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Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous dis-
ease group of unknown etiology with a complex immuno-
logical background. As CTCL arises from T cells that have a 
vital role in the antitumor response, their therapy is largely 
aimed at reversing the immunological mechanisms leading 
to or manifesting during this malignancy. Early disease stag-
es can be controlled with skin-directed therapy in most 
CTCL cases. Still, advanced CTCL has a dismal prognosis and 
warrants systemic therapy. Despite considerable progress 
in understanding the pathophysiology of the disease and 
the numerous systemic treatment options available, long-
term remission rates with conventional treatments alone 
are still low. Allogeneic hematopoietic stem cell transplan-
tation is currently the only curative option for advanced 
CTCL, including mycosis fungoides and Sézary syndrome. 

The aims of this review is to summarize the recent findings 
on the immunology of this heterogeneous disease and to 
present the advances in its clinical management.

© 2020 The Author(s)
Published by S. Karger AG, Basel

Disease Prevalence and Subtypes

Cutaneous T-cell lymphomas (CTCL) are a heteroge-
neous group of non-Hodgkin lymphomas arising from 
the malignant proliferation of skin-homing or skin-resi-
dent T cells [1, 2]. Although CTCL manifestation in chil-
dren exists [3], most CTCL typically affect the elderly, 
with a median age at diagnosis of 55–60 years and an av-
erage number of 6.4 new cases per year and per million 
people [4]. 
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The 2 main subtypes of CTCL include the most fre-
quent, i.e., mycosis fungoides (MF), accounting for approx-
imately 60% of CTCL cases and 50% of all primary cutane-
ous lymphomas, and the rare leukemic variant Sézary syn-
drome (SS), representing around 5% of CTCL cases. The 
second most common group, representing approximately 
25% of CTCL, is the group of primary cutaneous CD30+ 
lymphoproliferative disorders including primary cutane-
ous anaplastic large lymphoma and lymphomatoid papu-
losis [5]. Other CTCL subtypes are very rare [5, 6]. 

Clinical Manifestations

MF and SS originate from distinct CD4+ T-cell popula-
tions [7] and vary in terms of their prognosis as well as their 
clinical manifestations [8], with some overlapping symp-
toms such as chronic cutaneous lesions, associated with 
scaly rash, pruritus, burning, and sometimes pain [9] with 
recurrent infections, thus having a significant impact on 
the quality of life due to subsequent psychological prob-
lems and sleep disorders [10, 11]. Most patients with MF 
present a prolonged, indolent clinical course with initial 
skin involvement and clinical presentation depending on 
the stage at diagnosis [12]. Of all MF patients, 71.5% are in 
an early stage and 28.5% are in an advanced stage of the 
disease, and progression to a higher stage of the disease oc-
curs in 9.7–11.6% of patients [13]. MF restricted to the skin 
progresses from a persistent patch stage with finely scaling 
lesions to a plaque and tumor stage, typically in sun-pro-
tected areas over years [8]. Extracutaneous disease initially 
involves regional lymph nodes and is mostly present with 
extensive skin involvement with tumors or erythroderma. 

In CTCL leukemic variants, including SS and a portion 
of advanced-stage MF, malignant CD4+ T cells accumu-
late in the peripheral blood and visceral organs, with a sub-
sequently dismal prognosis. SS is defined as an aggressive 
leukemic CTCL clinically defined by the triad of erythro-
derma, generalized lymphadenopathy, and the presence of 
neoplastic T cells in the skin, lymph nodes, and peripheral 
blood (Sézary cells) [8]. Cutaneous lesions include eryth-
roderma, plantar and palmar keratoderma, onychodystro-
phy, ectropion, and diffuse alopecia [14].

Etiology

The etiology of CTCL remains largely unknown. Vi-
ruses, such as human T-cell leukemia virus type 1, have 
been previously suggested as drivers of the disease [15], 

but recent studies do not present enough evidence to sup-
port the viral hypothesis in the pathogenesis of MF and 
SS [16]. Antigen-driven T-cell lymphoproliferation or 
dyscrasia following medication use [17], as well as genet-
ic factors, i.e., HLA class II alleles predisposing to the dis-
ease [18], have been reported. Recent attempts to profile 
the genomic landscape of CTCL have demonstrated its 
high heterogeneity. Although the pathogenesis of the dis-
ease cannot be attributed to a small subset of well-defined 
somatic mutations, copy number variations, fusion pro-
teins, and somatic mutations in diverse cellular and sig-
naling pathways might contribute to the pathogenesis of 
the disease [19–22]. Those include alterations in factors 
functioning in epigenetic regulation, DNA damage re-
sponse, cell cycle control, programmed cell death, and T-
cell receptor (TCR) signaling, as well as nuclear factor 
(NF)-κB and Janus kinase (Jak)/signal transducer and ac-
tivator of transcription (STAT) pathways [19, 20, 23–26]. 
Next to those intrinsic drivers, also extrinsic drivers, most 
commonly Staphylococcus aureus (SA) and its toxins, are 
under debate [27]. However, epidemiological studies 
could so far not reliably identify environmental exposure 
as a trigger for the disease [28].

