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Abstract: Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of
the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly
caused by the pathogen. The parasite’s developmental stages only have a marginal role in contributing
to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune
response to the infection. This response includes antibody production, erythrophagocytosis, oxidative
damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover,
both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels.
All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α,
IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines
plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of
the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or
murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and
chemokines in the mechanisms leading to anemia in infected dogs.
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1. Introduction

Canine babesiosis is a tick-transmitted disease caused by infection with intraerythrocytic
protozoan parasites of the genus Babesia. Babesia belong to the order Piroplasmida, phylum
Apicomplexa [1]. There are seven Babesia species infecting dogs: B. canis, B. vogeli, B. rossi,
B. vulpes, B. gibsoni, B. conradae, and unnamed Babesia sp. “Coco” [1–5]. Some authors use
the name Babesia coco as a formal species name [6]. Among these species, B. canis, B. vogeli,
B. rossi, and B. coco are classified as ‘large’ Babesia, while B. gibsoni, B. vulpes, and B. conradae
are ‘small’ Babesia species [7]. Severity of infection may be subclinical, mild, moderate, or
severe, with a fatal outcome, and this depends on the species of pathogen and the immune
response. Severe babesiosis, such as human malaria, is considered not only a parasitic disease
but also an immune-mediated disease with an excessive inflammatory response, especially
overproduction of pro-inflammatory cytokines and chemokines. This is one of the reasons
that these diseases, both caused by intraerythrocytic protozoan parasites, are considered
similar. Moreover, sequestration of red blood cells (RBC) in micro-vessels leading to vascular
obstruction occurs during both Plasmodium and Babesia infections. These two mechanisms
lead to similar pathologies in human malaria and in babesiosis in various mammalian species,
including canine babesiosis [8–10]. Due to the similarities between these two infections,
human babesiosis is sometimes even named “Malaria of the North” [11].

Both parasitoses may cause anemia. This pathology is the second-most prevalent
hematological disorder in these diseases, after thrombocytopenia. Leukopenia is another
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disorder observed during these infections. However, leukocytosis has been observed
in some patients with malaria [8,12–17]. Complications such as disseminated intravas-
cular coagulation, kidney injury, pancreatitis, hepatopathy, cardiac disorders, cerebral
babesiosis/malaria, and acute respiratory distress syndrome have been observed in both
diseases [2,8,18–21]. These protozoan infections may lead to systemic inflammatory re-
sponse syndrome, multiple organ dysfunction syndrome, and shock; consequently, these
infections are considered as conditions similar to sepsis, with some authors considering
them as protozoan sepses. Pro-inflammatory cytokines and chemokines, particularly tu-
mor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), monocyte chemoattractant
protein 1 (MCP-1, also known as CCL2), keratinocyte-derived chemokine (KC, also known
as CXCL1)-like, interferon gamma-induced protein 10 (IP-10, also known as CXCL10),
interleukin 6 (IL-6), IL-8 (also known as CXCL8), IL-12, IL-18, granulocyte-macrophage
colony-stimulating factor (GM-CSF, also known as CSF-2), and high-mobility group box-1
protein (HMGB-1), play a role in the development of many of these complications. More-
over, insufficient and/or delayed production of anti-inflammatory cytokines, such as IL-4
and IL-10, also contributes to the pathogenesis of both diseases, including hematological
changes [2,22–30].

2. Anemia

Anemia during canine babesiosis is observed in 20% to over 90% of infected dogs [31–39].
The most severe and prevalent anemia occurs in dogs infected with B. rossi and B. vulpes [31,32,38].
Decreased hematocrit is a prognostic marker in B. canis-infected dogs and is significantly lower
in non-survivors in comparison to survivors [40]. Anemia during canine babesiosis results
from intra- and extra-vascular hemolysis. Extravascular hemolysis is caused by spleen and
liver phagocytes, whereas intravascular hemolysis results from both the lifecycle of the parasite
(merogony) and immune-mediated lysis of RBCs [7,8]. During both malaria and babesiosis,
the level of parasitemia does not correlate with the severity of anemia [8,41]. Price et al. [42]
estimated that over 90% of destroyed RBCs in humans infected with Plasmodium falciparum
were not invaded by the parasite. In another study, a mathematical model of Jakeman et al. [43]
showed that in patients with malaria, 8.5 uninfected erythrocytes were destroyed in addition
to 1 infected RBC. Moreover, this model showed that dyserythropoiesis has a marginal role in
the development of anemia in malaria. A lack of association between the level of parasitemia
and anemia is also observed in dogs infected with B. rossi, B. canis, and B. gibsoni [8,35,44,45],
and as in malaria, dyserythropoiesis in canine babesiosis has, if any, an insignificant role in the
development of anemia [8,36]. This indicates that direct destruction of infected RBCs by the
pathogen is not the main cause of anemia in dogs infected with Babesia spp.

However, it should be mentioned that a correlation between the level of parasitemia
and anemia has been observed in humans infected with B. microti [46]. Moreover, asymp-
tomatic infections may occur in humans with low B. microti parasitemia [47]. In bovine
theileriosis, a disease of cattle similar to babesiosis, the level of parasitemia has been
shown to correlate with the severity of anemia, although immunological mechanisms also
contribute to its development [48]. Similarly, in dogs experimentally infected with the
other piroplasmid pathogen, Rangelia vitalii, hematocrit was lowest at peak parasitemia,
before clinical signs of hemorrhage had manifested [49]. However, changes typical for
immune-mediated anemia in canine rangeliosis have also been observed [50].

The lack of association between the level of parasitemia and the severity of anemia
in canine babesiosis indicates that the immune response during infection contributes to
decreasing the number of RBCs. Phagocytosis, oxidative damage of erythrocytes, antibod-
ies, and the complement system participate in the response to infection. These responses
lead to both killing of the parasite and anemia, with other complications of the disease
occurring in more severe cases. Moreover, besides immune-mediated hemolytic anemia,
sequestration of erythrocytes in microvasculature and splenic retention of RBCs may also
negatively impact the RBC count in infected dogs [8,39,51,52].
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3. Phagocytosis

Phagocytosis is an important mechanism of innate immunity which is used to re-
move pathogens, cell debris, foreign substances, and apoptotic cells. These targets are
recognized by various receptors on phagocytic cells. The process leads to phagosome
and further phagolysosome formation, in which microorganisms and other targets are
killed and degraded by reactive oxygen species, hypochlorous acid, and various hydrolytic
enzymes [53].

In 1990, Murase and Maede [54] showed that macrophages obtained from splenec-
tomized dogs infected with B. gibsoni had increased erythrophagocytic activity. This
phenomenon was not observed in macrophages obtained from dogs with onion-induced
hemolysis [54]. A further study showed that following in vitro culture of B. gibsoni with
erythrocytes, both infected and uninfected RBCs were more susceptible to phagocytosis
by macrophages obtained from healthy dogs [51]. These results suggest involvement of
the parasite in macrophage activation. A study of B. rossi showed an increased propor-
tion of both splenic and bone marrow-derived macrophages in the spleens of infected
dogs in comparison to the spleens of healthy dogs [55]. Moreover, in dogs infected with
B. gibsoni or B. canis, spherocytosis has been observed (Figure 1) [35,56,57]. This pathology
is typical for immune-mediated hemolytic anemia and results from partial phagocytosis of
erythrocytes by macrophages [58]. These observations showed activation of macrophages
in Babesia-infected dogs and highlight the contribution of macrophages to the development
of anemia in canine babesiosis.
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Figure 1. Blood smear from a dog infected with B. canis: A—eccentrocyte, B—Babesia merozoites,
C—spherocyte.

Similar changes have been observed during other apicomplexan infections. In mice
experimentally infected with B. microti, increased numbers of macrophages were observed
in spleens [59]. In another study on B. microti, spherocytes were demonstrated in infected
mice [60]. The same changes also occur in malaria, bovine theileriosis, and canine range-
liosis, and result from increased phagocytosis of both parasitized and non-parasitized
RBCs [50,61–64].

In addition to macrophages, increased phagocytic activity of neutrophils has been
observed in cattle infected with B. bovis [65]. According to Bloch et al. [66], neutrophils
contribute to the phagocytosis of Babesia-infected RBCs in the marginal zone of the spleen.
However, according to Court et al. [65], this granulocytic phagocytosis of RBCs occurs
in the peripheral circulation rather than in the spleen. The latter is in agreement with
observations in malaria patients, with neutropenia caused by intravascular redistribution
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of neutrophils leading to enlargement of the marginal granulocyte pool [67]. Moreover,
Henning et al. [55] observed decreased numbers of neutrophils in the spleens of dogs
infected with B. rossi. This may confirm that the action of neutrophils during both malaria
and babesiosis infections occurs peripherally, rather than in the spleen. These granulocytes
may be engaged in phagocytosis of RBCs sequestered in small vessels, where sequestration
is caused by adhesion of parasitized erythrocytes to endothelial cells. This phenomenon has
been observed in both malaria and babesiosis and is discussed in detail in a later section [68].
Neutrophilic infiltrations have been observed in various organs in both diseases [69–72].
However, the number of capillary neutrophils is relatively low in most cases, except during
chronic human placental malaria and murine cerebral malaria [69].

As mentioned in the introduction, TNF-α and IFN-γ play a significant role in the
pathogenesis of babesiosis. TNF-α induces gene expression of CXCL8 and CXCL1, and
together with IFN-γ induces differentiation of monocytes to macrophages; in addition, it
stimulates the synthesis of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) in
these phagocytic cells [73–76]. Moreover, CCL2 also contributes to the classical activation
of macrophages and may play a role in macrophage recruitment to the spleen. This
chemokine, previously considered a chemoattractant only for monocytes, may also attract
other cells, such as natural killer (NK) cells, T and B lymphocytes, basophils, dendritic
cells, and neutrophils [77,78]. Increased CCL2 levels have been observed in malaria and
canine babesiosis caused by B. rossi and B. canis [28,30]. Higher serum levels of CCL2 have
been associated with B. rossi and B. canis infection severity, and with fatal outcomes from
B. rossi infections [28,30,79]. However, the reported negative correlation between the serum
concentration of CCL2 and hematocrit was not found to be statistically significant during
B. rossi infection [79]. Production of this chemokine is induced by platelet-derived growth
factor, which is secreted by activated platelets. CCL2 is produced and released by various
cells, such as endothelial cells, fibroblasts, and macrophages, and attracts monocytes to the
site of pathogen infection. This has been confirmed during Leishmania major infection [80].
Therefore, as Babesia-infected erythrocytes adhere to endothelial cells in small blood vessels
while circulating infected RBCs flow to the spleen, CCL2, a chemoattractant for both
monocytes and neutrophils, may consequently play a role in both splenic and peripheral
phagocytosis of RBCs. The association between the concentration of CCL2 and the severity
of infection also indicates classical monocyte activation in severe cases of canine babesiosis.

