invasion in HCC (lnc-MVIH) activates
angiogenesis by promoting tumor growth and intrahepatic metastasis. It inhibits the ex-
pression of phosphoglycerate kinase 1 (PGK1). PGK1, in turn, is an essential enzyme in the
aerobic glycolysis pathway and is known to suppress angiogenesis [104,107,172]. Massive
ATP consumptions due to high proliferative rates urge hepatocellular carcinoma cells to
shift towards aerobic glycolysis. Even in the presence of sufficient oxygen, liver carcinoma
cells convert glucose into pyruvate and eventually to lactate rather than import pyruvate
into the citric acid cycle [173–175]. Among others, this phenomenon was described in the
early 1920s by Otto Warburg and his co-workers. A process that is observed in a multitude
of different cancer types [176].

Some lncRNAs can regulate gene expression indirectly via miRNA-silencing. MAIT
promotes the proliferation and invasion of HCC cells by sponging miR-214, thus being
inaccessible to the RISC complex [102]. Another lncRNA operating on the same principle
but rather tumor-suppressive is lncRNA MIR31HG. It sponges oncogenic miR-575, thereby
preventing inhibition of Suppression of Tumorigenicity 7-Like (ST7L) and inducing tumor
repression. In contrast to healthy tissue, MIR31HG is significantly downregulated in
HCC [108]. Low lncRNA MIR22HG levels (also registered as a tumor suppressor) were
correlated with a malignant HCC phenotype [177].

Like miRNAs, deviations in lncRNA signatures are easily detectable and can serve as
potential biomarkers to identify malignant traits in HCC.

5. Dysregulation of Key Signaling Pathways

Signaling pathways count for the most complex and vulnerable systems that preserve
the inter-and intracellular communication. Extracellular stimuli received at the cell surface
are translated into intracellular responses. Signaling pathways regulate the physiology
of a cell in terms of proliferation, cell growth, differentiation, and apoptosis. Somatic
mutations, chromosomal aberrations, and epigenetic alterations are mainly responsible
for the constitutive activation of certain signal cascades [178]. Such dysregulations mostly
trigger typical tumorigenic characteristics, also known as hallmarks of cancer [179]. There
are predominant pathways recurrently disordered in HCC. They include growth signal-
ing pathways such as insulin-like growth factor (IGF), epidermal growth factor (EGF),
platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), and hepatocyte
growth factor (HGF/c-MET). Key pathways in cell differentiation include Wnt/β-catenin,
JAK/STAT, Hippo, Hedgehog, and Notch. Tyrosine-kinase-dependent signaling pathways
include Ras/Raf/MEK/ERK and PI3K/AKT/mTOR [180,181]. The most altered signaling
pathways involved in liver pathogenesis are discussed below (Figure 4).

5.1. Wnt/β-Catenin Signaling Pathway

The Wnt/β-catenin pathway is one of the best-studied signaling cascades. In terms of
liver homeostasis and regeneration in adults, it can regulate cell differentiation, prolifera-
tion, and initiate repair mechanisms [182,183]. The Wnt/β-catenin pathway is also referred
to as the “canonical Wnt pathway”. Signal transduction is initiated by Wnt-ligand binding
to a large membrane-anchored complex consisting of LRP-5 or LRP6 and one member of ten
different frizzled receptor proteins [184]. In the absence of Wnt ligand, β-catenin complexes
with negative regulators such as adenomatous polyposis coli (APC) and AXIN proteins,
which mediate N-terminal phosphorylation of β-catenin. The subsequent ubiquitination
by β-TRCP leads to its proteasomal degradation. Stable binding of the Wnt ligand to the
frizzled receptors phosphorylates Dvl. Then, Dvl recruits AXIN1 and GSKβ to the plasma
membrane, preventing the formation of the β-catenin degradational complex.
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Figure 4. Most likely dysregulated key-signaling pathways are in HCC carcinogenesis. The occur-
rence of distinct somatic mutations and the influence of either inhibiting or activating factors all
favor the constitutive activation of significant signaling pathways. Consequently, the cell evades
any regulatory mechanism and strongly promotes tumor-typical properties including cell growth,
cell proliferation, migration, and metastasis. Thus, smallest changes in the finely tuned signaling
cascades result in hepatocarcinogenesis.

Consequently, β-catenin translocates to the nucleus, where it binds to TCF and LEF
and jointly regulates the transcription of downstream genes responsible for proliferation
and cell survival [185]. WNT/β-catenin signaling is severely disrupted in most HCC
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cases. Somatic mutations account for about 40 to 60% of a disordered Wnt/β-catenin
signaling [109]. The most prevalent mutations are in CTNNB1, which destabilizes and
translocates β-catenin into the nucleus [78]. In addition, CTNNB1 mutations decrease the
expression of chemokines and subsequently the infiltration of immune cells (CD4+, CD8+,
B cells, macrophages, and NK cells). This is thought to be a mechanism by which cancer
cells escape the immune system [186]. Inactivating mutations in negative regulators AXIN1,
AXIN2, and APC promote HCC [110]. In summary, CNNTB1, AXIN1/2, and APC mutations
result in persistent aberrant activation of the Wnt/β-catenin pathway [109].

There is increasing evidence that non-mutational dysregulations also impair Wnt/β-
catenin signaling and promote HCC. Recent data have shown that ubiquitin-conjugating
enzyme E2 T (UBE2T), a direct binding partner and negative regulator of the E3 ubiquitin-
ligase Mule, is significantly upregulated in HCC. Mule, in turn, is involved in the ubiq-
uitination and degradation of β-catenin. Therefore, an abnormally high level of UBE2T
results in reduced degradation and stabilization of β-catenin [111]. Furthermore, the tran-
scription factor enhancer-binding protein 4 (TFAP4) has been reported to be upregulated
and associated with an aggressive phenotype in HCC. Experiments demonstrated the acti-
vation of Wnt/β-catenin through direct binding of TFAP4 to the promoters of DVL1 and
LEF1 [112]. Another factor significantly contributing to HCC progression is the DEAD-box
RNA helicase DDX39. It is significantly upregulated and promotes cancer growth and
metastasis through activation of Wnt/β-catenin. Analysis of the mechanism suggested an
accumulation and translocation of β-catenin into the nucleus [113].

In the previous sections, we discussed the tremendous impact of RNA molecules
on HCC development. Even in the context of Wnt/β-catenin signaling, circular RNA
circ_0004018 negatively correlates with progressive liver cancer. Circ_0004018 interacts
with miR-626 to eventually suppress Wnt/β-catenin signaling [114]. Hence, reduced
levels of circ_0004018 reactivate Wnt/β-catenin and promote HCC. Another circular RNA
exerting an antitumorigenic role is circ_0003418. Its downregulation dysregulates the
Wnt/β-catenin pathway, making HCC cells more chemoresistant to cisplatin [115].