Malignant T-Cell Heterogeneity 

As the name indicates, CTCL is a disease of T cells, al-
though MF and SS appear to have their origin in different 
T-cell subtypes [7]. Based on flow cytometry analysis of 
lymph node or skin-homing molecules and differentia-
tion markers, MF has been characterized as a malignancy 
of skin-resident effector memory T (TEM) cells (CCR4+ 
and CLA+), while SS cells present a phenotype of central 
memory T (TCM) cells (CCR7+, CD27+, and L-selectin+) 
[7]. These findings explain some of the differences in the 
clinical manifestation of the disease. TEM cells are skin-
resident stationary polarized effector cells producing high 
amounts of inflammatory cytokines [29] that result in a 
skin-limited presentation in the form of patches, plaques, 
or tumors that remain stable for years. A progressive dis-
ease with the involvement of blood, lymph nodes, and vis-
cera develops only in a small subset of patients [2]. In con-
trast, TCM are highly proliferative and actively recirculate 
between the blood, lymph nodes, and skin [2].

Differences in the genetic background of T-cell pre-
cursors in these CTCL subtypes have been further proven 
by comparative genomic hybridization and gene expres-
sion analyses [22, 30, 31]. However, malignant T cells dif-
fer not only between CTCL subtypes but also between 
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patients with the same disease. In a cohort of SS patients 
it was observed that not all malignant T-cells were char-
acterized by the TCM phenotype, but malignant cells from 
a subgroup of SS patients (18 out of 47 patients) expressed 
markers of a naive, more stem cell-like phenotype, such 
as high levels of CD45RA [32].

Finally, it has become evident that malignant T-cells 
show a high intrapatient variability, and follow-up data of 
SS patients suggests also an evolution in the phenotype of 
SS cells, demonstrating their plasticity [32]. Single-cell 
RNA sequencing combined with flow cytometry showed 
a high heterogeneity of classical T-cell markers within in-
dividual patients, with a common cluster of only 5 pro-
teins (S100A4, S100A10, IL7R, CCR7, and CXCR4) [33].

Single-cell RNA sequencing of SS cells suggests also 
the existence of cases with a shift from a T-regulatory-like 

phenotype (characterized by FOXP3 expression) to a 
more central memory phenotype (characterized by the 
expression of a major Th2 driver – GATA3 or IKZF2) in 
malignant CD4+ cells [34]. In line with this finding, 
FOXP3 could be an important factor to predict early dis-
ease in CTCL, along with another 19 genes suggested to 
correlate with different CTCL stages [34]. Nevertheless, 
the role of Treg cells in the pathogenesis of SS is still con-
troversial [35–37]. Some clinical cases in which CTCL ap-
peared with the phenotype of malignant proliferation of 
Tregs have been observed [38]. Also, a recent study by 
Borcherding et al. [34] confirmed the presence of CD25- 
FOXP3+ tumor cells in a subset of SS patients. Of interest, 
in murine modes, an inadequate CD25 expression guar-
antees Treg plasticity and their differentiation into a Th 
phenotype depending on the cytokine milieu [39]. Hence, 
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Fig.  1. Immune responses in early- and advanced-stage CTCL.  
a Early-stage CTCL. Upper panel: schematic illustration of the cel-
lular composition in patch-stage disease. Small populations of tu-
mor T cells are present mostly in the epidermis and are held in 
check by surrounding healthy T cells and regulatory T cells. Lower 
panel: immunosurveillance mechanisms are partially intact, the 
antitumor Th1 immune response can control tumor progression, 
leading to a tumor equilibrium. b Advanced-stage CTCL. Upper 

panel: schematic illustration of the cellular composition in plaque/
tumor stage disease. The number of infiltrating tumor T cells is 
largely increased and present now also in the dermis, while the 
number of healthy T cells and T regulatory cells is decreased. Low-
er panel: immunosurveillance of the tumor is largely defective. A 
skewed Th1 immune response and an increased Th2 response, 
among other mechanisms, lead to immune escape of tumor cells 
and allow tumor progression.
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the CD25– FOXP3+ population may be an intermediate 
state of SS cells as well. Recent analyses suggest a marked 
decrease in the number of TCM following HDAC inhibi-
tion [33] which may be attributed to an open chromatin 
state leading to FOXP3 activation [40]. 