Another cytokine, CSF-2, is also involved in classical activation of macrophages [81].
Increased serum levels of this cytokine have been observed during canine babesiosis caused
by B. rossi and B. canis at the beginning of the disease [28,30]. Moreover, Galán et al. [30]
demonstrated higher concentrations of CSF-2 in complicated cases in comparison to uncom-
plicated cases in dogs infected with B. canis on the first day of disease (but not on the seventh
day) and showed a positive correlation between CSF-2 concentration and eosinophil count
in affected animals. This correlation may result from the fact that eosinophils are cells that
produce CSF-2. However, other cells such as fibroblasts, endothelial cells, neutrophils, T
lymphocytes, and macrophages also produce this cytokine. Expression of CSF-2 is induced
by TNF-α, but IFN-γ and the anti-inflammatory cytokine IL-10 suppress it [81]. Increased
production of IFN-γ over the course of babesiosis may explain the lack of difference in
CSF-2 levels between dogs with complicated and uncomplicated disease by the seventh
day of infection.

During human malaria, the level of CSF-2 increases, but is not associated with disease
severity [82]. However, CSF-2-deficient mice infected with P. chabaudi have been shown
to have higher peak parasitemia, higher mortality, impaired splenomegaly, and a lower
leukocyte count in comparison to wild-type-infected mice, despite equivalent levels of
anemia in both groups [83]. That study showed involvement of CSF-2 in activation of
granulocyte-macrophage hematopoiesis and resistance to P. chabaudi infection [83]. An
explanation for the lack of differences in the levels of anemia in infected mice may stem
from the action of the malarial pigment hemozoin, which impairs CSF-2 receptor expression
and function [84]. However, Babesia spp. do not produce this pigment, and consequently
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do not impair the CSF-2 receptor [60]. CSF-2 contributes to the recruitment of neutrophils
and monocytes to the site of infection, the mobilization of monocytes from bone marrow,
and stimulates production of CCL2 by neutrophils and macrophages [81,85]; therefore, this
cytokine in combination with CCL2 may be involved in phagocytosis at the acute phase of
the infection.

Classical stimulation of monocytes by Babesia merozoites in the presence of TNF-α
and IFN-γ is inhibited by both IL-4 and IL-10 [86]. These two interleukins play a role in
regulation of inflammatory processes: IL-4 leads to alternative activation of macrophages,
while IL-10 decreases the activity of Th1 cells, macrophages, and NK cells [87,88]. Leise-
witz et al. [79] showed that during canine babesiosis caused by B. rossi, the IL-10 serum
concentration was lower in severe cases in comparison to uncomplicated cases of the dis-
ease. In the same study, the first group also had significantly lower hematocrit. While
there was no correlation between hematocrit and IL-10 in infected dogs, hematocrit was
strongly positively correlated with IL-8 in these dogs [79]. Alternatively, negative correla-
tions between IL-10 and both hematocrit and the number of RBCs have been observed in
B. canis-infected dogs, but only in uncomplicated babesiosis [30]. Increased levels of IL-8
have been reported in canine babesiosis caused by B. canis in comparison to healthy dogs,
but with no differences between medians in complicated and uncomplicated cases [30,89].
Serum concentrations of IL-8 also show increases during sepsis and malaria [90,91]. Similar
changes to the concentration of CXCL1-like have been observed during B. canis infec-
tions [30,89]. This is not surprising as this chemokine is considered a functional homolog
of IL-8 [92]. The concentration of CXCL1-like, as per IL-8, is associated with the severity of
anemia in B. canis infections [89]. Surprisingly, IL-8 levels have previously been reported
as lower in dogs naturally infected with B. rossi in comparison to healthy dogs [28]. A
possible explanation for this observation was missing the peak chemokine concentration,
and later studies on experimental B. rossi infections have confirmed this supposition [27,93].
In dogs infected with B. gibsoni, both an increase and a decrease in IL-8 levels have been
observed [94], while a transient increase of CXCL1-like has been reported, similar to IL-8,
in B. canis infection. However, the research on B. gibsoni infection consisted of experimental
infection of only two dogs.

Further studies of pro-inflammatory cytokines and chemokines during B. rossi natural
infections have shown negative correlations between IL-8 concentration and the severity
of disease and fatal outcomes [79]. Leisewitz et al. [79] speculated on the possibility of
late sample collection as a reason for these results. As mentioned earlier, experimental
studies on B. rossi infections showed a transient increase of IL-8 four days after infection,
when the level of parasitemia was high. The level of IL-8 subsequently decreases, but
not to low values [27,93]. The same studies showed similar transient increases in CXCL1-
like concentration four days after infection, followed by decrease to a low level [27,93].
According to Smith et al. [93], increased production of IL-10 may be a possible explanation
for a decrease in IL-8. This speculation is supported by the results of Galán et al. [30], who
observed a negative correlation between IL-8 and hematocrit and increased levels of this
chemokine even on the seventh day of the disease. Decreased IL-10 serum concentration
on the seventh day of babesiosis caused by B. canis was also observed [30]. Thus, it seems
possible that immunosuppressive IL-10, or rather its insufficient production, may play a
role in the development of anemia in canine babesiosis.

IL-8 and CXCL1-like are chemokines that induce chemotaxis, and activate and stimu-
late phagocytosis by neutrophils [92,95,96]. These granulocytes participate in phagocytosis
of Plasmodium-infected RBCs, and the concentration of IL-8 has been positively correlated
with the level of parasitemia in P. falciparum malaria [97,98]. In B. rossi-infected dogs, IL-8
is positively correlated, and IL-10 is negatively correlated, with the number of segmented
neutrophils and lymphocytes [28]. During B. canis infection, Galán et al. [30] showed a
positive correlation between IL-8 and the number of band neutrophils. An increased band
neutrophil count has also been observed together with segmented neutropenia in both
canine babesiosis and human malaria [36,67]. This probably results from the intravas-
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cular shift of neutrophils from the circulation pool to the marginal pool. Moreover, as
mentioned earlier, increased phagocytic activity of neutrophils has also been observed in
bovine babesiosis caused by B. bovis [65,67]. The repeated associations between anemia
and cytokines and chemokines, such as IL-10, IL-8, and CXCL1-like, indicate that increased
production of IL-8 and CXCL1-like, and/or insufficient production of IL-10, can have an
influence on phagocytic anemia in canine babesiosis.

Another cytokine which may be involved in erythrophagocytosis is IL-18 [99]. Serum
levels of this cytokine have been determined in dogs infected with B. canis and B. rossi [28,30].
Increased levels were observed only in the acute phase of infection [28]. In human malaria,
an elevated level of this interleukin has been associated with the severity of the disease [100].
Moreover, a high serum concentration of IL-18 was observed in humans with secondary
hemophagocytic syndrome and correlated with the severity of anemia in affected individ-
uals [101]. As this cytokine is elevated only at the beginning of canine babesiosis [28], it
seems probable that further control of infection depends on other mechanisms involving
IFN-γ and TNF-α, which are triggered by IL-18 together with IL-12 [99,102]. According
to Suarez et al. [103], RBC destruction in bovine babesiosis results from early induction of
IL-18, IL-12, IFN-γ, and TNF-α secretions and late action of IL-10.

It is also worth mentioning that neutrophils together with monocytes are the main
source of CXCL10 in the spleen during murine malaria [104]. This chemokine is connected
to the severity of malaria, including cerebral malaria and hemolysis leading to severe
anemia [105]. However, in canine babesiosis, Atkinson et al. [27] did not observe significant
changes to CXCL10 in dogs experimentally infected with B. rossi in comparison to healthy
animals; however, the study was on a very small group of young (6-month-old) beagles [27].
Decker et al. [106] and Hayney et al. [107] showed a positive association between CXCL10
concentration and increasing age in humans (both in children and adults); thus, younger
dogs may have a lower concentration of this chemokine. CXCL10 is important in the re-
cruitment of granulocytes and macrophages and their phagocytic function [108]. Moreover,
CXCL10 is associated with warm autoimmune hemolytic anemia in humans, and this type
of hemolysis has been recognized in humans after babesiosis [109,110]. Thus, a role for
CXCL10 in Babesia-infected dogs cannot be excluded.

It seems probable that the action of neutrophils during canine babesiosis, as in malaria,
may have an influence on the severity of anemia caused by phagocytosis. However,
CXCL10′s involvement in hemolysis in Babesia-infected dogs is unclear and requires further
study, especially in adult dogs.

4. Oxidative Damage

Anemia during canine babesiosis may also result from oxidative damage to erythro-
cytes. This is caused by the release of reactive oxygen species, which may be an intra- or
extra-cellular phenomenon, as a part of phagocytosis or independent of it [45,111].

Oxidative damage of RBCs has been observed in dogs infected with B. gibsoni [51,112].
These studies observed increased serum concentrations of malondialdehyde, which is the
end-product of lipid peroxidation, and increased production of superoxide in RBCs cultured
with B. gibsoni. Moreover, Murase et al. [51] demonstrated an increased concentration
of methemoglobin in a culture of erythrocytes incubated with B. gibsoni, while Otsuka
et al. [112] revealed that lipid peroxidation was higher in infected compared to non-infected
erythrocytes. These results showed that oxidative damage to RBCs is caused by the parasite
or by parasitized cells. However, Morita et al. [113] showed that the ratio of methemoglobin
to total hemoglobin concentration was similar in splenectomized and intact dogs infected
with B. gibsoni, despite parasitemia being three times higher in splenectomized animals.
Otsuka et al. [45] observed increased lipid peroxidation of erythrocytes obtained from
healthy dogs when incubated with macrophages derived from peripheral monocytes from
B. gibsoni-infected dogs in 2002. These results indicate that macrophages and the spleen
contribute to the oxidative damage of RBCs in babesiosis caused by B. gibsoni.
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The serum malondialdehyde concentration has also been determined in dogs infected
with B. canis [114], with a higher concentration of malondialdehyde observed in infected
dogs compared to healthy animals. However, no differences in malondialdehyde concentra-
tion were reported between dogs with complicated and uncomplicated disease, or between
dogs with various severities of anemia [114]. In 2002, Jacobson et al. [115] published the
results of a study on nitric oxide metabolites in dogs infected with B. rossi. The highest
concentration of reactive nitrogen intermediates was detected in infected dogs with se-
vere anemia. However, there was a lack of association between increased reactive nitric
intermediates and the severity of the disease [115]. In 2009, Carli et al. [39] published the
results of their study on the pathogenesis of anemia in canine babesiosis caused by B. canis
and B. vogeli. The authors detected eccentrocytosis in 33% of dogs infected with B. canis,
but not in dogs infected with B. vogeli. This pathology is typical of oxidative damage to
RBCs, and results from peroxidation of cytoskeletal elements or cell membranes leading to
shifting of the cytoplasm together with hemoglobin and leaving a pale area on one side
of the margin of the erythrocyte (Figure 1) [39,116]. Eccentrocytosis showed that there is
oxidative damage to RBCs during B. canis infection. However, the results of other studies
on large Babesia [114,115] suggest that oxidative damage of erythrocytes may contribute
less to the development of anemia in other canine babesiosis than in the disease caused by
B. gibsoni.