5.2. Receptor Tyrosine Kinase Pathway

The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK)
and phosphatidylinositol-three kinases (PI3K/Akt/mTOR) pathways are the best characterized
and most frequently activated intracellular pathways in HCC [187]. They are activated by
extracellular ligands (growth-factors) that bind to plasma membrane-anchored receptor tyrosine
kinases such as IGFR, EGFR, PDGFR, VEGFR, FGFR, and HGFR/c-MET. MAPK/ERK signaling
is constitutively activated in more than 50% of human HCC cases [188]. Constitutive activation
of MAPK/ERK triggers the activation of the transcription factors cFos and AP-1/cJun which
promote transcription of downstream genes driving proliferation, cell growth, de-differentiation,
and cell survival [189–191]. Activation of PI3K through G-protein-coupled receptors (GPCR),
IGFR, VEGFR, and others promotes the conversion of PIP2 to PIP3 and activates AKT and
mTORC1. Uncontrolled activation of this pathway leads to carcinogenesis in most cases. Of
note, mTORC1 and mTORC2 are upregulated in 40–50% of patients with HCC [116].

Most dysregulations are due to genetic or epigenetic alterations that affect the regula-
tory mechanism of signaling pathways. The Phosphatase and Tensin homologue (PTEN)
is a potent tumor suppressor since it dephosphorylates PIP3 to PIP2 and attenuates PI3K
signaling. In almost half of the cases, PTEN downregulation is associated with cancer
progression in patients with HCC [117,118]. In contrast, upregulation of E3 ligase βTrcp
and protein kinase CK1δ increases ubiquitination and degradation of Leucine Zipper tumor
suppressor 2 (LZTS2). The depletion of LZTS2 leads to the progression and metastasis of
HCC through activation of PI3K/AKT signaling [119]. Similarly, expression of the holiday
junction recognition protein (HJURP) is increased in HCC and promotes cell proliferation
by destabilizing p21via the MAPK/ERK and AKT/GSK3β pathway [120]. Chan et al.
reported a recurrent inactivating RSK2 mutation at 6.3% of HCC cohorts associated with a
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more aggressive tumor phenotype. Inactivation of RSK2 attenuates the SOS1/2-dependent
negative feedback loop of MAPK/ERK signaling [121].

In addition to inactivating mutations, miRNAs and lncRNAs are also crucial regula-
tors of gene expression. They are closely associated with the PI3K/AKT/mTOR pathway
during oncogenesis [192,193]. For instance, oncogenic miRNAs such as miR155-5p, miR494,
miR493, and miR519a are upregulated in various cancers. They induce cell invasion, mi-
gration, and proliferation. Moreover, these miRNAs inhibit apoptosis by directly targeting
PTEN to prevent PIP3 to PIP2 reversion and promote activation of PI3K/AKT/mTOR [122].
Furthermore, Wu et al. comprehensively summarized 67 dysregulated PI3K pathway-
related lncRNAs in HCC [123].

5.3. Vascular Endothelial Growth Factor and Further Signaling Pathways

The formation of new blood vessels from pre-existing vascular beds is a major charac-
teristic of tumorigenic liver tissue [194]. Chronic liver injuries and inflammations cause
fibrogenesis and impair the normal liver blood system. The disruption of blood sup-
ply leads to nutrition and oxygen shortage (hypoxia) [195]. Hypoxia in HCC, in turn,
induces the release of specific growth factors such as hypoxia-inducible factors 1 and 2
(HIF-1 and -2) and IGFs [171,196]. The release of angiogenic markers shifts the balance
towards proangiogenic factors [194]. These include angiopoietins, angiogenin, FGF, HGF,
Interleukin 4 and 8, PGF, PDGF, TGFβ, and VEGF [197]. However, a few other prognostic
markers responsible for induction of angiogenesis have been identified in HCC. ERO1α,
for example, is an endoplasmic reticulum resident oxidase that is significantly upregulated
in tumorigenic tissue. It triggers the S1PR1/STAT3/VEGF-A signaling pathway, increasing
the number of blood vessels and their density [124]. Moreover, imbalances in lncRNA
expression can promote carcinogenesis. Increased lncRNA PAARH levels represses cellular
apoptosis and promotes tumor growth and angiogenesis in HCC. Wei et al. demonstrated
that PAARH physically binds to the HIF-1α subunit and thereby facilitates the recruitment
of HIF-1α to the VEGF promoter [125]. These studies highlight the urgent need for new
molecular targets to support the development of angiogenesis restricting therapies.

5.4. JAK/STAT Pathway

The JAK/STAT signaling pathway has a pivotal role in various cellular functions and
can be activated by different cytokines and growth factors, such as interleukins, interfer-
ons, and EGFs. Each cytokine binds to its respective transmembrane receptors. Some of
the intracellular receptor domains are associated with Janus kinases (JAKs), which get
activated upon ligand-induced conformational change of the receptors. Activated JAKs
phosphorylate Signal Transducers and Activators of Transcription (STAT). Activated STATs
homodimers translocate into the cell nucleus and activate target genes such as CCND1,
BIRC5, and Mcl-1. In HCC, the JAK/STAT signaling pathway is constitutively activated.
Activation dysregulates expression of genes responsible for survival, angiogenesis, stem-
ness, immune surveillance, invasion, and metastasis [198]. Constitutive activation of the
signaling cascade can occur through several mechanisms. The most common example is
an elevated interleukin-6 (IL-6) level that interacts with the receptor subunit GP130 and
engages JAK phosphorylation and eventually STAT3 activation [126]. However, activating
mutations e.g., in GP130, can lead to ligand independent STAT3 activation [127]. Somatic
mutations in JAK1, IL6R, and IL6ST also result in constitutive JAK/STAT signaling [128].

5.5. Transforming Growth Factor-Beta Pathway

The transforming growth factor-β (TGF-β) signaling pathway regulates various physi-
ological aspects in embryogenesis and adult tissue homeostasis [199]. The TGF-β family
members are also involved in pathophysiological mechanisms that trigger severe diseases.
TGF-β has a dual role of suppressing early stages of tumorigenesis but contributing to the
migration and metastasis of HCC [129]. Liao et al. also proposed a mechanism of sustained
TGF-β/SMAD signaling in HCC. Permanent activation is achieved by directly binding
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activated SMAD3 to protein tyrosine phosphatase receptor epsilon (PTPRε) promoters.
Abundant PTPRε, in turn, facilitates the recruitment of SMAD3 to TGFBR1, resulting in a
positive feedback loop [129].

