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Abstract

Cerebral white matter injury, characterised by loss of premyelinating oligodendrocytes (pre-OLs),

is the most common form of injury to the preterm brain and is associated with a high risk of

neurodevelopmental impairment. The unique cerebrovascular anatomy and physiology of the

premature baby underlies the exquisite sensitivity of white matter to the abnormal milieu of preterm

extrauterine life, in particular ischaemia and inflammation. These two upstream mechanisms can

coexist and amplify their effects, leading to activation of two principal downstream mechanisms:

excitotoxicity and free radical attack. Upstream mechanisms trigger generation of reactive oxygen

and nitrogen species. The pre-OL is intrinsically vulnerable to free radical attack due to immaturity

of antioxidant enzyme systems and iron accumulation. Ischaemia and inflammation trigger glutamate

receptor-mediated injury leading to maturation-dependent cell death and loss of cellular processes.

This review looks at recent evidence for pathogenetic mechanisms in white matter injury with

emphasis on targets for prevention and treatment of injury.

Cerebral white matter injury in the premature infant is a problem of enormous importance. For

example, in the USA each year approximately 60 000 infants (1.5% of the 4 000 000 yearly

live births) are born with a birth weight less than 1500 g,1 and based on MRI data at least 50%

exhibit some degree of cerebral white matter injury,2, 3 as defined later. This injury likely

accounts for the predominance of neurological deficits observed in the approximately 90% of

infants who survive. These deficits in survivors include cerebral palsy in 5–10% and

importantly, cognitive/behavioural/attentional deficits in about 50%.4, 5 Although other

pathologies occur in premature infants—for example, severe intraventricular haemorrhage,

periventricular haemorrhagic infarction, hydrocephalus, cerebellar disease—cerebral white

matter injury seems to be the predominant lesion. Prevention of this injury requires insight into

pathogenesis, and recent research holds promise that preventive interventions will be found.

PERIVENTRICULAR LEUKOMALACIA AND ENCEPHALOPATHY OF

PREMATURITY

Cerebral white matter injury is the term used in this review for the full spectrum of

periventricular leukomalacia (PVL). PVL has two components—that is, focal necrosis deep in

the white matter with loss of all cellular elements, and a more diffuse component in central

cerebral white matter with loss of pre-myelinating oligodendrocytes (pre-OLs), astrogliosis

and microglial infiltration.2 PVL occurs in two overlapping forms: cystic PVL, in which the

focal necroses are macroscopic and evolve to multiple cysts (fig 1A); and non-cystic PVL, in

which the focal necroses are microscopic and evolve principally to glial scars (fig 1B). A third

form of cerebral white matter abnormality consists of diffuse astrogliosis without focal

necroses (fig 1C). That the latter is the mildest form of injury in a spectrum that includes cystic
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PVL as the most severe form seems likely but has not yet been established conclusively. Cystic

and non-cystic PVL are most clearly related to subsequent neurological deficits. Cystic PVL

is now rare; non-cystic PVL accounts for most of the cerebral white matter injury in premature

infants today.2, 3, 6

Recently the term ‘‘encephalopathy of prematurity’’ has been used for the constellation of

neuronal abnormalities observed in premature infants, especially those with cerebral white

matter injury.7 These grey matter abnormalities, identified initially by volumetric MRI studies,

include defective growth of the cerebral cortex and deep nuclear structures, in particular the

thalamus and basal ganglia.6–9 A recent neuropathological study of 41 premature infants

identified neuronal loss and gliosis in the thalamus in 40–55% of infants, in the basal ganglia

in 30–50% and in the cerebral cortex in 10–30%.10 Importantly, the neuronal deficits were

observed predominantly in brains with PVL, nearly entirely non-cystic, and were uncommon

in brains with only diffuse white matter gliosis or normal white matter. The neuronal

abnormalities may be particularly important in the genesis of the cognitive deficits

subsequently observed in premature infants. The combination of PVL and the neuronal deficits

constitutes the ‘‘encephalopathy of prematurity’’.7, 10 It is beyond the scope of this review to

discuss the potential relationship of the white matter injury to the neuronal abnormalities—

that is, whether cause–effect or association. Indeed, a fertile topic for future research is the

delineation of the relationships between the involvement of the neuronal-axonal unit and the

spectrum of white matter disturbance in PVL. In the remainder of this review, we focus on the

pathogenesis of the white matter injury per se, with a particular focus on the pre-OL.