Other studies on both small and large Babesia spp. in dogs have demonstrated in-
creased activation of antioxidant defense in affected animals. In dogs naturally infected
with B. gibsoni, the activities of erythrocytic antioxidant enzymes (catalase and superoxide
dismutase) were higher than in control healthy dogs [117]. Moreover, higher levels of
lipid peroxides in RBCs (expressed as a number of nanomoles of malondialdehyde per
one milligram of hemoglobin), and decreased concentrations of copper, zinc, and iron in
blood samples, were present in infected compared to uninfected animals [117]. Comparable
results were observed in dogs with uncomplicated babesiosis caused by B. canis, with
increased activities of superoxide dismutase and catalase and decreased concentrations
of zinc and copper in the blood of affected dogs [118]. B. canis-infected animals also had
pale mucosal membranes and dark urine, indicating methemoglobinuria, reflecting acute
intravascular hemolysis [118]. The results of these studies on antioxidant status in canine
babesiosis indicates an association between oxidative stress and anemia. However, during
B. canis infection, no association between the severity of anemia and the activities of catalase
or superoxide dismutase were shown [118].

Another study on B. canis infection and oxidative stress [119] conversely showed
opposing results to those obtained by Chaudhuri et al. [117] and Teodorowski et al. [118].
Decreased activities of superoxide dismutase, catalase, and glutathione peroxidase in the
blood of infected animals, and decreased serum concentration of total antioxidant status
(represents total contribution of various antioxidants), were observed in infected dogs in
comparison to healthy dogs [119]. Crnogaj et al. [119] speculated on the discrepancies
between the study results on B. canis and B. gibsoni [117] resulted from differences between
the parasite species and kits used in the studies [119]. However, Teodorowski et al. [118]
and Crnogaj et al. [119] worked with the same Babesia species and used the same kit for
determination of superoxide dismutase activity. Teodorowski et al. [118] speculated that the
discrepancies might result from the stage of the disease, suggesting increased erythrocytic
antioxidant enzyme activities in the early stage of disease, and this explanation seems
logical. Crnogaj et al. [119] observed lower antioxidant enzyme activities in complicated
babesiosis in comparison to uncomplicated disease, with the lowest enzyme activities in
B. canis-infected dogs with multiple organ dysfunction syndrome. However, even dogs
with uncomplicated babesiosis had significantly lower activities of superoxide dismutase
and catalase than healthy dogs [119]. The study of Crnogaj et al. [119] showed another
interesting result. In the comparison between anemic and non-anemic infected dogs, signif-
icant differences were shown only in the activity of superoxide dismutase and the serum
concentration of malondialdehyde [119]. Superoxide dismutase activity was lower in
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anemic dogs with babesiosis. Decreased activity of this enzyme in anemic dogs, and the
lower activities of the other antioxidant enzymes in infected dogs, may result from their
consumption in oxidative processes over the course of the disease. This supposition is
supported by another result from the study on the increased concentration of malondi-
aldehyde in infected dogs, where a higher concentration of malondialdehyde in anemic
dogs shows the contribution of oxidative processes in the development of anemia in canine
babesiosis [119]. Moreover, Crnogaj et al. [119] observed a negative correlation between
hematocrit and malondialdehyde, and positive correlations between hematocrit and the
activities of both superoxide dismutase and glutathione peroxidase in infected dogs. These
results confirmed oxidative damage of RBCs and consumption of erythrocytic antioxidant
enzymes during the progression of canine babesiosis. However, the lack of difference in
malondialdehyde concentration between dogs with various severities of anemia, despite
the negative correlation with hematocrit, indicates that other mechanisms contribute to
RBC destruction over the course of canine babesiosis.

Similar results indicating oxidative damage to RBCs have been observed during
equine babesiosis and theileriosis, caprine babesiosis, bovine babesiosis and theileriosis,
ovine babesiosis, and human malaria [120–127]. In these studies, akin to the study of
Crnogaj et al. [119] on antioxidant status in canine babesiosis, the activities of erythrocytic
antioxidant enzymes were reduced in infected humans and animals in comparison to
control groups.

In 2015, two studies on platelet activation in B. rossi-infected dogs were published. In
one study, infected dogs had an increased percentage of platelet–monocyte aggregates [128].
The second work showed an increased number of large-activated platelets over the course
of the disease [129]. Subsequently, Kho et al. [15] demonstrated that platelets were involved
in the killing of erythrocytic stages of all four major human Plasmodium species. In 2021, An-
narapu et al. [130] demonstrated that extracellular hemoglobin leads to platelet activation.
This results in the production of mitochondrial reactive oxygen species and platelet degran-
ulation. Platelet factor-4 (PF-4, also known as CXCL4) accumulates in infected erythrocytes
and is the chemokine involved in platelet activation, inducing production of mitochondrial
reactive oxygen species [130]. These results indicate that platelets may be involved in
oxidative damage of RBCs in canine babesiosis. Interestingly, CXCL4 has been shown to
be associated with cerebral malaria in both humans and mice. However, cerebral malaria
and cerebral babesiosis are associated with sequestration of parasitized RBCs in cerebral
capillary vessels [131–134], and platelets play a role in the formation of micro-aggregates
of parasitized erythrocytes in micro-vessels [135]. Nevertheless, further studies on the
activation of thrombocytes, CXCL4, and oxidative stress in canine babesiosis could explain
if this chemokine contributes to anemia over the course of an infection. According to the
authors’ knowledge, the level of CXCL4 has not been determined in Babesia-infected dogs.

TNF-α appears to be the most important cytokine with a role in oxidative damage
of RBCs during canine babesiosis. As with human malaria, increased concentrations
of this cytokine have been observed in canine, bovine, murine, and human babesio-
sis [22,28,59,79,136–138]. As mentioned earlier, TNF-α and INF-γ induce the synthesis
of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) [73]. Moreover, IL-8 acti-
vates neutrophils and potentiates the oxidative burst induced by microbial stimuli such
as formyl-methionyl-leucyl-phenylalanine [139]. Further, stimulation of neutrophils by
HMGB-1 activates their adhesive and migratory functions, and production of reactive
oxygen species [140], and this cytokine has also been associated with oxidative stress [141].
Oxidative burst results from activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase. This enzyme is also induced by phagocytosis. NADPH oxidase con-
tributes to neutrophil apoptosis, the formation of neutrophil extracellular traps (NETs), and
converts molecules of oxygen to superoxide anions [142]. Extracellular superoxide and
nitric oxide form peroxynitrite, which is involved in the killing of the parasite, but it also
leads to cytotoxicity by direct peroxidation of lipids in cell membranes or the formation of
reactive hydroxyl radical and nitrogen dioxide [143,144].
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Court et al. [65] showed that monocytes display decreased phagocytic activity but
increased oxidative burst in bovine babesiosis caused by B. bovis. This may indicate
the involvement of monocytes in oxidative damage of erythrocytes during babesiosis.
As mentioned earlier, activation of monocytes by IFN-γ results in classical activation
of macrophages, leading to the release of pro-inflammatory cytokines such as IL-6 and
TNF-α [145], and increased concentration of IFN-γ has been observed during both babesio-
sis and malaria [59,138,146]. In malaria patients, an increased level of IFN-γ was shown
to be associated with the severity of anemia; however, no association between TNF-α
concentration and anemia was shown in the same study [147]. The authors postulated that
this observation could be explained by the fact that the patients probably had prolonged or
subacute courses of the infection, and consequently, their pro-inflammatory cytokine levels
were lower [147]. Subsequently, other studies on human malaria showed an association
between the severity of anemia and the serum concentration of TNF-α [148], or that TNF-α
was associated with the severe course of the disease [149]. In the latter research, an in-
creased TNF-α to IL-10 ratio was associated with severe malaria, defined as more than one
of severe anemia, coma, or respiratory distress [149]. Thus, not only increased production
of TNF-α, but also an imbalance between TNF-α and IL-10 production, influences oxidative
damage of RBCs. Moreover, as mentioned earlier, IL-10 as well as IL-4 cause inhibition of
IFN-γ- and TNF-α-dependent nitric oxide production by mononuclear phagocytes exposed
to merozoites isolated from B. bovis-infected erythrocytes [86]. However, according to the
authors’ knowledge, IL-4 levels have not been evaluated in dogs with babesiosis.

Studies on canine babesiosis have shown increased serum IL-6 concentrations in dogs
infected with B. canis, B. rossi, and B. gibsoni [28,79,94,150]. In B. rossi-infected dogs, a higher
IL-6 concentration was associated with the severity of disease and fatal outcomes [79]. How-
ever, IL-6 was positively correlated with hematocrit in affected animals in that study [79].
This result might indicate a lack of influence by IL-6 on the development of anemia in
canine babesiosis. In human malaria, as in canine babesiosis, the IL-6 serum concentration
has been found to be increased and associated with the severity of disease [151]. Further,
elevated IL-6 levels have also been associated with the severity of anemia in humans
infected with P. vivax and P. falciparum [148]. Moreover, other studies on various diseases
have shown the influence of IL-6 on the development of oxidative stress [152–154]. For
instance, Petrushevska et al. [152] observed correlations between various pro-inflammatory
cytokines and markers of oxidative stress in patients with COVID-19, with IL-6 showing
the strongest correlations. However, some studies have shown opposite actions for IL-6
and proven its protective role in oxidative stress [155–157]. Moreover, other authors have
shown that an elevated IL-6 concentration is a consequence of increased reactive oxygen
species [158,159]. IL-6 levels appear to correlate with oxidative stress during infections. It is
currently unclear whether IL-6 has a role in promoting this process or facilitates unrelated
or protective mechanisms, and as such its role in the development of anemia through
oxidative damage of RBCs during canine babesiosis is unclear and further investigation
is required.