Antitumor Response and Immune Evasion 

Early-Stage CTCL: Equilibrium Phase
The patient’s immune system has an important influ-

ence on the tumor fate. Many MF patients can have indo-
lent disease over years, most likely presenting an equilib-
rium phase where the adaptive immune response can still 
control tumor outgrowth [11]. Early-stage skin lesions 
(stages IA to IIA) are infiltrated by a small number of ma-
lignant T cells surrounded by reactive immune cells, in-
cluding large numbers of activated CD8+ T cells and T 
helper 1 (Th1) cells, resulting in the establishment of cell-
mediated antitumor responses and secretion of cytotoxic 
molecules, including the proinflammatory cytokines in-
terferon (IFN)-α and IFN-γ (Fig. 1a) [41–46]. In early-
stage CTCL, the Th1 phenotype is maintained by the ex-
pression of signal transducer and activator of transcrip-
tion 4 (STAT-4) and interleukin (IL)-12 signaling via 
JAK2/TYK2 [47]. 

Advanced-Stage CTCL: Tumor Progression Phase
The escape from immune recognition can lead to tu-

mor progression as observed in advanced-stage CTCL 
(stages IIB to IVB) with a large increase in infiltrating tu-
mor T cells presenting on the skin with plaques and tu-
mors (Fig. 1b). During disease progression, the expres-
sion of Th2 markers (e.g., GATA-3) and cytokines (e.g., 
IL-4, IL-5, and IL-10) increases, whereas the expression 
of Th1 transcription factors, such as T-cell-specific T-box 
transcription factor (T-bet), IFN-γ, STAT4, and IL-12 de-
creases [48, 49]. What shifts the balance in favor of tumor 
progression remains to be largely unknown in CTCL. 
One contributor might be mutations in the JAK/STAT 
pathway, making it persistently active in cancer T cells 
[49]. In early disease, there is constitutive activation of 
STAT5; in later disease there is activation of STAT3. 
STAT-5 via miR-155 reduces STAT4 expression, which is 
critical for the Th1 phenotype and thereby contributes to 
a Th1 to Th2 switch [49]. Moreover, STAT5 is known to 
be involved in the transcription of antiapoptotic proteins 
(bcl-2 and bcl-xl), cell cycle genes (cyclin D and c-myc), 
and IL-4 cytokines and its activation could be therefore 
an important driver of tumor cell proliferation [50, 51].

In addition to the dominance of the Th2 phenotype in 
advanced stage CTCL, several types of immune cells have 
been shown to contribute to a state of immune evasion of 
the tumor cells. Among them are subpopulations of den-
dritic cells (DC; immature CD209/DC-DIGN+ DC) [52] 
and subpopulations of CD4+ and CD8+ T cells with a high 
expression of immune checkpoint inhibitors [53]. More-
over, as already mentioned, also an impaired IL-12 pro-
duction by DC contributes to the Th2 switch [54].

A clinical characteristic of advanced stage CTCL en-
compasses the susceptibility to infections as a conse-
quence of impaired antigen-specific T-cell responses and 
decreased CD8 cytotoxic response [55]. The susceptibil-
ity to infections together with peripheral eosinophilia and 
high IgE and IgA levels further confirms a Th2-driven 
immunological process [55]. Interestingly, high IgE to 
environmental and food allergens in Sézary patients has 
been associated with a lower survival rate [56]. Therapies 
targeting the Th2 phenotype that would reinvert it into a 
Th1 immunological response hold potential for improv-
ing both the anticancer and the antipathogen response 
[41]. 

The presence and role of natural killer (NK) cells in 
CTCL skin lesions is still under debate. CTCL cells have 
been demonstrated to be susceptible to NK-induced kill-
ing in vitro [57]. Recently, an analysis of NK cells in pe-
ripheral blood showed no significant difference in the 
number of NK cells in CTCL versus healthy individuals 
[58]. This is in contrast with previous reports of decreased 
NK cell numbers in SS patients that suggested that their 
function may be increased by Toll-like receptor (TLR) 
stimulation [59]. On the other hand, higher numbers of 
circulating NK cells have been correlated with a poorer 
prognosis both in MF and in SS [58] and related to find-
ings in another Th2-mediated disease, i.e., atopic derma-
titis (AD), where NK dysregulation contributed to AD 
pathogenesis [60]. Although the reason for these findings 
is not entirely clear, they suggest that the existence of the 
inhibitory mechanism of the CTCL microenvironment 
has a significant role in suppressing the anti-tumor activ-
ity of NK cells in vivo. One such factors may be chronic 
IL-15 stimulation leading to an exhaustion state of NK 
cells, defined as their hyperactivation together with im-
paired recognition of malignant cells [58]. However, the 
involvement of NK cells in providing an antitumor re-
sponse in the skin remains controversial, as NK cells have 
been described to be present in the skin in scarce amounts 
[61, 62]. The effectiveness of rituximab (anti-CD20 mAb) 
in the therapy of primary cutaneous B-cell lymphoma in-
dicates that NK cells in the skin have valid antibody-de-
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pendent cell-mediated cytotoxicity (ADCC). However, in 
a phase 3 clinical trial, the reported response rate (RR) of 
mogamulizumab (anti-CCR4 mAb) was only 28% despite 
the high CCR4 expression in the study cohort [63]. Also, 
the RR in the skin was much lower compared blood. Im-
paired ADCC may also contribute to the inefficacy of an-
ti-CD52 mAb (alemtuzumab) in MF [64, 65]. 