The growth factor TGF-β is known to be the major contributor to the pro-metastatic
nature of cancer. The transition from epithelial to mesenchymal cells is promoted through
TGF-β induced SMAD2/SMAD3 activation. The activated proteins in turn operate as
transcription factors promoting the transcription of genes involved in the dissolution of
cell junctions and detachment from adjacent tissue [130]. Qu et al., also demonstrated inter-
cellular communication of HCC cells by exosomes promoting their mutual invasion and
migration. The exosomes decrease E-cadherin expression while activating TGF-β/SMAD
signaling, which induces vimentin expression and, eventually, endothelial mesenchymal
transition (EMT) [131]. In addition to its pro-metastatic properties, TGF-β also promotes
immune surveillance escape in HCC [200].

6. Current Treatment Strategies

As mentioned above, therapeutic strategies always consider the HCC tumor status based
BCLC criteria at baseline, the preserved liver function as well as tumor progression upon
treatment or intolerance / adverse events of a current treatment (“treatment stage migration”).

Surgical resection as well as local ablative therapies including radiofrequency ablation
(RFA) and microwave ablation (MWA) are established therapeutic option in BCLC stage 0
and BCLC stage A, considering a preserved liver function of the individual patient. RFA
in tumor nodules <2 cm offer same survival rates as surgical resection. RFA beyond 2 cm
diameter is associated with lower rates of complete responses and higher recurrence rates.
For patients with tumor nodules between 2–4 cm MWA is the suggested technique as it
induces more intensive necrosis.

Larger tumors benefit from surgical resection and should not be limited by tumor size
alone as long there is no vascular invasion, or the prediction of the postoperative remnant
liver function is assumed to be inadequate. Further, orthotopic liver transplantation is
recommended for those patients inside MILAN criteria or for patients that fulfill the
“extended criteria for liver transplantation” and responded to local therapy in terms of
downsizing the tumor burden (see above).

6.1. Transarterial Chemoembolization (TACE) for BCLC Stage B

In intermediate-stage HCC, classified as BCLC stage B, transarterial chemoembolization
(TACE) is a standard treatment. This approach is based on the European and American guide-
lines [10,23]. TACE can also be used for early-stage HCC (BCLC stage A) as a bridging therapy
to liver transplantation, or to receive better respectability in neoadjuvant intentions [201,202].

In general, TACE is a locoregional therapy which is applicated by percutaneous access
and deep cannulation of the hepatic artery system. Liver circulation is unique because of
the dual blood supply by the portal vein and hepatic artery. In healthy liver tissue, the
portal vein is responsible for 80% of the blood supply. The remaining 20% of blood supply
is provided by the hepatic artery. In HCC, 99% of the blood supply to hepatic tumors is
delivered by the hepatic artery [203,204].

The main goal of TACE is to enable the application of a chemotherapeutic agent and
the additional embolization of the feeding vessel. Clinicians regularly differentiate between
two techniques of embolization. The conventional TACE (cTACE), which uses lipiodol
as a carrier agent, and DEB-TACE which uses drug-eluting beads (DEB). Worldwide, the
most used chemotherapy agents for TACE for treating HCC, are doxorubicin, epirubicin,
mitomycin C and cisplatin [205].

6.1.1. Conventional TACE (cTACE)

Lipiodol was first used to treat HCC with labeled Iodine-131 [206]. If administered
intra-arterially, the iodized oil lipiodol has shown to be selectively retained in tumor
tissue. Iodine-131 is initially used as a contrast agent for radiographic diagnosing of
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HCC [207]. The mechanism of retention of lipiodol in and surround the tissue of HCC is
not finally known. The effect is most likely due to the special arterial vascularization of
HCC, which radiologically manifests itself as an early arterial contrast enhancement and a
late washout [207]. It is discussed that lipiodol is absorbed by a membrane transporter in
HCC cancer cells. After transfer into the intracellular matrix the transport mechanism is
disabled by hypoxia, thus lipiodol retained within the hepatocellular tumor cells [208].

The goal of conventional TACE is hypoxic cell damage by injecting a mixture of lipiodol
(iodized oil) and cytotoxic chemotherapies. The injection of the emulsion consisting of
lipiodol, and chemotherapy is completed by the application of an embolic product (gelatin
sponge particles or other solid embolic agents) to increase the cytotoxic effects [209]. The
vascular occlusion provokes a hypoxic metabolic state in the tumor cell. Furthermore, the
reduced vascularization increases the effectiveness of chemotherapy. The reason for this
is presumably the delayed elimination of the cytotoxic substances. Further, the vascular
occlusion leads to tumor necrosis by reduced arterial blood flow. On the other hand,
vascular occlusion provokes formation of new blood vessels, for which reason the tumor
tissue increases its own supply of oxygen and nutrients [210]. The patient’s outcome-
benefits from additional vascular occlusion are yet not clear [211,212].

Meta-analyses have demonstrated superiority of cTACE over best supportive care
for intermediate-stage HCC [213]. Nevertheless, the procedure of cTACE in means of the
amount of the installed volume and concentration is not standardized, yet.

6.1.2. Drug-Eluting-Bed TACE (DEB-TACE)

DEB-TACE is a procedure to deliver a combination of agents for embolization and
cytotoxic chemotherapy (e.g., doxorubicin, epirubicin) at once. The chemotherapeutic
drug is loaded into microspheres, from which it is released slowly to achieve sustained
targeted release of cytotoxic agents. The application of microspheres leads to vascular
occlusion. Nevertheless, microspheres cannot cross the system of blood capillaries. The
effect of the cytotoxic component is due to drug-release in the distal arterioles. The further
distribution follows by diffusion or convection [202]. The cytotoxic effect depends on
microsphere size, loading degree, choice of chemotherapeutic agents and types of micro-
spheres [214–216]. The systemic effect of chemotherapy is lower compared to cTACE due
to the simultaneous embolization [217,218].

Randomized control trials reported no difference in tumor response and overall sur-
vival (OS) between cTACE and DEB-TACE However, DEB-TACE has been confirmed as
the more standardized technique [217,219,220].

6.1.3. Combination of TACE with Systemic Therapy

Patients with HCC in intermediate stages are typically treated with TACE. Neverthe-
less, TACE is regarded as a palliative treatment option. It is conceivable that the addition of
effective systemic treatments may cause synergistic effects and may result in better tumor
response rates and improved survival outcomes.