Another cytokine that contributes to the production of nitric oxide and reactive oxygen
species is IL-18 [99]. This cytokine, especially in synergy with IL-12, induces production of
mitochondrial reactive oxygen species [102]. The serum level of IL-18 is increased in the
acute phase of canine babesiosis [28]. It seems probable that in this disease, as in bovine
babesiosis, early increased production of IL-18 and IL-12 stimulates the release of IFN-γ
and TNF-α, leading to activation of iNOS and NO production, which together with delayed
secretion of IL-10 causes oxidative damage to erythrocytes. This response, required for
inhibition of parasite replication, together with late IL-10 production, seems to be one of
the main causes of immune-mediated destruction of erythrocytes [103,160].

It is also worth mentioning that secretion of IFN-γ when stimulated by IL-18 and
IL-12 requires mitochondrial reactive oxygen species as redox signaling molecules [102].
Thus, increased levels of IL-18, IFN-γ, and TNF-α, together with eccentrocytosis observed
during canine babesiosis, suggest the contribution of these cytokines in oxidative dam-
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age of RBCs in infected animals. However, further studies on the involvement of these
cytokines in oxidative stress and anemia during the disease are required. According to
the authors’ knowledge, the serum concentration of IL-12 has not been evaluated during
canine babesiosis.

It should be emphasized that cytokines such as IL-18, IL-12, IFN-γ, and TNF-α play an
important role in clearance of the parasite by stimulation of reactive oxygen and nitrogen
intermediates [99,160,161]. This is supported by cases where concurrent treatments that
reduce the levels or effectiveness of these cytokines coincide with high parasite burdens,
such as: a 57-year-old woman with Crohn’s disease treated with infliximab (a TNF-α-
neutralizing monoclonal antibody) with a high level of parasitemia over the course of
babesiosis, or a 67-year-old man with severe B. microti infection, who owing to rheumatoid
arthritis was being treated with etanercept (a competitive blocker of TNF-α and TNF-β
receptors) [162,163]. A further example of the significant role of these cytokines in Babesia
control comes from an in vitro study which revealed increased production of IL-1β, IL-12,
and TNF-α by macrophages activated by B. bovis, and reduced parasite viability when
the macrophages were incubated with B. bovis-infected RBCs [160]. Moreover, Aguilar-
Delfín et al. [164] showed that infection of mice with B. duncani led to increased serum
concentrations of IL-12 and IFN-γ, and that mice genetically deficient in NK cells or
macrophages had higher susceptibility to infection by the parasite.

The results of the studies cited above show that oxidative stress increases during
infections, and that it is a likely involved in damage to RBCs, contributing to anemia.
This process is modulated through the action of a number of pro-inflammatory cytokines
that promote the processes involved, including phagocytosis and other mechanisms, as
detailed below.

5. Anti-Erythrocyte Antibodies

Antibody-mediated opsonization of RBCs leads to complement activation and binding,
antibody-dependent cellular cytotoxicity, and erythrophagocytosis and oxidative damage
of erythrocytes [51,54,165–167].

Antibodies binding to RBCs can cause hemolysis, which can lead to anemia [168].
Several reports have linked babesiosis with anti-RBC antibodies and resulting autoimmune
anemia. Antibodies (mainly IgG, but sometimes also IgM) binding to RBCs have been
detected in dogs infected with B. gibsoni and B. vogeli, but not during canine babesiosis
caused by B. canis [39,169,170]. Moreover, in one study, 88% of dogs infected with B. rossi
and with severe anemia had a positive result in the Coombs test, indicating the presence of
antibodies against RBCs [31]. Anti-erythrocyte antibodies have also been detected during
both murine babesiosis and malaria, caused by infections with B. rodhaini and P. berghei,
respectively [171,172]. Similarly, such antibodies have been detected during bovine babesio-
sis caused by B. bovis and B. bigemina, and in human malaria caused by P. falciparum and
P. vivax [173–176]. In one study of a cohort of patients diagnosed with babesiosis caused
by B. microti, several weeks after treatment, a positive Coombs test and hemolytic anemia
was observed in six asplenic patients with no history of autoimmunity, and four patients
subsequently required immunosuppressive therapy with glucocorticosteroids [110]. The
successful effect of the immunosuppressive therapy together with a positive direct antiglob-
ulin test (for both IgG and complement component 3) in the patients indicated the presence
of hemolysis-causing anti-erythrocyte antibodies induced by the infection. It is worth
mentioning that Narurkar et al. [177] described the case of an 81-year-old woman with
babesiosis (the species was not determined) and hemolytic anemia with a positive direct
antiglobulin test; however, the woman had no history of splenectomy. The authors of the
case report concluded that not only asplenic but also older patients are at a higher risk of
autoimmune hemolytic anemia induced by babesiosis [177].

During a B. gibsoni infection, anti-erythrocyte antibodies have been shown to react
with cytoskeletal and transmembrane proteins [178]. In another study examining bovine
babesiosis, antibodies to phosphatidylserine were detected in cattle infected with B. bovis,
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but not in cows infected with B. bigemina [173]. This phospholipid belongs to the in-
ner leaflet of the erythrocyte membrane, whereas choline-containing phospholipids are
located on the outer surface of the cell. This asymmetry in the cell membrane layers de-
pends on and is maintained by ATP-driven aminophospholipid translocase/flipase, which
transports phosphatidylserine to the inner layer of the cell membrane [179]. Exposure of
phosphatidylserine on the outer surface is associated with the physiological aging pro-
cess of RBCs. The higher and permanent exposure of phosphatidylserine on the outer
surface of cell membranes is an ‘eat me’ signal for the immune system to remove such
erythrocytes [180,181]. Thus, the presence of antibodies directed to phosphatidylserine in
B. bovis-infected cattle can explain the occurrence of hemolytic anemia during infection.

Further, a study on anti-erythrocyte antibodies in cattle with babesiosis has identified
autoantibodies in B. bigemina-infected animals [174]. The authors of the study also demon-
strated that anti-idiotypic antibodies cross-react with parasitized RBCs. Similar results were
previously observed in a study on malaria by Daniel-Ribeiro et al. [182], who observed
cross-reaction between antigens of P. falciparum and idiotypes of antibodies against other
plasmodial and non-plasmodial antigens.

However, according to Taboada and Lobetti [183], infected RBCs incorporate parasite
antigens into their membrane surface during canine babesiosis. This induces antibod-
ies which opsonize erythrocytes and leads to the further removal of infected cells [183].
Nevertheless, such a mechanism does not explain the lack of association between the
level of parasitemia and the severity of anemia, which indicates the removal of uninfected
erythrocytes and the presence of anti-erythrocyte antibodies in Babesia-infected dogs.

The association between the surface exposure of phosphatidylserine and anti-erythrocyte
antibodies has also been studied in malaria. These studies revealed that phosphatidylserine is
exposed on the surface of both Plasmodium-infected and uninfected RBCs, and that infection
induces the production of antibodies against phosphatidylserine. This leads to binding of anti-
phosphatidylserine antibodies to infected and uninfected erythrocytes [184,185]. Fernandez-
Arias et al. [185] demonstrated that anti-erythrocyte antibodies recognize phosphatidylserine
on the surface of uninfected erythrocytes, promoting anemia in murine malaria. The high level
of anti-phosphatidylserine antibodies in malaria can lead to disregard of ‘do not eat me’ signals,
such as integrin CD47, from uninfected RBCs. In such a situation, even physiologically low
and transient exposure of phosphatidylserine (which is transported across the cell membrane
by aminophospholipid translocase/flipase to the inner layer of the membrane) in uninfected
erythrocytes is treated as an ‘eat me’ signal, despite the presence of the other ‘do not eat me’
signals such as CD47. This leads to the development of hemolytic anemia in malaria [184].
However, antibodies against other erythrocytic antigens, such as triosephosphate isomerase,
band 3 (an anion exchanger protein), anticardiolipin, and spectrin, have also been detected
during human malaria, and an association between autoantibodies and anemia has not always
been observed [186,187]. It is possible that similar mechanisms may be involved in the
production of anti-erythrocyte antibodies during canine babesiosis. Moreover, according
to the authors of this review, it is probable that anti-erythrocyte antibodies participate in
hemolytic anemia over the course of canine babesiosis caused by all canine Babesia species.

Antibodies are produced by plasma cells (mature effector B lymphocytes), and IL-7
is essential for the development of B lymphocytes [188,189]. IL-4, produced by Th2 lym-
phocytes, stimulates the production and secretion of IgG1 and IgE [188]. However, Kimata
et al. [190] showed that IL-8, which is increased in both malaria and babesiosis, selectively
inhibits IgE production induced by IL-4. IgG1 antibodies mediate antibody-dependent
cellular toxicity in bovine babesiosis [191]. However, as mentioned earlier, IL-4 acts as an
anti-inflammatory cytokine, promoting differentiation of naïve T cells into Th2 lympho-
cytes [188]. A Th2-type response is typically generated against extracellular pathogens,
whereas a Th1-type response is typical against intracellular microorganisms. Both Babesia
and Plasmodium are intracellular parasites [192]. However, IL-4 can also be produced during
a Th1-type response by cells with active signal transducer and activator of transcription
5A (Stat5a) [192]. Xue at al. [193] showed that the spleens of mice infected with B. microti
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produced Stat5a. In another study, Djokic et al. [59] observed increased production of IL-4
in mice experimentally infected with B. microti. These results help explain IgG1 production
during babesiosis; however, as the authors of the study mentioned, the increase was modest
but significant [59]. During severe human malaria, the levels of IL-4 were higher in some
studies and lower in others when compared to uncomplicated infections. However, a
meta-analysis of the results from various studies has shown an average lower IL-4 serum
concentration during severe disease in comparison to uncomplicated malaria [194].

IgG1 production may be also stimulated by IL-6 [195]. Production or even overproduction
of IL-6 may be induced by IL-4 [196,197]. As mentioned earlier, increased levels of IL-6 have
been demonstrated both during canine babesiosis and human malaria [28,79,94,148,150,151].
This cytokine is associated with a Th17 response and some autoimmune diseases. Moreover,
autoimmunity is associated with activation of Th1 lymphocytes [188,189,192]. Increased
production of IFN-γ is typical for a Th1 response. Production of this cytokine is stimu-
lated by IL-12 and IL-18 [188,192]. All three of these cytokines are increased during human
malaria [146,198,199], while IFN-γ and IL-18 are increased during canine babesiosis [27].
Although IL-12 levels have not been determined in Babesia-infected dogs, it is probable that
its level would be elevated over the course of the disease. These changes associated with
autoimmunity may be linked to autoantibody production during babesiosis and malaria.