PATHOGENESIS OF PVL

The pathogenesis of PVL is related to a remarkable confluence of maturation-dependent factors

that render the premature infant’s brain exquisitely vulnerable to the occurrence of cerebral

white matter injury, as we will detail subsequently. The principal initiating pathogenetic factors

in PVL appear to be cerebral ischaemia and, in a still-to-be-defined subset, maternal

intrauterine (or neonatal) infection and fetal (or neonatal) systemic inflammation. These two

upstream mechanisms activate two critical downstream mechanisms—that is, excitotoxicity

and free radical attack by reactive oxygen and nitrogen species (ROS, RNS)—that lead to death

of the vulnerable pre-OL (fig 2).

Upstream mechanisms

During peripartum development, the preterm brain is subject to intrinsic fetal and

environmental factors that trigger injury to the differentiating pre-OL. The ontogenic

vulnerability of the preterm brain to white matter injury together with initiating extrinsic factors

are related to two broad upstream mechanisms: ischaemia and inflammation (fig 2). These

mechanisms often operate simultaneously; they may act in concert to potentiate each other and

are important targets in strategies to prevent or ameliorate PVL.

Ischaemia—Premature infants have a propensity for developing cerebral ischaemia,

especially in white matter (fig 2). This propensity is likely because of intrinsic vascular and

physiological factors, including (a) arterial border and end zones within white matter, and (b)

impaired regulation of cerebral blood flow (CBF).

Vascular anatomical factors: The deep focal necrotic lesions in PVL occur in periventricular

arterial end zones of long penetrating vessels derived mainly from the middle cerebral arteries.

These vessels run from the pial surface and terminate in the deep periventricular white matter.

The terminations of these long penetrators essentially form distal arterial fields and are most

sensitive to falls in cerebral perfusion.11–13 Active development of this periventricular
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vasculature occurs during the last 16 weeks of human gestation.14, 15 Thus, in the most

immature infants, a lesser degree of ischaemia may cause focal necrotic lesions.16

The diffuse component of PVL may be similarly related to development of the more peripheral

penetrating vasculature—that is, the short penetrators and the anastomoses between the long

penetrators. The number of short penetrators and anastomoses between the long and short

penetrators increases in the third trimester with a consequent decrease in vulnerable end zones

and border zones. Recent work in fetal sheep has shown that the differential spatial and

temporal distribution of pre-OLs in the developing cerebral white matter is also important in

determining the regional selectivity of white matter to ischaemia.17

The functional correlate of these anatomical studies is the markedly low basal blood flow to

cerebral white matter. Earlier pioneering xenon clearance studies showed low global CBF in

premature infants, whereas later neonatal positron emission tomography (PET) studies showed

CBF values in cerebral white matter to be startlingly low (only 25% of CBF to cortex), even

in healthy preterm infants with normal neurological outcomes.18, 19 The values ranged from

only 1.6 ml/100 g/min to 3 ml/100 g/min, much below the threshold for viability in the adult

brain (10 ml/100 g/min; normal adult CBF is 50 ml/ 100 g/min). This extraordinarily low CBF

during early extra-uterine life suggests that the survival of premature cerebral white matter

depends on a marginal blood flow, and therefore may be highly vulnerable to even minor

decreases in cerebral perfusion.

Impaired regulation of CBF: There is accumulating evidence that the brain of the sick preterm

infant often shows impaired cerebrovascular autoregulation in response to changes in blood

pressure. The cerebral circulation may become pressure-passive. The resulting inability to

maintain CBF in the face of even minor falls in systemic blood pressure (as often occurs in

preterm infants) might lead to ischaemia in the vulnerable arterial end and border zones

described above.