Neutrophils may also contribute to CTCL pathophys-
iology, as hyperactivated neutrophils are found in periph-
eral blood of CTCL patients (even in early disease) and 
the secreted IL-8 and LTB4 contribute to skin inflamma-
tion [66]. Moreover, an increased number of myeloid-
derived suppressor cells (MDSCs) in comparison to 
healthy subjects has been observed in both MF and SS and 
a decrease in their numbers has been noted after success-
ful therapy [67–69]. 

Therapy

Treatment of CTCL depends on the stage of the disease 
and the general condition of the patient. Early disease 
stages of MF (IA-IIA) can be controlled with skin – di-
rected therapy, such as topical steroids, light treatment 
and radiation [4, 70]. Systemic treatments, such as reti-
noids and IFN-α have been recommended as second-line 
treatment of MF stages IA, IB and IIA [71]. The 5-year 
survival for these patients is around 90%, significantly 
better compared with 30%–50% for advanced disease 
(IIB–IVB) [72]. Chemotherapy agents, such as monoche-
motherapy (gemcitabine, pegylated liposomal doxorubi-
cine) and polychemotherapy, as well as newer systemic 
agents (brentuximab-vedotin and mogamulizumab) are 
recommended in advanced disease stage. Large cell trans-
formation in histology, expression of CD30 and folliculo-
tropic subtype of MF have been reported to have a more 
aggressive course and poorer prognosis. Although rare 
cases of CD4- CD8+ , CD4- CD8- , or CD4+CD8+ immu-
nophenotypes have been described in MF, these differ-
ences in phenotype do not affected the prognosis of the 
disease [73]. However, a phenotypic switch from CD4+ to 
CD4- in the lesion has been suggested a portend of poor 
outcome [74]. 

SS is associated with a poor prognosis and overall sur-
vival rates varying from 7.5 to 22.4 months [75]. Apart 
from conventional treatments (e.g. extracorporeal photo-
pheresis (ECP), light treatment (PUVA), retinoids, IFN-α, 
low dose methotrexate and polychemotherapy), small-
molecule inhibitors e.g. histone deacetylase inhibitors 
(HDACi) and monoclonal antibodies (mAbs) are current-

ly being explored as therapeutic options in SS [76, 77]. A 
comprehensive review on investigative drugs in CTCL has 
been published recently [78]. Despite their initial moder-
ate to good response to most treatments, SS patients often 
develop resistance to treatment in the course of the disease 
[79]. Selection of more robust and aggressive tumor clones 
has been hypothesized as one possible driver for resis-
tance; e.g. in a small cohort of SS patients, tumor cell sub-
populations were heterogeneous and showed different 
sensitivity to HDACi [33]. Also, although no single com-
mon driver mutation has been identified, novel findings 
demonstrate aberrant functioning of cell division mecha-
nisms in CTCL that lead to genetic instability and possible 
escape to treatment [80]. Further, the role of STAT3 acti-
vation in conferring resistance in both SS and advanced-
stage MF has become clearer [81, 82]. And finally, SS cells 
have been shown to display resistance to apoptosis when 
chromatin remodeling is defect, such as in SNF5- and 
SATB1-deficient cells, or when Fas-mediated apoptosis is 
defect [83, 84]. If and how exactly these mechanisms con-
tribute to treatment resistance in SS cell subpopulations 
has yet to be addressed in detail. Taken together, despite 
the numerous systemic treatment options available, long 
– term remission rates with conventional treatments alone 
are still low and allogeneic hematopoietic stem cell trans-
plantation (alloHSCT) is currently the only curative op-
tion in advanced MF/SS [85, 86]. 

Thorough reviews analyzing the therapeutic options 
available for CTCL have been lastly identified in the lit-
erature [70, 85, 87, 88]. Herein, we summarize the recent 
advances in the immunotherapies of CTCL. 