Besides IgG autoantibodies, Carli et al. [39] detected IgM anti-erythrocyte antibodies
in dogs infected with B. vogeli. Similarly, IgM antibodies to RBCs have been detected in
humans infected with P. falciparum [175]. IL-6 is also involved in stimulating the production
of IgM antibodies. However, IFN-γ inhibits both IgM and IgG1 production, but induces
IgG2a and IgG3 [188]. As IFN-γ is an essential cytokine during Th1 responses [192], this
may partially explain a reason for the detection of mainly IgG autoantibodies in most
studies examining anti-erythrocyte antibodies during babesiosis and malaria. Another
explanation may be the short half-life of IgM in comparison to various subclasses of IgG
antibodies [39,169–174,200].

6. Antibody-Dependent Cellular Cytotoxicity

Antibody-dependent cellular cytotoxicity (ADCC) is an immunological defense mecha-
nism. Antibodies bound to a target cell mediate the formation of an immunological synapse
between a cytotoxic cell and the target cell, and after the synapse is formed cytotoxic factors
such as granulysin, granzymes, and perforin are secreted by the cytotoxic cell, which leads
to lysis of the target cell [201]. Goff et al. [191] demonstrated that ADCC occurs during
bovine babesiosis caused by B. bovis and is mediated by IgG1. Similar results were observed
in human malaria caused by P. falciparum [202], with the authors demonstrating that IgG
from humans living in regions endemic for malaria induced lysis of parasitized RBCs
through NK-mediated ADCC. However, this reaction was highly selective and led only to
the destruction of infected erythrocytes. According to Arora et al. [202], NK-driven ADCC
leading to the lysis of infected RBCs had not been previously demonstrated, although pre-
vious studies had shown that NK cells contribute to the lysis of Plasmodium-infected RBCs
and erythrocytic stages of the parasite [203,204]. To the best of the authors’ knowledge,
there is no study examining the role of ADCC during canine babesiosis. Such work could
elucidate if this mechanism participates in the development of anemia or only contributes
to the killing of the parasite in infected animals.

NK cells are the main effectors in ADCC. The binding of the Fab region of IgG to
an antigen, and of the antibodies’ Fc fragment to the Fcγ receptor on a NK cell, starts
the reaction [205]. IL-15 is a cytokine required for development and maintenance of NK
cells [206]. Another cytokine, IL-2, induces NK cell proliferation [207]. However, IL-2 also
induces regulatory T cells to inhibit NK cell function, whereas IL-15 does not stimulate
these regulatory cells and enhances NK cell cytotoxicity. NK cell function is also inhibited
by IL-10 [206]. Moreover, as discussed above, the cytokine GM-CS enhances ADCC in other
cells, e.g., neutrophils [208].
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All four of these cytokines have been examined over the course of canine babesiosis.
Higher concentrations of IL-2 were observed only at the beginning of the disease caused by
B. rossi or B. canis [28,30]. No association between the severity of disease and the IL-2 level
in infected animals has been reported [79]. The serum concentration of IL-10 was higher in
infected dogs, but again no association with the severity of the disease was reported [28,79].
IL-15 was elevated in B. canis-infected dogs, but not during B. rossi infection [27,30,79],
and there was no association between IL-15 and complications of the disease in babesiosis
caused by B. canis [30]. As mentioned earlier, CSF-2 showed increased levels only at the
beginning of B. canis and B. rossi infections [28,30].

Increased expression of IL-15 mRNA in the spleen has been detected during B. bovis
infection [209]. Mice genetically deficient in IL-15 showed delayed clearance of P. chabaudi
during experimental murine malaria [210]. Moreover, as mentioned earlier in this review,
CSF-2-deficient mice experimentally infected with P. chabaudi had higher peak parasitemia
and mortality in comparison to wild-type-infected mice, but both groups had equivalent
levels of anemia [83]. The results of those studies together with the results of studies
on canine babesiosis [27,28,30,79], and the study on ADCC in P. falciparum malaria [202],
indicate that during both malaria and babesiosis, IL-15, CSF-2, and cytotoxicity mediated
by NK cells and neutrophils contribute to the removal of the parasite, but probably not to
the development of anemia.

7. Complement System

Over 30 plasma and cell membrane proteins belong to the complement system, which
is one of the major mechanisms of innate immunity. Complement can be activated through
three major pathways: the classical, lectin, and alternative pathways (positively regu-
lated by properdin). Antibodies bound to an antigen contribute only during the classical
pathway of complement activation. Several effector mechanisms are common to all path-
ways of complement activation, including the formation of the membrane attack complex
(C5b-9) leading to perforation of the cell membrane, proteolytic activation of C3, C4,
and C5 to generate anaphylotoxins (C4a, C3a, and C5a) that engage granulocytes and
monocytes/macrophages to cytokine production, phagocytosis, degranulation, and ox-
idative burst, and opsonization of the target cell and binding to complement receptors
on the surface of phagocytic cells [211]. The complement system may be involved in
autoimmunity through stimulation of IL-1β secretion [212]. Increased concentrations of
this cytokine have been demonstrated both during bovine and murine babesiosis and
human malaria [160,213,214]. Moreover, upregulation of the expression of genes related
to erythropoesis, heme, haptoglobin, peroxiredoxin 2 (antioxidant enzyme), arachidonate
15-lipoxygenase, and cytosolic phospholipase 2 syntheses, and related to positive regula-
tion of IL-1β production and IFN-γ signaling, have been observed in B. rossi-infected dogs
during disease progression [93].

In 1976, Chapman and Ward [165] demonstrated depletion of complement components
in rats infected with B. rodhaini. The same authors detected that B. rodhaini used components
of complement (C3 and C5) to invade human RBCs [215]. However, further studies have
not confirmed these observations. Seinen et al. [216] showed that complement does not
play an essential role in the development of B. rodhaini in BALB/c mice. Similar results were
obtained by Levy et al. [217,218] in studies examining the complement system and bovine
erythrocytes infected with B. bovis. Levy et al. [218] also demonstrated the occurrence of
both classical and alternative pathways of complement activation during B. bovis infection
in vitro. To the best of the authors’ knowledge, the influence of complement activation
on anemia development has not been studied in canine babesiosis. However, according
to Köster et al. [7], immunoglobulin and complement may contribute to development
of anemia during canine babesiosis. Kuleš et al. [219] showed increased expression of
apolipoprotein A-IV and complement component 3 in sera collected from dogs infected
with B. canis. Similar results were observed in another proteomic study on serum proteins
in mice infected with B. microti [220]. In a further proteomic study of canine babesiosis,
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Kuleš et al. [221] observed differences between dogs infected with B. canis that developed
multiple organ dysfunction syndrome compared to B. canis-infected dogs that developed
systemic inflammatory response syndrome. A decrease in complement inhibitors (such
as C4-binding protein or complement receptor type 1) leading to prolonged activation of
complement was observed in the former cohort. Another study on serum proteins in dogs
infected with B. canis showed hyper-β2-globulinemia, which may result from an increased
C3a protein concentration during canine babesiosis [222]. The results of these studies
indicate that complement is activated during canine babesiosis. However, its contribution
to the development of anemia requires further studies.

An experimental study on human malaria showed increased complement activation
in volunteers infected with P. falciparum [223]. Behet et al. [224] showed that comple-
ment contributed to the antibody-mediated response in volunteers who were immunized
with P. falciparum sporozoites. In 15 out of 16 volunteers, sporozoite-specific IgM and IgG
antibodies were induced, and complement was deposited on sporozoite surfaces. The
membrane permeability of sporozoites was found to be increased in the presence of an-
tibodies and activated complement. Moreover, a study by Raballah et al. [225] showed
that mutations in the C5 gene are associated with severe anemia in malaria. These results
indicate that complement contributes to the control of the infection, with no evidence that
it leads to the development of anemia.

Besides the three major complement activation pathways, serine proteases such as
kallikrein and thrombin (both involved in coagulation) may also cleave C5 and C3, gen-
erating anaphylotoxins such as C5a and C3a [211]. These proteases also contribute to
the patho-mechanism of disseminated intravascular coagulation (DIC), which has been
recognized in canine babesiosis and human malaria. This coagulopathy has been asso-
ciated with the severity of disease and higher mortality in both infections [12,226–230].
Thus, complement activation in some of these infections may also be independent of anti-
bodies. Moreover, DIC contributes to the sequestration of erythrocytes in micro-vessels,
in this way participating in decreasing the number of RBCs during both malaria and
babesiosis [133,227,231].

In sepsis and related diseases, such as severe COVID-19 and malaria, complement sys-
tem activation is associated with a life-threatening cytokine storm which is caused by an exces-
sive immune response, leading to increased release of cytokines and chemokines such as TNF-
α, IFN-γ, IL-1, IL-6, IL-12, IL-18, CCL2, CXCL8, and CXCL10, among others [232–234]. As
mentioned earlier, increased production of these pro-inflammatory cytokines and chemokines
has been observed during babesiosis [27,28,30,136,150,160]. Keshari et al. [235] demonstrated
that inhibition of C5 anaphylotoxin blocks the cytokine storm in Escherichia coli sepsis in vitro.
Moreover, in a study of C5aR-deficient mice (no expression of the gene for C5a receptor),
production of IL-1β and CCL2 was decreased, while in another study a C5aR antagonist
decreased IL-1β, CCL2, and TNF-α production [236,237]. Thus, increased production of
pro-inflammatory cytokines and chemokines during canine babesiosis may result from com-
plement activation. However, according to Jarczak and Nierhaus [232], the chemokine IL-8,
as well as the cytokine IL-6, may also be involved in activation of the complement system in
the brain by increasing blood–brain barrier permeability, leading to cerebral oedema. This
may lead to further pro-inflammatory changes and increased release of pro-inflammatory
cytokines and chemokines [232].