Pressure-passive cerebral circulation and impaired dynamic cerebrovascular autoregulation in

sick preterm infants have been shown in studies using both 133Xe clearance methods and non-

invasive near-infrared spectroscopy (NIRS).20–22 In a recent series of 90 premature infants,

pressure-passive periods were detected in over 95% of infants during the first 5 days of life,

and the proportion of time as pressure-passive was, overall, a mean of 20%, but was in excess

of 50% in some infants.23 Because only a minority of pressure-passive infants were

hypotensive, it is noteworthy that under conditions of conventional neonatal intensive care the

majority of infants might not be considered to be at risk for PVL.

The propensity of the preterm infant to pressure-passivity is related in part to immaturity of

intrinsic vasoregulatory mechanisms, such as absence of the muscle in penetrating cerebral

arterioles.24 In the stable preterm infant with intact cerebral autoregulation, clinically

acceptable resting arterial pressures occur close to the lower limit of the autoregulatory curve.

Thus, critical arterial pressures below which CBF begins to become pressure-passive lie

dangerously close to ‘‘normal’’ mean arterial pressures.25, 26 Clinically stable infants may

thus be potentially vulnerable to impaired cerebral perfusion with small decreases in systemic

blood pressure.27–29

Even when cerebrovascular autoregulation is intact, cerebral arterial end/border zones and the

concentration of vulnerable pre-OLs (see later) probably ensure that premature cerebral white

matter is susceptible to ischaemia in the presence of sufficient systemic hypotension or cerebral

vasoconstriction. The association of PVL and severe hypocarbia or hypotension is well

documented.30–34 Munro and coworkers, using NIRS, demonstrated reduced CBF in

hypotensive premature babies.26 Mean arterial pressure less than 31 mmHg during the first 24
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h of life in infants between 24 weeks’ and 30 weeks’ gestation was associated with impaired

EEG continuity, suggesting impaired CBF during such hypotension.35 Evidence for ischaemia

as a major pathogenetic mechanism emanates from a variety of animal models in which

induction of decreased CBF leads to predominant white matter injury.36–38

Mechanical ventilation is often necessary in preterm infants and fluctuations in arterial carbon

dioxide tension are common. Hypocarbia is a potent cerebral vasoconstrictor and an association

between early hypocarbia and PVL has been described in many human studies.39–42 In a

recent study of 905 infants weighing less than 1250 g, cumulative hypocarbia during the first

week of life was associated with an odds ratio of 5.6 for development of PVL.30

Infection/inflammation—Infection and inflammation (including ischaemia-induced

inflammation) together represent the second major upstream mechanism leading to injury or

death of pre-OLs (fig 2). At the heart of this mechanism is systemic upregulation of pro-

inflammatory cytokines and diffuse activation of microglia within immature white matter (fig

3).

Clinical studies: The fetal and neonatal human host response to injury has become a major

focus of interest in understanding the pathogenesis of PVL.43 The cytokine hypothesis posits

that a robust adaptive fetal systemic inflammatory response to intrauterine infection results in

raised levels of blood cytokines. Although some of these cytokines are variably toxic to pre-

OLs and could contribute to PVL, there is no clear correlation of neonatal plasma and

cerebrospinal fluid (CSF) cytokine profiles.44 The associated microglial response in cerebral

white matter with generation of free radicals may be more important (see later). It should be

noted that proinflammatory cytokines are produced in response to hypoxia-ischaemia, as well

as infection, further potentiating the direct effects of ischaemia.45

A number of epidemiological studies have shown an association between maternal/fetal

infection and sonographically detectable PVL or cerebral palsy.43 Both outcomes are increased

in the presence of infections of the decidua, placenta and amniotic fluid, fetal vasculitis, raised

cytokines in neonatal blood and amniotic fluid, and intrauterine T cell activation.46, 47