Recent Advances in Immunotherapies of CTCL

ECP and PUVA
Both extracorporeal photopheresis (ECP) and pso-

ralen plus ultraviolet A (PUVA) consist of the systemic or 
local application of 8-metoxypsolaren and subsequent 
photoactivation resulting in apoptosis of malignant lym-
phocytes [89–92]. However, despite the established use in 
the management of CTCL, their mechanism of action is 
still not sufficiently investigated. While PUVA is applied 
to patients with earlier stages of CTCL and skin involve-
ment only, ECP is used mainly in erythrodermic patients 
with blood involvement [93]. PUVA induces remission 
lasting up to 10 years in 72% of MF patients [2, 94] and is 
described to have an immunomodulatory effect i.e. a shift 
from Th2 to Th1 phenotype [95]. A recent study by Viey-
ra-Garcia et al. [96] shed new light on the mechanisms 
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beyond PUVA efficacy in CTCL. The authors have dem-
onstrated a switch from a Th2 with CCL18 overexpres-
sion, to a Th1 phenotype characterized by CXCL9, 
CXCL10, and CXCL11 expression. Moreover, they have 
shown that while in low-burden disease the efficacy of 
PUVA results in the reduction of the number of malig-
nant T-cells, in high-burden disease it relies mostly on the 
recruitment of clonal cytotoxic T cells. The study identi-
fied the c-Kit+OX40L+CD40L+ DC as the major drivers 
of inflammation and clonal expansion of malignant T 
cells due to their pro-survival impact and suggested tar-
geting c-Kit, OX40, and CD40 signaling may be a novel 
therapeutic option in the treatment of MF.

ECP induces response rates of approximately 60%, 
with complete responses of 14–26% [89, 97] that can be 
further improved when combined with other immuno-
modulatory agents, such as IFN-α or systemic retinoids 
[89, 98]. The immunomodulatory effect of ECP is thought 
to rely on the induction of monocyte differentiation to 
DC that are capable of phagocytosing and efficiently pre-
senting tumor antigens [99, 100]. Moreover, a shift from 
Th2 bias to a Th1 proinflammatory phenotype has been 
reported [90]. Recently, there has been considerable in-
terest in defining the role of NK cells in the success of 
ECP. Recent studies have reported a significant increase 
in the percentage of CD56+dim NK cells characterized by 
a high cytotoxic potential 3 months after the start of ther-
apy [20]. Interestingly, Mundy-Bosse et al. [58] reported 
that increased NK cell cytotoxicity and higher NK-cell 
numbers before ECP were associated with decreased 
short-term survival.

Monoclonal Antibodies
Mogamulizumab (Anti-CCR4)
Mogamulizumab, a glycol-engineered mAb targeting 

chemokine receptor type 4 (CCR4) with an increased af-
finity to FcγRIIIa (CD16) and enhanced ADCC [101], was 
approved in August 2018 for patients with relapsed or re-
fractory, advanced CTCL with at least 1 prior systemic 
therapy [63]. Apart from the clinical efficacy, patients 
treated with mogamulizumab reported an improvement 
in their quality of life, including skin pain and fatigue [63]. 
Mogamulizumab is generally well-tolerated; however 
some skin-related toxicities due to the induction of auto-
antibodies recognizing human keratinocytes or melano-
cytes that induce complement-dependent cytotoxicity 
have been reported [102]. Of note, targeting CCR4 may 
also result in the depletion of nonmalignant Tregs, thus 
leading to or aggravating autoimmune disorders [103]. In 
this way, it also increases the risk of graft-versus-host dis-

ease following allogeneic bone marrow transplantation 
[104], which should be therefore delayed by at least 50 
days from the administration of the last dose [105].

Immune Checkpoint Inhibitors
Based on the increased response rates associated with 

targeting of negative immune regulators through mAbs, 
also known as immune checkpoints inhibitors (ICI), in 
a wide spectrum of malignancies, including melanoma, 
there is considerable interest in applying these targets in 
the management of CTCL [87]. The particularity of 
CTCL in the context of implementation of ICI relies on 
the fact that the tumor itself arises from CD4+ T cells, a 
population of lymphocytes responsible for priming of 
the cytotoxic response. Increasing evidence suggests 
that in CTCL both CD4+ and CD8+ cells have charac-
teristics of immune exhaustion [53, 106, 107], and there-
fore targeting immune checkpoints would have implica-
tions on the functionality of both helper and cytotoxic T 
cells. One immune-inhibitory axis is the programmed 
death (PD-)1 axis, binding to its ligands PD-L1/L2. 
PD-1 expression has been shown to be high in the blood 
and skin of SS patients [108, 109] and has already been 
proposed as a factor responsible for drug resistance in 
SS [110]. A phase 2 clinical trial of the anti-PD1 mAb 
pembrolizumab in heavily pretreated advanced-stage 
MF and SS patients reported an ORR of 38%, with a 
1-year progression-free survival of 69% and a duration 
of response of 64 months [111, 112]. Moreover, there are 
also ongoing trials targeting PD-L1, using anti-PD-L1 
mAbs, i.e., atezolizumab (NCT03357224) and dur-
valumab (NCT03011814). 