Moreover, activation of complement may occur via the alternative pathway [238]. This
pathway is always active at a low level. This low level of activation results from the short
half-life (about 90 s) of C3 convertases and the action of complement inhibitor factor H,
which accelerates the decay of these convertases. Complement inhibitor factor H and other
regulatory proteins protect host cells from destruction by complement [238,239]. During an
infection, properdin, a plasma protein that positively regulates the complement system, is
released in higher amounts by various cells, such as leukocytes, adipocytes, and endothelial
cells. Most of these cells constitutively secrete properdin; however, neutrophils are the
most important source of properdin. Increased concentration of properdin in the plasma
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is a result of neutrophil degranulation. The rapid release of properdin from neutrophils
may be stimulated by bacterial lipopolysaccharides and by cytokines and chemokines such
as TNF-α, CSF-2, CSF-3, IFN-α, and CXCL8 [238]. As presented above, TNF-α, CSF-2,
and CXCL8 have been shown to be at increased levels during both malaria and babesiosis.
Thus, it is possible that in both infections, these cytokines and chemokines participate in the
alternative pathway of complement activation, which could contribute to the intravascular
hemolysis observed in both diseases. Further, as antibodies are not engaged in complement
alternative pathway activation, this can explain the lack of association between the severity
of anemia and autoantibodies in human malaria that was mentioned earlier [186,187].
Although Chapman and Ward [165] observed depletion of complement components in rats
infected with B. rodhaini, the authors did not detect depletion from the properdin pathway
of complement activation. On the other hand, Pawluczkowycz et al. [240] has demonstrated
that hematin, a product released from lysed RBCs, promotes the alternative pathway of
complement activation in malaria caused by P. falciparum. According to Chen et al. [241],
properdin is the key player in hemolytic anemia caused by complement dysregulation.

8. Splenic Retention of RBCs

Parasitized RBCs are cleared by the spleen in both babesiosis and malaria [8,242–244].
Splenomegaly is typical for both diseases in various hosts (Figure 2) [59,72,243,245,246].
In B. bovis-infected calves, splenomegaly has been shown to be caused by hyperplasia
of both small leukocytes (CD3+, CD4+, and γδ T cells) and large leukocytes (monocytes,
macrophages, dendritic cells, and large NK granular cells). In these animals, hyperplasia
was observed in red pulp along with a reduction in white pulp, and a loss in distinc-
tion between red pulp and the marginal zone was also observed [246]. Similar results
were demonstrated in dogs infected with B. rossi, where increased numbers of monocyte-
macrophages of bone marrow origin, splenic macrophages, T lymphocytes, mature B
lymphocytes, and plasma cells were observed in red pulp, with immature B cells and
plasma cells also relocated to red pulp in infected dogs [55].
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Figure 2. Enlarged spleen from a 4-month-old female German Shepherd which did not survive
B. canis infection.

As in bovine and canine babesiosis, massive hyperplasia of macrophages has been
observed in the spleens of mice experimentally infected with P. chabaudi. Although the
distinction between red and white pulp was lost in traditional hematoxylin-eosin staining,
immunohistochemical examination revealed restriction of macrophages to the red pulp
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in infected animals, while dendritic cells had migrated from red pulp to the areas of
white pulp [247].

In human malaria, the spleen is also enlarged. The red pulp is congested with both
infected and uninfected RBCs, and there is an increase in the number of macrophages [243].
In rare cases, enlargement of the spleen may lead to rupture of the organ over the course
of both human malaria and babesiosis [243,248]. However, according to the authors’
knowledge, rupture of the spleen has not been described in canine babesiosis, except for
one case of a dog with asymptomatic babesiosis and an enlarged spleen which ruptured
whilst playing with other dogs. Three hours after the incident, the dog had a splenectomy,
with babesiosis recognized a few hours after surgery [249].

In human malaria caused by P. falciparum, splenic retention of parasitized RBCs results
from the fact that these erythrocytes, as less deformable, are not able to pass through
very narrow inter-endothelial slits in the slow microcirculation of the splenic red pulp.
However, even non-parasitized RBCs are mildly less deformable during an infection [243].
Mourão et al. [176] demonstrated that autoantibodies opsonizing RBCs may decrease the
deformability of these cells during P. vivax malaria. A similar decrease in deformability has
been observed in P. berghei- and B. microti-infected erythrocytes [250]. Moreover, increased
serum ferritin levels, which are observed in human babesiosis, may induce oxidative
stress, which can also lead to decreased deformability of RBCs [251,252]. Additionally, it
is possible for uninfected RBCs to have pathogen molecules on their surface. Together
with infected erythrocytes, due to being less deformable and/or covered with parasite
molecules, non-parasitized RBCs are also retained by the spleen and may be phagocytized
or lysed by complement [243]. In this way, splenic retention of RBCs may contribute to
the development of anemia during both malaria and babesiosis. Moreover, splenomegaly
correlates with decreased hematocrit or hemoglobin concentrations in malaria, especially
in naïve subjects [243].

In experimental murine malaria, Leisewitz et al. [247] demonstrated increased expres-
sion of IFN-γ in splenic dendritic cells at the beginning of infection, which reached a peak
on day five. During this early phase of malaria, expressions of TNF-α and IL-10 were static
in all splenic cells. A slow increase in IFN-γ expression was observed in macrophages and
B lymphocytes in the spleens of infected mice, while increased expression of TNF-α in
dendritic cells was observed yet was not significant. Additionally, IL-10 expression did not
increase in splenic cells [247]. Additional results in experimental bovine babesiosis were
observed by Goff et al. [253]. Increased expression of IL-12 and IFN-γ was observed in
splenic aspirates of calves and adult cows infected with B. bovis. In young animals, the
increase occurred just after infection, while in adult cows it was delayed, being observed
five days later [253]. Increased expression of TNF-α in splenic mononuclear cells occurred
soon after infection, both in young and adult animals. In young animals, TNF-α peaked
at higher levels and started to decrease when IL-10 peak expression was achieved on
the ninth day of infection; alternatively, in adults, TNF-α expression started to decrease
before IL-10 peaked. Expression of inducible nitric oxide synthase was detected only in
calves, and nitric oxide production started earlier and was higher than in adult cows. In
both young and adult animals, hematocrit decreased by about 50%; however, only young
animals survived the infection. The authors of the study concluded that nitric oxide played
a role in controlling the infection during an initial innate Th1 response, but also transiently
downregulated the Th1 response. Moreover, IL-12 and IFN-γ production prior to IL-10
production protects the host [253]. Although there are differences between results of studies
examining murine malaria and bovine babesiosis, likely resulting from different hosts and
pathogens, both works demonstrate the importance of IFN-γ in the splenic response to
these infections. Similarly, changes in the spleen architecture associated with destruction of
the marginal zone with lysed RBCs and increased plasma concentrations of IFN-γ were
observed in B. microti-infected mice [59].

In human malaria, hyperreactive malarial splenomegaly has been associated with
significantly increased concentrations of IgM, anti-parasite IgG, IL-10, and IFN-γ [254].
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According to Del Portillo et al. [255], increased splenic levels of IFN-γ result from the
action of IL-12 produced by dendritic cells during the early phase of malaria. IL-12 also
causes proliferation of T lymphocytes. Increased production of IFN-γ induces progenitor
cells in the bone marrow, which differentiate to monocytes migrating to the spleen during
acute Plasmodium infection [255]. Moreover, Lacerda-Queiroz et al. [256] demonstrated that
increased production of IFN-γ by T cells was associated with apoptosis of red pulp splenic
macrophages, dendritic cells, NK cells, and the death of mice experimentally infected
with P. yoelii nigeriensis. As increased IFN-γ has been observed in experimental canine
babesiosis [27], it is possible that IFN-γ leads to similar changes in the spleen of dogs
with babesiosis. However, other mechanisms cannot be excluded. Brown et al. [94] did
not observe increased IFN-γ or CXCL10 above minimum detectable concentrations in
experimental infection with B. gibsoni. However, only two dogs were infected in that
experiment [94].

9. Sequestration of RBCs

Sequestration of erythrocytes in micro-vessels has been observed both in malaria
and babesiosis [257,258]. This results from a cyto-adhesive phenomenon, and in babesio-
sis caused by B. bovis, this is partially caused by variant erythrocyte surface antigen 1
(VESA1), while proteins of the P. falciparum erythrocyte membrane protein 1 (Pf EMP1)
family have a role during malaria [258,259]. These proteins act as ligands for receptors
on the endothelial cell surface [258,259]. Although other bovine Babesia species such as
B. bigemina and B. divergens express VESA proteins (VESA1 or VESA2), Jackson et al. [260]
reported that only B. bovis infection leads to cytoadherence of infected RBCs and seques-
tration of erythrocytes in the microvasculature of cattle [260]. However, according to
Krause et al. [9], cytoadherence of erythrocytes occurs in infections caused by B. bigemina.
Moreover, this phenomenon has been reported as present over the course of infections
caused by B. rodhaini in mice, B. duncuni in hamsters, B. divergens in humans, and B. canis in
dogs [9]. Sequestration of infected RBCs has also been observed in canine babesiosis caused
by B. canis and B. rossi [8,72,133], and using electron microscopy, cytoadherence of infected
RBCs has been recognized in B. rossi infection [71]. In 2017, Eichenberger et al. [261] identi-
fied a high number of transcribed VESA genes and their products in the B. canis-secreted
proteome. According to these authors, cytoadherence and sequestration of Babesia-infected
erythrocytes in dogs are another explanation for the lack of the association between the
severity of infection and the level of parasitemia [261].

Besides parasite proteins on the surface of infected RBCs causing adherence to en-
dothelial cells, Babesia-infected erythrocytes can be sequestered in micro-vessels through
the action of cell adhesion molecules (CAMs) [262]. In human malaria, direct sequestration
of erythrocytes is caused by expression of intercellular adhesion molecule 1 (ICAM-1) on
the surface of endothelial cells [263,264]. This molecule also participates in interactions
between leukocytes and between leukocytes and endothelial cells. Moreover, ICAM-1
participates in transendothelial migration of leukocytes and adhesion-dependent oxida-
tive burst. Its rapid increased expression is induced by TNF-α, IFN-γ, IL-1α, IL-1β, IL-6,
HMGB-1, and reactive oxygen species. Activation of ICAM-1 on endothelial cells leads
to increased production of CXCL8 and vascular cell adhesion molecule 1 (VCAM-1), and
activation on macrophages leads to increased production of IL-1 [140,264,265]. VCAM-1 is
also involved in sequestration of infected RBCs in micro-vessels over the course of malaria.
This molecule, like ICAM-1, CD36, and cytokine-activated endothelial protein C, is a recep-
tor that binds Pf EMP1 [266–268]. VCAM-1 participates in the migration of leukocytes from
blood vessels to tissues during infections [269]. Its expression is activated by high levels of
reactive oxygen species, oxidized low-density lipoprotein, hyperglycemia, and stimulation
of toll-like receptors on endothelial cells. Pro-inflammatory cytokines such as TNF-α, IL-1β,
and HMGB-1 activate VCAM-1 by induction of the generation of reactive oxygen species,
which stimulates nuclear factor κB. This activation can be blocked by superoxide dismutase,
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antioxidants (N-acetylocystine or α-tocopherol), and nitric oxide, which interacts with
superoxide [140,270].