TACE leads to hypoxic changes in HCC tissue which increases VEGF activity due to
the upregulation of VEGF in the remaining tumor tissue [221]. Upregulation of VEGF, in
theory, promotes tumor revascularization and local recurrence. Tyrosine kinase inhibitors
(TKIs) can inhibit tyrosine kinases involved in the VEGF signaling pathway, reducing
angiogenesis, and leading to delayed tumor recurrence [28]. TKIs can also inhibit RAF
kinase, associated with inhibiting the MAPK/ERK pathway leading to reduced cell prolifer-
ation [221]. Furthermore, there are strong bidirectional relationships between angiogenesis
and immunity [222,223].

Minimally invasive, locoregional procedures such as TACE or RFA activate the im-
mune system to induce local inflammation and release of tumor antigens [224]. Therefore,
some pathophysiological hypotheses have been investigated in clinical practice. In this
regard, the administration of immune checkpoint inhibitors has been evaluated to activate
immune cell response against the tumor antigens released by TACE. In a pathophysio-
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logical manner, it is discussed to prevent intrahepatic micro-metastases, a key factor of
intrahepatic tumor recurrence [225].

Several clinical studies currently investigate the combination of TACE and immunother-
apy and/or therapy with TKI. Although pathophysiological sound, prospective studies
have failed to prove efficacy for this dual mechanism. Therefore, combination of TACE
with TKI cannot be recommended (see below).

6.1.4. Current Knowledge: Combination of TACE + Immunotherapy or TKI

There are some signals of additional or synergistic effects of TACE and systemic
therapy. Signals for the efficacy of a combination of TACE and TKI are derived from the
TACTICS trial. In this study, TACE plus sorafenib showed a prolonged progression-free
survival (PFS) compared with TACE alone (25.2 months vs. 13.5 months) [226]. In contrast
to PFS, the analysis of median OS as a primary aim of the study did not differ between
TACE plus sorafenib and TACE alone (36.2 months vs. 30.8 months; hazard ratio 0.861;
p = 0.40). Similarly, in a retrospective study of Lenvatinib and TACE, the combination
showed improved clinical outcome compared with TACE alone [227].

Nevertheless, many randomized clinical trials failed to show any clinical benefit of
combination therapy compared to TACE alone. SPACE trial and TACE-2 trial compared
TACE plus sorafenib versus TACE alone. Both studies failed to demonstrate either a clinical
or a benefit in OS. Further, BRISK-TA (TACE + brivanib) and ORIENTAL (TACE + orantinib)
are also negative trials [228–231]. Based on these prospective randomized clinical studies,
combination of TACE and systemic treatment is not recommended in international guidelines.

There are several ongoing studies mainly with TACE plus immune-oncological tar-
gets. The combination of TACE and tremelimumab showed favorable outcomes, with a
partial response rate of 26% and overall survival of 12.3 months (NCT01853618) [232]. A
phase III trial of combination therapy with TACE plus durvalumab and/or bevacizumab
(EMERALD-1 trial) is ongoing (NCT03937830). Double immune-checkpoint inhibition is
investigated in an ongoing phase II trial of CTLA-4 /PD-L1 blockade using durvalumab
and tremelimumab following TACE (NCT03638141). TACE-3 is a phase II/III random-
ized trial of Nivolumab in combination with TACE for patients with intermediate-stage
HCC (NCT04268888) [233]. The phase I/II clinical trial PETAL evaluates the combination
of TACE and pembrolizumab (NCT03397654) [234]. CheckMate74W is a phase III trial
designed to investigate the combination of nivolumab plus ipilimumab in combination
with TACE (NCT04340193). A further interesting study is the German phase II IMMU-
TACE (NCT03572582) which evaluates the effects of TACE in combination with nivolumab
for intermediate-stage HCC. IMMUTACE met its primary endpoint (overall response
rate, ORR) and demonstrated the efficacy of the combination therapy in the setting of
intermediate-stage HCC. More data concerning the very important secondary endpoints
like overall survival and progression-free survival must be awaited. Further randomized
phase III clinical studies are necessary to evaluate the benefit of the combination of TACE
and immunotherapy in the current therapeutic landscape.

LEAP-012 is an ongoing randomized clinical phase III study to evaluate TACE with
or without Lenvatinib plus Pembrolizumab for intermediate-stage HCC not amenable to
curative treatment (NCT04246177) [235].

6.1.5. Current Therapy Recommendations for TACE in HCC

TACE is widely indicated for patients with HCC in BCLC stage B. It has been recom-
mended to use the more standardized technique of DEB-TACE. To date, there is no evidence
from clinical trials for the combination of TACE and systemic therapeutic agents, so far.

Due to higher response rates of modern system therapy, clinical guidelines recommend
early switch from TACE to systemic therapy regimen when the patient is refractory to TACE.
In principle, treatment guidelines are recommended that the indication for the continuation
of TACE should be reviewed in a multidisciplinary tumor board after two treatment cycles.
Combination of TACE and systemic treatment cannot be recommended and patients who
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receive locoregional therapy should not be combined with systemic therapy outside of
clinical studies.

6.2. Combination of TACE and RFA (Radiofrequency Ablation)

For patients with HCC with tumor diameters between 3 cm and 5 cm, a randomized
clinical trial demonstrated that sequential therapy with TACE followed by RFA significantly
improves overall survival (1-, 3-, and 5-year OS rates 94%, 69%, and 46%, respectively)
compared to RFA alone (1-, 3-, and 5-year OS-rates 82%, 47%, and 36%, respectively) [236].
A clinical benefit for the sequence of TACE-RFA further indicated a study examining tumors
smaller than 7 cm [237].

Current Therapy Recommendation for TACE and RFA in HCC

In patients with preserved liver function and low or moderate portal hypertension,
chemoembolization prior to RFA or other thermal ablation therapy is recommended if
the HCC lesion is >3 cm and <5 cm. TACE creates a preparatory reduced or complete
devascularization of the tumor and its surroundings, which significantly increases the effect
of a timely thermal ablation.

7. Systemic Therapy for HCC, BCLC C
7.1. Immunotherapeutic Strategies in HCC Treatment
7.1.1. IO Combination Therapies in 1st-Line Therapy of HCC

IO combination therapy has been introduced and practice changing in first-line therapy
of HCC in BCLC stage C. The combination of atezolizumab (PD-L1-inhibitor) and beva-
cizumab (VEGF-inhibitor) showed encouraging antitumor activity and safety in a phase 1b
trial involving patients with unresectable hepatocellular carcinoma [238]. Based on the results
of the IMbrave-150 trial the combination of bevacizumab and atezolizumab became a new
standard of care in first-line treatment of HCC in BCLC stage C [13,14]. In this randomized
phase III clinical trial, the combination of atezolizumab and bevacizumab has demonstrated
superiority compared to sorafenib. (Median OS 19.2 months vs. 13.4 months (p < 0.001)) [239]
which leads to recommendation as first-line therapy in several international guidelines.