A recent analysis investigating PD-1 expression in SS 
showed a high PD-1 expression on tumor T cells com-
pared to nontumor CD4+ T cells from SS patients or to 
normal CD4+ cells from healthy individuals [113]. In 
contrast, PD-L1 showed a decreased expression on tumor 
T cells, while PD-L2 expression is low and did not show 
any significant differences between groups. This is in line 
with other studies [114], where PD-L1 showed a high ex-
pression in the tumor environment, particularly in mono-
cyte-derived compartments, where it was expressed by 
73% of cells. Also a recent study by Querfeld et al. [53] 
showed high PD-L1 levels in DC émigrés from the skin 
but a low expression by T cells themselves.

While PD-1/PD-L1 ICI have gained much interest in 
the therapy of CTCL, much less is known about the ex-
pression of other immune receptors. In an analysis of 
CTCL skin samples, Querfeld et al. [53] observed a high-
er expression of CTLA-4 on both CD4+ and CD8+ T 



Primary CTCL 739Int Arch Allergy Immunol 2020;181:733–745
DOI: 10.1159/000509281

cells. In another study no significant differences were 
found in CTLA-4 expression in CD4+ malignant versus 
bystander T cells in SS patients and healthy controls 
[115]. However, as the combination of anti-PD-1 
(nivolumab) with anti-CTLA-4 showed no benefit com-
pared to nivolumab alone [116], there are no active or 
recruiting clinical studies testing the efficacy of CTLA-4 
targeting in CTCL. A recent analysis [115] of a panel of 
checkpoint inhibitors in a small cohort of SS patients re-
vealed a significant upregulation of FRCL3 and TIGIT 
expression, which is in line with the previous reports 
[117, 118], together with a reduced expression of LAG-3 
on CD4+ tumor cells. As several advanced clinical studies 
address TIGIT as a target molecule, it may also be of in-
terest in CTCL. Interestingly Querfeld et al. [53] observed 
increased LAG-3 expression in lesional MF skin samples, 
which may be explained by the fact that MF and SS arise 
from distinct T-cell subsets [7]. Further, a hitherto non-
demonstrated overexpression of BTLA on CD4+ cells in 
SS has been reported [115]. This is of possible interest, as 
BTLA blockade would arrest T-cell proliferation and can 
be therapeutically targeted by a specific fragment (HVEM 
26–28) [119]. However, no in vivo studies have been con-
ducted so far. As immune checkpoints have nonredun-
dant roles in cancer progression, other emerging regula-
tory molecules (TIM-3, CD96 [TACTILE], and PD-1H 
[VISTA]) may be of interest in CTCL, too.

CD47
CD47 is highly expressed on Sézary cells in the periph-

eral blood and skin and correlates with a worse overall 
survival [120]. Inhibiting the binding of CD47 to its li-
gand, SIRPa activates both innate and adaptive antitumor 
responses by promoting phagocytosis and subsequent  
activation of CD8+ T cells [reviewed in 121]. Targeting 
CD47 with TTI-621 not only blocks the “do-not-eat-me 
signal” of CD47 but it also enhances phagocytosis of tu-
mor cells by monocytes. The data gained in 2 phase I tri-
als suggest its satisfactory activity combined with a good 
safety profile [120, 122]. 

Alemtuzumab (Anti-CD52)
Alemtuzumab is a monoclonal Ab directed against the 

surface glycoprotein CD52. CD52 expression on malig-
nant T cells has been shown in 14 out of 16 CTCL cases 
by flow cytometry [123]. In several clinical studies, alem-
tuzumab appears to reach better responses in Sézary pa-
tients, with an ORR of 81%, as compared to MF patients, 
with an ORR of 29% [124]. A retrospective study of 39 
advanced CTCL patients also showed long-term remis-

sion in Sézary patients but not in MF patients [65]. The 
treatment is associated with a high toxicity, but this can 
be lowered by subcutaneous administration (as com-
pared to intravenous) and lower doses of the antibody. 
Despite a good response rate in Sézary patients, it is not 
approved anymore for CTCL treatment. Currently, there 
is an ongoing phase I study using a combination treat-
ment of IL-15 and alemtuzumab in different T-cell leuke-
mia and lymphoma conditions (NCT02689453).

KIR3DL2 Targeting
KIR3DL2, also called CD158k, is overexpressed by 

transformed advanced MF and SS cells correlating with 
the disease stage and large cell transformation [125] as 
well as a shorter survival [126]. IPH4102, an anti-KIR2DL2 
humanized IgG1 mAb, effectively induces ADCC and im-
munophagocytosis [127], delays tumor growth, and im-
proved the overall survival in a xenograft mouse model. 
The results of a phase I study in MF and SS patients 
(NCT02593045) demonstrated a confirmed global overall 
response in 16 of 44 patients (36.4%; 95% CI 23.8–51.1), 
and, of those, 15 responses were observed in 35 patients 
with SS (43%; 95% CI 28.0–59.1) [128]. Moreover, a phase 
II trial of IPH4102 alone or in combination with chemo-
therapy in patients with advanced T-cell lymphoma (TEL-
LOMAK) (NCT03902184) is currently recruiting. 