Cerebral and placental malaria are the best-known complications of Plasmodium
infections, which are associated with cytoadherence and RBC sequestration in micro-
vessels [271,272]. However, autopsies performed in 317 women who did not survive
P. falciparum malaria demonstrated massive accumulation of infected erythrocytes in most
visceral capillaries. Moreover, in cases where placentas were available, the study showed
coexistence of cerebral and placental sequestration of infected RBCs [273]. This study
showed sequestration of erythrocytes not only in the brain and placenta, but also in other
micro-vessels. Similar results showing congestion and sequestration of RBCs in various
organs have been observed in canine babesiosis [72,133,274,275]. Moreover, activation of
endothelial cells and increased expression of HMGB-1, ICAM-1, and VCAM-1 has been
detected in canine babesiosis [29,275]. As mentioned above, increased concentration or
expression of pro-inflammatory cytokines TNF-α, IFN-γ, and HMGB-1 occurs during
canine babesiosis. Thus, it seems probable that CAMs may contribute to the sequestration
of RBCs in micro-vessels during the disease in infected dogs.

DIC and NETosis are other complications which may participate in the sequestration of
erythrocytes in microvasculature in malaria, and probably in babesiosis. However, NETosis
has not been studied in Babesia infections [12,226–230,276]. Activation of neutrophils and re-
lease of NETs have been observed in various human parasitic infections, including malaria,
leishmaniosis, onchocerciasis (induced by endosymbionts Wolbachia), and toxoplasmosis, as
well as in bacterial, fungal, and viral infections, in experimental animal models, in in vitro
experiments, and in dogs with sepsis [276–284]. It seems probable that similar mechanisms
to those observed in malaria are involved in sequestration of RBCs in babesiosis. Thus, the
development of NETosis in various babesiosis, including canine babesiosis, is also possible.

In NETosis, endothelial contact with pathogens leads to sequestration and activa-
tion of leukocytes. Monocytes, activated by the expression of tissue factor, induce fibrin
formation. P-selectin, ICAM-1, and CXCL1 bind and activate neutrophils to secrete decon-
densed chromatin, which is spread as strands of DNA bound to histones, myeloperoxidase,
and neutrophil elastase. These strands of DNA and proteins form NETs, in which both
pathogens and blood cells are trapped [285,286]. Moreover, interactions between activated
platelets and neutrophils also induce the release of NETs [283]. Yago et al. [286] showed
that NET formation promotes deep vein thrombosis in mice. Delabranche et al. [287]
demonstrated that NETosis was associated with the development of DIC in humans with
septic shock. Although NETosis has not been studied in canine babesiosis, it has been
recognized in dogs with sepsis. Thus, it seems probable that it may develop together with
DIC in infected dogs. Possible NETosis development in this disease leading to neutrophil
sequestration, trapping, and consumption, may be another explanation for neutropenia
in infected dogs. This suggestion is in agreement with the proposition of Kuleš et al. [29],
who speculated that increased expression of ICAM-1 and VCAM-1 were possible causes of
neutropenia in canine babesiosis. Moreover, NETosis, in which platelets participate, is also
a potential explanation as one of the mechanisms for highly prevalent thrombocytopenia in
canine babesiosis, which occurs in almost 100% of infected dogs, whereas DIC has been rec-
ognized only in a few studies in about 20% of dogs with babesiosis [12,228,288]. However,
a hypocoagulable state has been rarely observed over the course of the disease [8].

Increased fibrinolysis has been detected in canine babesiosis [29,230]. In 2013, Goddard
et al. [230] demonstrated an increased D-dimer concentration, a product of the fibrinolytic
pathway [289], in dogs infected with B. rossi, with the concentration higher in non-survivors.
In 2017, Kuleš et al. [29] showed that dogs infected with B. canis had an increased con-
centration of soluble urokinase plasminogen activator receptor (suPAR), an increased
plasminogen activator inhibitor-1 concentration, and increased plasminogen activity six
days after treatment with imidocarb. Moreover, dogs with complicated babesiosis had a
higher concentration of a proenzyme, thrombin activatable fibrinolysis inhibitor, in com-
parison to dogs with uncomplicated disease [29]. However, it should be emphasized that
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the receptor for urokinase plasminogen activator is expressed by neutrophils, monocytes,
macrophages, and activated T lymphocytes, and increased uPAR expression and serum
suPAR concentrations are typical for inflammatory and infectious diseases [290,291]. Nev-
ertheless, the results of the studies of Goddard et al. [230] and Kuleš et al. [29] indicate
coagulant disorders, and together with the results of the studies by Máthé et al. [12], Ruiz
de Gopegui et al. [228], and Barić Rafaj et al. [229], they indicate the presence of both
hypercoagulable and hypocoagulable states in canine babesiosis.

As mentioned above, increased ICAM-1 expression is induced by TNF-α, IFN-γ,
IL-1α, IL-1β, IL-6, HMGB-1, and reactive oxygen species, and the result of increased ICAM-
1 expression is increased expression of VCAM-1 and production of IL-8 [140,264,265].
However, IFN-γ induces ICAM-1 expression mainly in epithelial cells, and endothelial
expression requires protein kinase C action [292,293]. On the other hand, IL-4 and IL-10
decrease the expression of ICAM-1, and IL-10 decreases VCAM-1 expression [294,295]. In
an experimental study of IL-10-deficient mice with chronic colitis, these CAMs were highly
expressed in comparison to the control group [295]. Anti-inflammatory IL-10 expression
is increased during canine babesiosis; however, it seems this increase is insufficient to
functionally offset the influence of pro-inflammatory cytokines on CAM induction [79].
Most of the pro-inflammatory cytokines that induce CAMs have been studied during canine
babesiosis and show an increased concentration, along with an increased concentration of
the chemokine IL-8 [27,29,30,79,89,136,150]. However, in one study on canine babesiosis
caused by B. rossi, the IL-8 concentration was lower in infected dogs [28]. Atkinson
et al. [27] demonstrated in an experimental infection that the CXCL8 concentration was
dependent on the parasite dose and changed over the course of the disease. Moreover,
Smith et al. [93] showed that the maximal IL-8 concentration was associated with peak
parasitemia. The studies of Smith et al. [93] and Atkinson et al. [27] may explain the
discrepancies observed between studies on B. canis and B. rossi infections in which opposite
correlations between hematocrit and IL-8 were observed [30,79]. Increased concentrations of
pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-6, and HMGB-1 in canine babesiosis,
together with the results of the studies of Eichenberger et al. [261] on VESA proteins, and
Kuleš et al. [29] on ICAM-1 and VCAM-1 in canine babesiosis, indicate sequestration of
infected RBCs over the course of the disease. Moreover, neutropenia and increased IL-8
in Babesia-infected dogs may indicate possible development of NETosis [27,30,35,36]. This,
together with platelet activation and hypercoagulable states in canine babesiosis, may
indicate sequestration of both infected and uninfected erythrocytes in micro-vessels, and it
is probable that the chemokine CXCL4 participates in this pathology observed in canine
babesiosis [12,29,129,228,229].

Regarding sequestration of RBCs in micro-vessels, it seems probable that both infected
and uninfected erythrocytes are trapped in micro-vessels by various mechanisms, including
the actions of VESA proteins and CAMs, and possibly with the contribution of NETs and
DIC. In this way, the RBC count may decrease in canine babesiosis. However, a further
study of the association between anemia and sequestration is required to show the degree
of participation of RBC sequestration in the development of anemia in infected dogs.
Moreover, sequestration of various blood cells in micro-vessels together with DIC and
presumptive NETosis contribute to tissue hypoxia, which leads to other complications over
the course of the disease.

10. Conclusions

Direct destruction of infected RBCs by the parasite is not the main cause of anemia in
canine babesiosis. The lack of association between the levels of parasitemia and anemia in
Babesia-infected dogs indicates that immune responses contribute to decreasing the RBC
count. While low venous parasitemia together with severe anemia may be caused by
sequestration of infected RBCs in micro-vessels, the immune response nevertheless leads
to both killing of the parasite and erythrocyte destruction. Phagocytosis, oxidative damage
of RBCs, and the complement system all participate in the development of anemia. These
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processes are driven by pro-inflammatory cytokines and chemokines. The contributions of
these cytokines and chemokines in the development of anemia during canine babesiosis
are presented in Tables 1 and 2.

Increased phagocytic activity of splenic macrophages and neutrophils, and peripheral
granulocytic phagocytosis in small vessels, lead to a decrease in the number of RBCs in
infected dogs. Moreover, macrophages and probably platelets contribute to oxidative
damage of RBCs over the course of the disease.

Antibodies to phosphatidylserine and disregard of “do not eat me” signals are likely
involved in antibody-dependent lysis of RBCs during canine babesiosis. Opsonization
of erythrocytes by antibodies may lead to complement activation, antibody-dependent
cellular cytotoxicity, erythrophagocytosis, and oxidative damage of RBCs. However, ADCC
appears to contribute to the removal of the parasite, but not to the development of anemia.
Increased production of pro-inflammatory cytokines and chemokines in Babesia-infected
dogs may partially result from complement activation.

Both parasitized and non-parasitized RBCs are less deformable over the course of
infection. RBCs that are less deformable and/or covered with a parasite, including non-
parasitized RBCs, may be retained by the spleen, phagocytized by macrophages and
neutrophils, or lysed by complement. Thus, splenic retention may contribute to the devel-
opment of anemia during babesiosis.

Sequestration of erythrocytes in micro-vessels may also contribute to decreased RBC
counts. This process is facilitated by VESA proteins and CAMs, and in some cases by
DIC. Additionally, it is possible that NETosis also plays a role in sequestration of RBCs in
micro-vessels during canine babesiosis.

All these mechanisms involved in the development of anemia are driven by pro-
inflammatory cytokines and chemokines. Moreover, delayed or insufficient production of
anti-inflammatory cytokines, causing an imbalance between pro- and anti-inflammatory
actions, favors these patho-mechanisms.

Table 1. Possible roles of pro-inflammatory cytokines in the development of anemia in
canine babesiosis.