The combination of tremelimumab (CTLA-4 antagonist) plus durvalumab (PD-L1
antagonist) showed significantly improved median OS versus sorafenib as first-line ther-
apy in a phase 3 trial (HIMALAYA). The median OS was 16.43 months with tremeli-
mumab/durvalumab and 13.77 months with sorafenib [240]. Up to date, approval by FDA
and EMA is awaited.

Another study of nivolumab in combination with ipilimumab in patients with ad-
vanced hepatocellular carcinoma and no prior systemic therapy is still ongoing
(CheckMate 9DW, NCT04039607).

In the phase 3 LEAP-002 trial the combination of pembrolizumab and lenvatinib
versus lenvatinib missed its primary endpoints [241]. It is important to note that lenvatinib
in the control arm has performed much better than in the original RCT (median OS with
Lenvatinib/pembrolizumab was 21.2 months vs. 19.0 months with Lenvatinib). In the
approval study of Lenvatinib (REFLECT trial) the median OS was 13.6 months for lenvatinib.
This effect could be explained by a better selection of patients, the better management of
side effects, and the effect of better subsequent lines of systemic treatments after progression
of the initial therapy.

An open-label randomized phase III trial (COSMIC-312) recently investigated the
combination of cabozantinib plus atezolizumab versus sorafenib alone for the treatment of
advanced hepatocellular carcinoma in the first-line setting. Median OS was 15.4 months
with the combination cabozantinib plus atezolizumab and 15.5 months with sorafenib, no
statistical significance was reached. Nevertheless, the study showed a benefit for PFS in the
combination group (6.8 months vs. 4.2 months in the sorafenib group) [242].

The Rationale-301 study (phase III) demonstrated non-inferior median overall survival
for tislelizumab (PD-1-inhibitor) versus sorafenib in patients with previously untreated
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unresectable HCC. Rationale-301 was designed as a non-inferiority study and met its
primary endpoint of median OS (15.9 months versus 14.1 months) [243]. But the median
PFS with tislelizumab was 2.2 months compared with 3.6 months with sorafenib. No
approval has been signed either by FDA or by EMA, yet.

A clinical phase II trial evaluated the efficacy of regorafenib plus tislelizumab as
first-line therapy for patients with advanced HCC (NCT04183088). The phase II RENO-
BATE trial evaluates the combination of regorafenib and nivolumab in unresectable HCC
(NCT04310709). The combination of regorafenib with camrelizumab or pembrolizumab is
also subject of research (NCT05048017).

The clinical effects and benefits neither by other immunotherapeutic agents
(nivolumab/ipilimumab or pembrolizumab) but also TKI therapy after failure of ate-
zolizumab/bevacizumab in first-line therapy remains unclear. In this regard, further data
from clinical studies will be required in the future.

7.1.2. Clinical Data for Other IO-Based Treatment Regimens in Later Therapy Lines

Besides atezolizumab, several other immune-directed agents are currently on the mar-
ket and under investigation in HCC therapy. Nivolumab as another checkpoint inhibitor
binds to the PD-1 receptor on T cells and prevents interaction with the PD1 receptor ligand.
Single-agent nivolumab showed durable responses and promising survival in patients with
advanced hepatocellular carcinoma in the initial phase I/II dose escalation and expansion
trial CheckMate-040 [244]. Based on this data, the FDA granted accelerated approval in the
year 2017 for nivolumab for the treatment of HCC in patients who have been previously
treated with sorafenib. The continued approval of the agent was planned to achieve by
the phase 3 trial CheckMate-459 trial, but the study failed to meet its primary endpoint
of overall survival [245]. Hence, FDA opposes the approval of nivolumab for second-line
treatment in advanced HCC in 2021. In the CheckMate-040 trial, the study cohort investi-
gating the combination of nivolumab plus ipilimumab showed a manageable safety profile
with promising objective response and durable response rates. The regimen of arm A
(4 doses of nivolumab 1 mg/kg plus ipilimumab 3 mg/kg every 3 weeks then nivolumab
240 mg every 2 weeks) received accelerated FDA approval for second-line treatment in the
US based on the results of this study with an objective response rate of 32% [246]. Recently
published data at a minimum follow-up of 44 months showed a median OS at 22.2 months
for the approved dosing regimen [247]. Notably, besides FDA there is no positive approval
in Europe by the EMA.

The use of pembrolizumab (PD-1-inhibitor) as second-line therapy in patients with
advanced HCC is investigated in KEYNOTE-224 trial. In the phase II trial, the major
efficacy outcome measure was confirmed by overall response rate (assessed by indepen-
dent central review (ICR). The confirmed ICR-assessed overall response rate was 17%
(in 18 of 104 patients), with one complete response and 17 partial responses [248]. Because
of these results, FDA granted accelerated approval to pembrolizumab for hepatocellular
carcinoma for patients who have been previously treated with sorafenib. Updated effi-
cacy data of KEYNOTE-224 reported in 2022 demonstrated objective response rates of
18.3% In the subsequent analysis, median progression-free survival was 4.9 months and
median overall survival was 13.2 months [249]. Nevertheless, we have no approval from
the EMA for pembrolizumab after progression with sorafenib treatment in HCC. A later
study of pembrolizumab as second-line therapy in patients with advanced hepatocellular
carcinoma (KEYNOTE-240; phase III) did not meet the combined primary endpoints of
OS and PFS [250]. The FDA panel left the approval in place while waiting on results
from KEYNOTE-394. KEYNOTE-394 compared pembrolizumab with best supportive care
and offered significant improvements in overall survival, progression-free survival, and
overall response rate compared with placebo and BSC. The median OS was 14.6 months
for pembrolizumab and 13.0 months for placebo. PFS was 2.6 months for pembrolizumab
compared with 2.3 months for placebo [251].
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Based on these data, there is currently only insufficient clinical evidence for the use
of immunotherapy in later lines of therapy (>second line). Therefore, the identification of
patients’ subtypes based on molecular findings and pathophysiology is mandatory and
clinically needed for tailored and individualized therapy in HCC.