Chimeric Antigen Receptor-Based Therapies
Given their success in the treatment of B-cell malig-

nancies, chimeric antigen receptor (CAR)-modified 
lymphocytes raise interest as a therapeutic option in 
CTCL. However, their use poses some considerable is-
sues. First of all, there is a lack of specific targets ex-
pressed uniquely on malignant T cells. This results in 2 
different concerns. One is that, when using a specific tar-
get for a tumor (sub)population, not all malignant cells 
are affected by the treatment and relapse of the disease 
occurs. The other is that, when using a more broadly ex-
pressed marker, targeting also of healthy T cells can oc-
cur, which can lead to life-threatening T-cell aplasia. 
While the first concern is difficult to solve, unless a 
unique marker expressed by all malignant cells is discov-
ered, the second concern could be overcome by a tran-
sient CAR expression or expression of suicide genes al-
lowing for reconstitution of T cells. By now CD4, CD5, 
CD7, CD30, CD37, CCR4, and TCR β chains (TRBC1/
TRBC2) have been tested as possible targets of CAR-
based therapies [reviewed in 129]. An alternative to tar-
geting T cells is the application of CAR-transduced NK 
cells. This may offer an alternative as it eliminates the 
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phenomenon of fratricide, i.e., mutual killing of CAR-
expressing cells due to shared T-cell antigens [129].

Cytokines
Interferons
Next to IFN-α, which is an approved and recommended 

treatment for MF and SS [130], IFN-γ has emerged as a 
novel option for the patients who have failed IFN-α. IFN-γ 
abrogates the Th1/Th2 bias inducing a Th1-dominated tu-
mor microenvironment and stimulates macrophages, DC, 
and cytotoxicity, mediated by CD8 T cells and NK cells 
[131]. As demonstrated by a small-scale study by Kaplan et 
al. [132], who treated 16 MF and SS patients with IFN-γ, 
31% of patients had an objective partial response. None of 
the patients showed a complete response. A subsequent 
small-dose-escalating study by Dummer et al. [133] dem-
onstrated the therapeutic effect of intratumoral injections 
of TG1042 (a third-generation, nonreplicating human ad-
enovirus vector containing a human IFN-γ cDNA insert). 
The observations included 9 patients (CTCL, n = 7; CBCL, 
n = 2) injected with the following doses of TG1042: 3 × 109, 
3 × 1010, and 3 × 1011 total particles. A local clinical re-
sponse was observed in 5 of the 9 treated patients (3 pa-
tients with a complete response and 2 patients with a par-
tial response). Three patients reported a complete system-
ic response, represented by clearance of noninjected skin 
lesions. The duration of the clinical response was on aver-
age 3 months (range 1–6 months) and only grade 1 and 2 
adverse events were reported [133].

Interleukin-12
IL-12 is a Th1-promoting cytokine produced by the 

antigen-presenting cells. It is a potent inducer of IFN-γ. 
IL-12 boosts NK cell activity and cytotoxic T-cell re-
sponses in CTCL [134]. As discussed before, a Th2-dom-
inant cytokine milieu and a reduced production of Th1-
inducing cytokines such as IFN-γ and IL-12 are a hall-
mark of immune evasion in advanced MF and SS [135]. 
In vitro data have shown increased lysis of malignant cells 
derived from SS patients when cultured with IL-12, pro-
viding additional evidence of the role of cytokines in an-
titumor immune function [134]. The therapeutic effect of 
IL-12 administration was tested in a small-scale (n = 10) 
phase I trial using 50–300 ng/kg IL-12. The study cohort 
included patients with MF and SS, stages T1 to T4. Un-
fortunately, the observations in SS patients were scarce 
because 2 of the 3 SS patients withdrew from the treat-
ment. Overall, 20% of the patients showed a complete re-
sponse, 20% showed a partial response, and the remain-
ing patients had no response or a local response. 

TLR Agonists
TLR are key players in innate immunity. TLR are pre-

dominantly expressed by DC and macrophages and rec-
ognize pathogen antigens in the microenvironment [136]. 
Once bound to their ligand, they induce antigen presen-
tation and cell proliferation and cause surface upregula-
tion of costimulatory molecules on the antigen-present-
ing cells, leading to T cell activation and increased cyto-
toxicity [137]. The therapeutic targets addressed in CTCL 
are TLR7 and TLR8, which bind viral RNA particles, and 
TLR9, which binds bacterial and viral DNA.

Imiquimod (TLR 7 Agonist)
TLR7 is expressed on plasmacytoid DC (pDC) [138]. 