Cytokines Action Reference

TNF-α

Induction of CXCL8 and CXCL1 gene expression. Together
with IFN-γ, induction of monocyte to macrophage

differentiation. Stimulation of nitric oxide synthesis.
Increased expression of CSF-2. Contribution to secretion of
properdin leading to alternative pathway of complement
activation. Increased expression of ICAM-1 and VCAM-1.

[73–76,81,140,238,264,265,270]

IFN-γ

Contribution to classical activation of macrophages leading
to release of IL-6 and TNF-α. Contribution to splenic

response to infection (induction of progenitor cells in bone
marrow which differentiate to monocytes migrating to the

spleen). Increased expression of ICAM-1.

[140,145,255,264,265]

IL-6

Influence on development of oxidative stress. Stimulation of
IgG1 production. Activation of Th1 lymphocytes.

Stimulation of IgM production (inhibited by IFN-γ).
Contribution to activation of complement system. Increased

expression of ICAM-1.

[140,152–154,188,189,192,195,232,264,265]

IL-12
Together with IL-18, triggering IFN-γ and TNF-α action. In
synergy with IL-18, inducing production of mitochondrial

reactive oxygen species.
[99,102]

IL-18
Together with IL-12, triggering IFN-γ and TNF-α action. In
synergy with IL-12, inducing production of mitochondrial

reactive oxygen species.
[99,102]
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Table 1. Cont.

Cytokines Action Reference

GM-CSF (CSF-2)

Contribution to classical activation of macrophages.
Contribution to the recruitment of neutrophils and

monocytes to the site of infection, and in mobilization of
monocytes from bone marrow. Stimulation of production of
MCP-1 by neutrophils and macrophages. Enhanced ADCC

by neutrophils. Contribution in secretion of properdin
leading to alternative pathway of complement activation.

[81,85,208,238]

HMGB-1
Activation of neutrophil adhesive and migratory functions,

and production of reactive oxygen species. Increased
expression of ICAM-1 and VCAM-1.

[140,141,264,265,270]

IL-4
Stimulation of production and secretion of IgG1 and IgE

(IgE production inhibited by IL-8). Increased production of
IL-6. Decreased expression of ICAM-1.

[188,190,196,197,294,295]

IL-15 Development of NK cells and induction of their cytotoxicity. [206]

IL-2 Induction of NK cell proliferation. Induction of regulatory T
cells to inhibit NK cell function. [206,207]

IL-1 Increased expression of ICAM-1 and VCAM-1. [140,264,265,270]

While this review has highlighted a number of mechanisms that can contribute to the
development of anemia during canine babesiosis (along with the role of specific cytokines
and chemokines), there still remains several gaps in the knowledge of how canine babesiosis
progresses. Consequently, further studies of this disease examining the involvement of
immune responses in the development and promotion of anemia during canine babesiosis,
with a focus on the roles of cytokines and chemokines that mediate these responses, will
further our understanding of this disease. Moreover, the study of NETosis in canine
babesiosis and the association between anemia and sequestration of RBCs in micro-vessels
is needed to discern if trapping of blood cells in microvasculature significantly contributes
to the development of anemia.

Table 2. Possible roles of chemokines in the development of anemia in canine babesiosis.

Chemokines Action Reference

IL-8 (CXCL8)

Induction of chemotaxis of neutrophils, their activation, and
stimulation of phagocytosis. Potentiating neutrophil

oxidative burst. Contribution to classical activation of
complement system. Contribution to secretion of properdin
leading to alternative pathway of complement activation.

[92,95,96,139,232,238]

MCP-1 (CCL2) Contribution to classical activation of macrophages.
Chemoattractant for monocytes, NK cells, and neutrophils. [77,78]

KC (CXCL1)-like
Induction of chemotaxis of neutrophils, their activation, and

stimulation of phagocytosis. Together with ICAM-1 and
P-selectin, activates neutrophils to form NETs.

[92,95,96,285,286]

PF-4 (CXCL4) Platelet activation and induction of production of
mitochondrial reactive oxygen species. [130]

IP-10 (CXCL10) Contribution in the recruitment of granulocytes and
macrophages, and phagocytosis. [108]

Author Contributions: Conceptualization, W.Z., O.G.-Z. and L.J.N.; writing—original draft prepara-
tion, W.Z., O.G.-Z. and L.J.N.; writing—review and editing, L.J.N.; visualization, W.Z.; figures and
graphical abstract, W.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Pathogens 2023, 12, 166 22 of 32

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Irwin, P.J. Canine babesiosis: From molecular taxonomy to control. Parasites Vectors 2009, 2, S4–S9. [CrossRef]
2. Matijatko, V.; Torti, M.; Schetters, T.P. Canine babesiosis in Europe: How many diseases? Trends Parasitol. 2012, 28, 99–105.

[CrossRef] [PubMed]
3. Baneth, G.; Cardoso, L.; Brilhante-Simões, P.; Schnittger, L. Establishment of Babesia vulpes n. sp. (Apicomplexa: Babesiidae), a

piroplasmid species pathogenic for domestic dogs. Parasites Vectors 2019, 12, 1–8. [CrossRef] [PubMed]
4. Marks Stowe, D.A.; Birkenheuer, A.J.; Grindem, C.B. Pathology in practice. Intraerythrocytic infection with organisms con-sistent

with a large Babesia sp. J. Am. Vet. Med. Assoc. 2012, 241, 1029–1031. [CrossRef]
5. Birkenheuer, A.; Neel, J.; Ruslander, D.; Levy, M.; Breitschwerdt, E. Detection and molecular characterization of a novel large

Babesia species in a dog. Vet. Parasitol. 2004, 124, 151–160. [CrossRef] [PubMed]
6. Barash, N.R.; Thomas, B.; Birkenheuer, A.J.; Breitschwerdt, E.B.; Lemler, E.; Qurollo, B.A. Prevalence of Babesia spp. and clinical

characteristics of Babesia vulpes infections in North American dogs. J. Vet. Intern. Med. 2019, 33, 2075–2081. [CrossRef]
7. Kelly, P.; Köster, L.S.; Lobetti, R.G. Canine babesiosis: A perspective on clinical complications, biomarkers, and treatment. Vet.

Med. Res. Rep. 2015, 6, 119–128. [CrossRef]
8. Jacobson, L.S. The South African form of severe and complicated canine babesiosis: Clinical advances 1994–2004. Vet. Parasitol.

2006, 138, 126–139. [CrossRef]
9. Krause, P.J.; Daily, J.; Telford, S.R.; Vannier, E.; Lantos, P.; Spielman, A. Shared features in the pathobiology of babesiosis and

malaria. Trends Parasitol. 2007, 23, 605–610. [CrossRef]
10. Djokic, V.; Rocha, S.C.; Parveen, N. Lessons Learned for Pathogenesis, Immunology, and Disease of Erythrocytic Parasites:

Plasmodium and Babesia. Front. Cell. Infect. Microbiol. 2021, 11, 707. [CrossRef]
11. Klevtsova, E.; Sackheim, J.; Spitzer, E.; Fries, B. Malaria of the North: Outcomes of Human Babesiosis in Long Island, New York

After Treatment Guidelines Revision. Open Forum Infect. Dis. 2015, 2, 1633. [CrossRef]
12. Máthé, Á.; Vörös, K.; Papp, L.; Reiczigel, J. Clinical manifestations of canine babesiosis in Hungary (63 cases). Acta Vet. Hung.

2006, 54, 367–385. [CrossRef] [PubMed]
13. Jiero, S.; Pasaribu, A.P. Haematological profile of children with malaria in Sorong, West Papua, Indonesia. Malar. J. 2021, 20, 126.

[CrossRef] [PubMed]
14. Henry, B.; Roussel, C.; Carucci, M.; Brousse, V.; Ndour, P.A.; Buffet, P. The Human Spleen in Malaria: Filter or Shelter? Trends

Parasitol. 2020, 36, 435–446. [CrossRef] [PubMed]
15. Kho, S.; Barber, B.E.; Johar, E.; Andries, B.; Poespoprodjo, J.R.; Kenangalem, E.; Piera, K.A.; Ehmann, A.; Price, R.N.; William, T.;

et al. Platelets kill circulating parasites of all major Plasmodium species in human malaria. Blood 2018, 132, 1332–1344. [CrossRef]
16. Kotepui, M.; Kotepui, K.U.; Milanez, G.D.; Masangkay, F.R. Reduction in total leukocytes in malaria patients compared to febrile

controls: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0233913. [CrossRef]
17. Ullah, I.; Ali, M.U.; Ali, S.; Rafiq, A.; Sattar, Z.; Hussain, S. Hematological Profile of Patients Having Malaria-positive Peripheral

Blood Smears: A Cross-sectional Study at a Diagnostic Research Center in Khyber Pakhtunkhwa, Pakistan. Cureus 2018, 10, e3376.
[CrossRef]

18. Francischetti, I.M.B. Does Activation of the Blood Coagulation Cascade Play a Role in Malaria Pathogenesis? Trends Parasitol.
2008, 24, 258–263. [CrossRef]

19. Milner, D.A. Malaria Pathogenesis. Cold Spring Harb. Perspect. Med. 2018, 8, a025569. [CrossRef]
20. Glaharn, S.; Punsawad, C.; Ward, S.A.; Viriyavejakul, P. Exploring pancreatic pathology in Plasmodium falciparum malaria patients.

Sci. Rep. 2018, 8, 10456. [CrossRef]
21. Mishra, S.K.; Behera, P.K.; Satpathi, S. Cardiac involvement in malaria: An overlooked important complication. J. Vector Borne Dis.

2013, 50, 232. [PubMed]
22. Clark, I.A.; Budd, A.C.; Alleva, L.M.; Cowden, W.B. Human malarial disease: A consequence of inflammatory cytokine release.

Malar. J. 2006, 5, 85. [CrossRef] [PubMed]
23. Bhutani, A.; Kaushik, R.M.; Kaushik, R. A study on multi-organ dysfunction syndrome in malaria using sequential organ failure

assessment score. Trop. Parasitol. 2020, 10, 86–94. [PubMed]
24. Teparrukkul, P.; Hantrakun, V.; Imwong, M.; Teerawattanasook, N.; Wongsuvan, G.; Day, N.P.; Dondorp, A.M.; West, T.E.;

Limmathurotsakul, D. Utility of qSOFA and modified SOFA in severe malaria presenting as sepsis. PLoS ONE 2019, 14, e0223457.
[CrossRef]

25. Matijatko, V.; Kiš, I.; Torti, M.; Brkljačić, M.; Kučer, N.; Rafaj, R.B.; Grden, D.; Živičnjak, T.; Mrljak, V. Septic shock in canine
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