7.2. Tyrosine Kinase Inhibitors

Tyrosine kinases contribute to the phosphorylation status of proteins in diverse signal-
ing cascades. They often act as transmembrane receptors with an extracellular N-terminal
domain for binding the ligand and an intracellular C-terminal domain for autophosphory-
lation of downstream proteins. In HCC the C-terminal domains of some receptor tyrosine
kinases contain mutations that lead to constitutive activation. Inhibition of phosphory-
lation leads to antitumor and antiangiogenetic effects in HCC. In HCC therapy TKIs as
multi-kinase inhibitors mainly target the VEGF receptor, PDGF receptor, RAF receptor, FGF
receptor, KIT receptor, and RET receptor [252].

One point of pathophysiological attack is the inhibition of angiogenesis in the microen-
vironment of the tumor tissue as well as cell proliferation by TKIs [252,253]. Receptors
involved in angiogenesis signaling are mainly VEGF receptor, PDGF receptor, and FGF
receptor [254]. Several receptor tyrosine kinase-associated signaling pathways activated
lead to tumor cell proliferation (WNT-β-catenin, RAS–MAPK, AKT–mTOR, EGFR, IGFR,
HGF–MET) [255]. Furthermore, the activation of distinct EGF-receptor signaling pathways
(especially the two pathways: Ras–Raf–MEK–ERK and PI3K–AKT–mTOR) are involved in
the development of HCC and EGF receptor inhibition by TKI is a refined strategy to inhibit
tumor growth [254].

7.2.1. Sorafenib in 1st Line Therapy

Sorafenib is an orally administered multikinase inhibitor and the first approved tar-
geted therapy for patients with HCC in BCLC C. Important target structures for sorafenib
are the VEGF receptor, PDGF receptor, and RAF-kinase [252]. Raf kinase inhibition blocks
the Raf signaling cascade (MAPK/ERK pathway) which leads to reduced cell division
and proliferation [256]. By inhibiting signal transduction at the VEGF receptor (VEGFR-1,
VEGFR-2, VEGFR-3) and PDGF receptor, which also use the Raf signaling cascade, tumor
angiogenesis and cell proliferation are inhibited [257,258].

Sorafenib is approved by the Food and Drug Administration (FDA) for the treatment
of unresectable HCC. In the controlled phase III approval study SHARP sorafenib showed
a significant prolongation of median OS of 10.7 months compared with 7.9 months in
the placebo group (hazard ratio 0.69) [221]. Another phase III study in the Asia-Pacific
region (ORIENTAL) showed similar results with a median OS of 6.5 months for sorafenib
compared with 4.2 months in the placebo group (hazard ratio 0.68) [10]. Importantly, both
studies only included patients with preserved liver function (Child-Pugh A, 5–6 points).
The patients, therefore, had a well-compensated liver function. In the GIDEON study,
a prospective register of 3202 patients, the investigators demonstrated the safe use of
sorafenib in patients with more advanced liver cirrhosis (Child-Pugh B, 6–8 points) [259].

In some of the latest studies, evaluating immunotherapy as a first-line setting, sorafenib
was the active comparator. In these studies, the median OS of sorafenib monotherapy as
first-line treatment significantly improved up to 14.7 months (CheckMate-459) [245]. This
may be explained by better management of side effects and advances in healthcare with
better second-line and later-line therapies.

Sorafenib was also investigated in the adjuvant setting after curative intended resection
of HCC, but the phase III study STORM failed to reach its primary endpoint [260]. In the
TACTICS trial sorafenib was found to be effective as a concurrent treatment of TACE with
a prolonged PFS but no significant difference in median OS [226].

In summary, sorafenib is indicated for the treatment of patients with unresectable HCC
in BCLC C or progression after TACE. Clear benefit has been demonstrated for patients
with compensated liver function (Child-Pugh A, 5–6 points).
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7.2.2. Lenvatinib in 1st-Line Therapy

Lenvatinib was the second TKI approved for therapy of advanced HCC. It acts as
a multitarget TKI as well, which inhibits VEGF receptor, PDGF receptor, FGFR receptor,
KIT, and RET [1]. Targeting the FGF signaling pathway in HCC differentiates lenvatinib
from sorafenib. Therefore, lenvatinib showed antitumor, antiproliferative, and antiangio-
genic properties [261,262].

The approval of lenvatinib is based on a non-inferiority study. In the multicenter phase
III REFLECT trial the investigators demonstrated that Lenvatinib was non-inferior com-
pared to sorafenib concerning median OS. Lenvatinib reached a median OS of 13.6 months
compared to 12.3 months in the sorafenib group (hazard ratio 0.92) [263]. Furthermore,
the objective response rates improved to 24.1% with lenvatinib compared to 9.2% with
sorafenib. Furthermore, a subgroup analysis of the REFLECT trial demonstrated a further
improved median OS in those patients who initially responds to lenvatinib (median OS
22.4 months vs. 11.4 months; hazard ratio 0.61) [263]. Based on this data, lenvatinib is
approved only for first-line treatment of unresectable HCC.

Recently, the randomized, double-blind phase III trial LEAP 002 evaluated the efficacy
and safety of Lenvatinib plus Pembrolizumab compared with Lenvatinib plus placebo for
first-line treatment of unresectable HCC BCLC C. Despite failing the primary endpoints
of the study (combined endpoint of median OS and PFS), the trial still demonstrated
an impressive median OS of 19.0 months for lenvatinib monotherapy [241]. These data
lead to discussion, about if lenvatinib as first-line therapy in case of contraindications for
atezolizumab/bevacizumab should be the standard therapy as first-line TKI.

In summary, lenvatinib is indicated for the treatment of treatment-naive patients with
unresectable HCC BCLC C, probably if therapy with atezolizumab/bevacizumab is not
possible. There are experimental data from subgroup analyses that support the hypothesis
of patients with HCC based on NAFLD/NASH are performing better under therapy with
lenvatinib [264,265]. Prospective data on this issue are missing but this fact underlies the
importance of a better understanding of molecular HCC pathogenesis for tailored and
individualized medical treatment.

7.2.3. Regorafenib in 2nd Line Therapy after Sorafenib

Regorafenib is an inhibitor of VEGF receptor, PDGF receptor, FGF receptor, RAF, RET,
KIT [252]. Regorafenib is approved based on the results of the randomized, phase III RESORCE
trial. The treatment group with regorafenib reached a statistically significant extension of
the median OS compared to placebo (10.6 months vs. 7.8 months, hazard ratio 0.63) [266].
Regorafenib is approved for the treatment of HCC who have been previously treated and
responded to sorafenib.

Since the combination of atezolizumab and bevacizumab is the new first-line standard,
the use of regorafenib after immunotherapy as second-line therapy must be evaluated. This
question is addressed in another phase II clinical trial (NCT05134532).