Targeting TLR7 with a synthetic ligand, i.e., imiquimod, 
induces the production of proinflammatory cytokines, 
i.e. IFN-α, which induces a Th1 type immune response 
and shift towards cell-mediated immunity. There are sev-
eral case reports and case series describing the efficacy of 
imiquimod treatment in CTCL patients [139–145]. Sum-
marized results of the studies demonstrate that 71% of the 
patients have a complete response and 17% stable disease. 
Despite the promising results, imiquimod is not approved 
for use in CTCL because larger trials are necessary to eval-
uate its efficacy and safety in MF and SS.

Resiquimod (TLR7 and TLR8 Agonist) 
Resiquimod binds to both TLR7 and TLR8. Despite 

their structural similarity, the 2 receptors differ in their 
signaling, and their activation leads to secretion of differ-
ent cytokines. The TLR7 agonist activates predominant-
ly pDC, inducing the production of IFN-α and IFN-reg-
ulated chemokines such as IFN-inducible protein and 
IFN-inducible T-cell α chemoattractant. The TLR8 ago-
nist activates mDC, monocytes, and MDC to secrete 
TNF-α, IL-12, and MIP-1α [146]. In summary, TLR7 ac-
tivation results in a 5–10 times greater production of 
IFN-α, whereas TLR7/8 stimulation increases TNF-α 
and IL-12 levels approximately 10 times. A phase I clini-
cal trial with 12 early-stage patients (from IA to IIA MF) 
illustrated a 17% complete response rate and a 75% par-
tial response rate in patients. Moreover, the dose escala-
tion correlates with a better response [147]. The elevated 
after-treatment levels of TNF-α, IL-12, and IFN-γ induce 
the cytotoxic function of CD8 and NK cells and partial 
or complete reduction of the clonal malignant T cells in 
skin biopsies and correlate positively with treatment re-
sponse. 
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TLR9 Agonist 
TLR9 is an intracellular receptor expressed on numer-

ous immune cells and it is activated by unmethylated CpG 
sequences found in bacterial or viral DNA. Its binding ini-
tiates the release of proinflammatory cytokines such as 
type I IFN and IL-12 [148]. In a phase 1/2 study by Kim et 
al. [149] 15 MF patients received intratumoral injections 
with TLR9 agonist CpG oligodeoxynucleotides combined 
with localized radiation. The combination of TLR9 ago-
nist treatment and radiation was chosen because local ra-
diation increases the number of available tumor antigens 
for pDC, which in parallel are primed by unmethylated 
CpG sequences. The overall response rate is approximate-
ly 36% with a median response duration of 7 weeks. 

Antibiotics
A diminished diversity of skin microbiome with a ten-

dency toward increased colonization with SA has been re-
ported in both MF and SS [150, 151]. It has been suggested 
that SA enterotoxins stimulate a reciprocal cross-talk be-
tween nonmalignant and malignant T cells resulting in IL-
2-dependent proliferation of the malignant clone [152] 
and that interaction of T cells with the bacterial microen-
vironment may accelerate disease progression by promot-
ing STAT signaling [153]. Thus, microbiome targeting 
may be a therapeutic strategy. Indeed, a recent small clini-
cal study by Lindahl et al. [154] demonstrated that a short-
term aggressive treatment with a SA-targeting antibiotic 
regimen resulted in a marked long-lasting clinical im-
provement in advanced-stage CTCL patients [154], lead-
ing to a decrease in the proliferation of malignant cells, 
STAT3 signaling, and the expression of CD25. These ob-
servations encourage the conduction of studies combining 
the targeting of SA together with STAT signaling [155]. 

Outlook

CTCL is a rare skin lymphoma arising from malignant 
T-cell homing to or sessile in the skin. Both intrinsic and 
extrinsic factors may play a critical role in the pathophys-
iology of CTCL and cutting-edge research is currently  
focused on how increased levels and/or overactivation  
of key molecules, such as STAT3, GATA3, CCR4, and 
KIR3DL2, contribute to the initiation and progression of 
the disease. The extensive research performed in recent 
years has greatly advanced our understanding of CTCL 
and its impact on patient care and quality of life. 

Naturally occurring molecules and genes, involved di-
rectly in or acting as surrogate parameters for active 

pathophysiological disease processes, if easily detectable, 
are convenient for use as biomarkers, disease-classifying 
molecules, or treatment targets. However, the heteroge-
neity of CTCL renders the detection of common markers 
and/or therapeutic targets difficult. Novel technologies 
and large-scale data generation combined with analytical 
approaches supported by artificial intelligence are expect-
ed to deliver the necessary knowledge and allow personal-
ized medicine for the domain of CTCL. 

The rarity of the diseases of the CTCL group necessi-
tates an international collaborative effort to successfully 
accomplish high-evidence clinical research. In the last 
few years, the set-up has been established and success-
fully applied for at least 2 large prospective randomized 
clinical trials. 
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