7.2.4. Cabozantinib in 2nd Line Therapy

Cabozantinib inhibits the VEGF receptor (VEGFR-1, VEGFR-2, VEGFR-3), RET and
KIT. Cabozantinib also inhibits MET and AXL, which have previously been associated with
resistance to sorafenib [252]. Cabozantinib is approved for the treatment after treatment
with sorafenib in patients with unresectable HCC BCLC C. The approval is based on
the randomized phase III CELESTIAL trial. 707 patients were randomized to receive
cabozantinib or placebo (ratio 2:1). Cabozantinib reached a statistically significant benefit
in a median OS of 10.62 months compared to 8.0 months in the placebo group [242]. The
recommended dose of cabozantinib is 60 mg once daily. Nevertheless, a dose reduction to
40 mg or 20 mg per day to reduce side effects are a possible treatment option.

Furthermore, there are phase II studies evaluate cabozantinib to treat recurrent HCC
after liver transplantation (NCT04204850) or as second- or third-line treatment in HCC
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patients that progress on or are intolerant to immune checkpoint inhibitors, including
anti-PD-1 and anti-PD-L1 antibodies (NCT04435977).

7.2.5. Ramucirumab in 2nd Line Therapy in AFP-Overexpressing HCC

Ramucirumab is a monoclonal antibody and binds to the VEGF receptor 2. Binding of
ramucirumab to the extracellular domain of the VEGF R2 receptor prevents binding of the
ligands VEGF-A, VEGF-C, and VEGF-D, which consecutive prevents tumor angiogenesis.
Ramucirumab is approved for second-line treatment of patients with AFP-overexpressing
tumors (>400 ng/mL). The approval is based on the results of the randomized phase III
clinical trial REACH-2. The antibody significantly increased median OS (8.5 months vs.
7.3 months, hazard ratio 0.71) and PFS (2.8 months vs. 1.6 months, hazard ratio 0.452)
compared to the placebo group [267].

8. Future Directions
8.1. Immunotherapeutic Strategies

Immune checkpoint inhibition as an antibody-based therapy that blocks receptor-
ligand interactions between effector lymphocytes and cancer cells, which normally would
have negative regulatory effects on the tumor-directed cytotoxic immune response.

The immune system is the largest natural counterplayer for external invading pathogens
and cancerous development. Especially T-cells develop an anti-tumoral response by express-
ing specific receptors for tumor antigens [268]. In general, carcinogenesis drives genomic
mutations occasionally leading to amino acid changes in proteins and consequently to cancer
neoantigens [269]. To prevent immune overreactions, effector lymphocytes express immune
checkpoints that represent receptor proteins exposed on the cell surface. Several tumors,
including HCC, exploit this circumstance by producing corresponding ligands. Upon binding,
effector lymphocytes are markedly restricted in their activity. Such co-inhibitory receptors
include cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), programmed cell death pro-
tein 1 (PD-1), T-cell immunoglobulin and mucin domain containing-3 (TIM-3), lymphocyte
activation gene 3 (LAG3) and others [270]. Since the liver is daily confronted with exogenous
molecules and metabolites, it has built up an anti-inflammatory environment by nature [271].
Hepatic non-parenchymal cells (NPCs) which are composed of Kupffer cells, liver sinusoidal
endothelial cells (LSECs), and stellate cells mainly contribute to the maintenance of this tolero-
genic milieu. Kupffer cells as the liver resident macrophages generate immune inhibitory
molecules and enzymes such as IL-10, prostaglandins, and indoleamine 2,3-dioxygenase-1
(IDO) [272]. LSECs produce high levels of PD-L1 and additionally promote induction of
T regulatory cells (Tregs) via TGF-β production. Hepatic stellate cells are responsible for
HGF production which in turn promotes Treg accumulation [273]. Given the large anti-
inflammatory properties of the liver, ICI represents a new and highly efficient way to treat
tumor cells, especially in immune-tolerant tissue.

To date, multi-tyrosine kinase inhibitors (TKI) such as Lenvatinib and sorafenib are
regarded as first-line therapies for patients with unresectable HCC [10,274]. However,
recent guidelines recommend considering immune checkpoint inhibitors [274]. Recent
studies have shown that combinational long-term therapies with immune checkpoint- and
growth factor inhibition are superior to conventional TKI therapies in terms of overall
survival and life-year gain. In this context, Finn et al. demonstrated the superior effects
of atezolizumab (anti-PD-L1 humanized monoclonal antibody) and bevacizumab (anti-
VEGF humanized monoclonal antibody) combination for unresectable HCC [239]. Other
immune checkpoint inhibitors such as nivolumab and pembrolizumab (anti-PD-1 human-
ized monoclonal antibodies) are also considered monotherapies [274]. However, these
therapeutics failed to prolong overall survival compared to lenvatinib or sorafenib but
showed a non-significant trend with improved long-term survival rates [275]. On this
occasion, a double-blinded phase III clinical trial showed that 20% of the patients receiving
pembrolizumab remained free from HCC progression for more than a year. In the control
group, only 7% remained progression-free [250]. Even after the failure of ICI-based first-
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line therapy, lenvatinib or sorafenib are applicable as continuing second-line therapy. A
study conducted by Cabibbo et al. demonstrated the beneficial effects of first-line combina-
tional treatment with atezolizumab and bevacizumab followed by lenvatinib or sorafenib
concerning overall survival (24 months) and life year gain (0.5 years) [276]. Nowadays,
immune checkpoint inhibitors have found their way into clinics as an invaluable treatment
option for solid tumors. While today’s ICI is still considered for adjuvant and neo-adjuvant
therapy, further clinical studies will verify the need for immune checkpoint inhibitors as
the main therapeutic for tomorrow’s medicine against the progression of HCC.

8.2. Adoptive Cell Transfer

Adoptive cell transfer (ACT) is a form of therapy in which effector cells (e.g., lympho-
cytes) are sensitized, propagated ex vivo, and subsequently reinfused into the patient [277].
The most used lymphocytes for ACT are genetically recoded T cells that specifically recog-
nize and target tumor cells. The two main strategies are either transgenic tumor antigen-
specific T cell receptors (TCRs) or chimeric antigen receptors (CARs). Patients undergoing
ACT treatment are usually preconditioned with cycloheximide and fludarabine to induce
lymphodepletion. This treatment supports in vivo expansion of adopted and retransferred
immune cells. CAR T cells have shown very promising results in the treatment of hemato-
logical malignancy but are still in development for solid tumors [278]. The tumor-specific
antigen Glypican-3 (GPC3) is the most attractive target for CAR T cell-based treatment
in HCC [279]. Clinical trials are currently underway to ensure the safety and efficacy of
GPC3-directed CAR T cells (NCT04121273) [280].

8.3. Therapeutic Vaccination

The use of therapeutic vaccines against tumors primarily enhances the potency of
specific anti-tumoral responses [278]. These responses are achieved by de novo priming of
T cells directed against antigens expressed by HCC cells that enhance immune responses or
expand the repertoire of HCC-specific responses [281]. Studies have shown that sole thera-
pies should be avoided, but combination strategies with immune checkpoint inhibitors ACT
should be considered [282]. While GPC3- and telomerase-based vaccines have not provided
meaningful clinical results, tumor unique peptide identification through HLA-peptidomics
is the more robust and personalized approach for anti-HCC vaccine treatment [283,284].

8.4. Locoregional Therapy Enhancement

Locoregional therapy enhancement describes a novel therapeutic approach in which
the cancer tissue is presented as infected or stressed cells, which could generally enhance the
activity of the cytotoxic immune system [278]. Two critical mechanisms can make a tumor
more susceptible to the immune system. These include immunogenic cell death [285] and
pathogen-related molecular triggers [286]. For example, oncolytic virotherapy uses viruses
that selectively replicate in cancer cells to destroy them during their replicative and lytic
cycle. Studies of oncolytic viruses revealed high potential efficacies in HCC cells. However,
anti-tumoral effects are due to pathogen-induced activation of the immune system and not
to oncolytic effects of the viruses as previously assumed [287,288]. Combined treatment
with system therapies, such as check-point-based immune therapies, could potentiate
the efficacy of locoregional treatments in HCC [278] but has failed in prospective clinical
studies, so far (see above).

8.5. Novel Therapeutic Targets in HCC-Related Signaling Pathways

As discussed in previous sections, dysregulation of signaling pathways controlling
many cellular processes like cell growth, proliferation, differentiation, invasion, metastasis,
and cell viability can contribute significantly to the initiation and progression of HCC.
Therefore, it is of utmost importance to identify therapeutic targets within HCC-promoting
signaling pathways to restrict spreading and ultimately reduce tumor size.
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Unfortunately, most tumorous liver tissues, especially HCC, seem resistant to con-
ventional chemotherapy and radiotherapy. The poor efficacy of anti-tumoral agents is
partly due to the inefficient drug delivery and metabolism exerted by the cirrhotic liver.
Metformin (METF) is a novel approach in chemotherapy that may improve prognosis in
patients. METF significantly decreases cell growth by raising KLF6/p21 levels. Also, a re-
duction of prevalent HCC-tumor markers like CK19 and OPN in HepG2 cells was achieved
through METF treatment [289]. Another strategy for restricting tumoral growth involves
the inhibition of hypoxia-induced angiogenesis via the ERK/HIF-1α/VEGF axis. Han
et al. identified the phenazine biosynthesis-like domain-containing protein (PBLD) as the
responsible tumor-suppressive marker. Besides downregulating HIF-1α/VEGF expression
in HCC cells, PBLD also blocks VEGFR2 in endothelial cells [290].

The metastatic behavior of HCC cells is provoked by hypoxia and the aberrant activation
of the TGF-β pathway. Consequently, cancer cells experience the transition from an epithelial
to a mesenchymal state. The natural benzophenanthridine alkaloid sanguinarine impairs
the proliferation and colony formation of HCC cells. Mechanical studies revealed the in-
hibitory effect of sanguinarine on HIF-1α and TGF-β signaling, which lowers the expression
of EMT markers [291]. Further, histone deacetylase 6 (HDAC6) overexpression decreases
β-catenin to attenuate canonical WNT/β-catenin signaling. HDAC6 inhibits EMT by increas-
ing E-cadherin levels and decreasing pro-EMT factors such as N-cadherin, vimentin, and
matrix metalloprotease-9 levels [292]. Recent studies have indicated the potential of resmi-
nostat/sorafenib combinational treatment in HCC. Exploration of the molecular mechanism
revealed a reduction of platelet induced CD44 expression and deregulation of several genes
involved in EMT. Furthermore, this specific drug combination reduced the phosphorylated
ERK level, leading to inhibition of the MEK/ERK signaling pathway [293].

8.6. Non-Coding RNA-Based Therapies

RNA therapeutics are becoming increasingly important in the treatment of tumors.
They show various advantages as they harbor low immunogenicity, are plasma membrane
and nuclear membrane permeable, are chemically modifiable to increase stability, and can
target any desired gene or/and gene product [294]. In this context, there are numerous
options for targeting non-coding RNAs to repress the progression of HCC. To name a few,
small interfering RNAs (siRNAs) can target and degrade specific lncRNAs through the
RISC complex [295]. Similarly, therapeutic lncRNAs can inhibit the prooncogenic effects
of endogenous overexpressed lncRNAs [296]. Another strategy involves the use of small-
molecule inhibitors that mask the binding sites for lncRNA and prevent the association
with other binding partners [297].

For example, the lncRNA HOTAIR recruits EZH2 to EMT-promoting sites to bind
and simultaneously repress SNAIL [298]. Identifying the SNAIL-binding domain through
bioinformatic fragmentation of HOTAIR [299] led to the development of a therapeutical
RNA molecule, namely HOTAIR-said, which contains the SNAIL-binding domain and lacks
EZH2-binding capacity. Thereby, HOTAIR-said physically blocks EZH2-HOTAIR-SNAIL
complex formation [300]. These studies elucidate the enormous potential of non-coding
RNA-based strategies that could drastically improve the prognosis of patients with HCC.

9. Conclusions

The BCLC classification has been the standard for classification and stage-based thera-
peutic algorithms in the clinical management of HCC for several years. The therapeutic
options include surgical resection, local ablative therapies, transarterial chemoembolization,
and radioembolization for the intermediate stages (BCLC stage B). Liver transplantation is
considered for tumor nodules characterized inside the extended MILAN criteria for the
early stages. Clinical decision-making should base on a multidisciplinary board discussion
incorporating all disciplines and local expertise.

For BCLC stage C patients, systemic therapy is recommended with growing therapeu-
tic options and targets. Unfortunately, there has not been a single predictive biomarker
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(except for elevated serum AFP for ramucirumab) linked to the therapeutic response to any
therapeutic agent.

These circumstances emphasize the need for more translational studies and indicate
the unmet need for further molecular driver-targeted therapies. We summarized the
molecular pathogenesis of HCC regarding current “druggable” treatment options for
systemic HCC treatment.

Further and additional efforts are needed in the future, based on human histopatho-
logical tumor specimen, that must be obtained not only for the diagnosis but, especially to
tailor personalized medicine in HCC.
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