However, chorioamnionitis is also strongly associated with preterm delivery; controlling for

gestational age frequently reduces or abolishes an association between clinical

chorioamnionitis and PVL and the sequence of causation is not certain.48 In addition, most

studies have shown an association between markers of infection or inflammation and the

sonographically detectable cystic form of PVL, a pattern that now accounts for less than 10%

of all white matter injury. Control infants with sonographically occult diffuse PVL lesions

would weaken the association between infection and white matter injury. A recent prospective

study of 100 preterm infants studied by MRI at term failed to find an association between

moderate or severe white matter injury and chorioamnionitis.6

The direct contribution of postnatal infection in the pathogenesis of PVL requires further study.

Extremely low birthweight infants with neonatal sepsis have increased rates of cerebral palsy

and PVL.49, 50 A large cohort study of 6093 extremely low birthweight infants identified at

least one infection during neonatal life in 65%, with rates of early onset neonatal sepsis of 15–

19/1000 births.50, 51 Overall, as many as 25% of all infants < 1500 g will experience neonatal

sepsis. Thus postnatal infection could be an important etiological factor in PVL and an

important target for prevention.

Neuropathological studies: Neuropathological observations provide stronger evidence for

cytokine-mediated white matter injury in the premature brain. Several cytokines (especially

interferon γ and tumour necrosis factor (TNF) α) have been detected directly in human PVL

lesions, expressed principally in microglia/macrophages.52 Diffuse activated microgliosis is
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characteristic of the diffuse PVL lesion and suggests a principal pathogenetic role for activated

microglia.53

Abundant interferon γ has been detected in astrocytes in diffuse PVL, with expression

correlating with the degree of evidence for oxidative attack.54 The interferon γ receptor is

expressed on the surface of pre-OLs, and interferon γ is directly toxic to pre-OLs in culture,

an effect potentiated by TNFα.54, 55 These observations suggest an important role for both

interferon γ and TNFα in the pathogenesis of PVL. Notably, Ellison and coworkers44 have

demonstrated raised concentrations of TNFα in the CSF of infants with MRI-defined white

matter injury.

Experimental studies: Evidence for the contribution of inflammation to preterm white matter

injury emanates from studies of pregnant and neonatal animal models, involving, in particular,

responses to exogenous lipopolysaccharide (LPS). These studies have identified striking

upregulation of inflammatory cytokines and microglial activation.56, 57 LPS activates the

innate immune system through interaction with a specific toll-like receptor (TLR4) on immune

cells, including microglia, and secretion of molecules directly toxic to pre-OLs (see later).58

LPS may also induce systemic hypotension, hypoglycaemia, lactic acidosis and hyperthermia,

which could contribute to brain injury.36, 59, 60

Interaction between upstream mechanisms: Fetal and neonatal infection (and exposure to

LPS or proinflammatory cytokines) can be associated with persistent systemic hypotension

and impaired cerebrovascular autoregulation.61 Conversely hypoxiaischaemia, even in the

absence of infection, causes systemic and cerebral elevation of microglia-derived vasoactive

cytokines such as TNFα and interleukin (IL) 1β.62 Kadhim and colleagues52 described 19

PVL cases with ‘‘asphyxia’’ in the background. In these cases, although cytokine

immunoreactivity was consistently detected in microglia, levels were doubled in the PVL cases

with systemic fetal infection compared with those without infection.

A recent study of 61 preterm infants showed increased radiological white matter injury only

in infants with a history of chorioamnionitis and concurrent placental perfusion defects.63

Potentiation of infection/inflammation and ischaemia also has been shown in a number of

animal studies in which pretreatment with LPS (at doses not sufficient to cause cerebral injury)

caused a subthreshold hypoxicischemic insult to produce severe injury.64, 65

Downstream mechanisms

Hypoxia-ischaemia and infection/inflammation, the two principal initiating mechanisms in

pathogenesis of PVL, may act separately or in concert to activate the two principal downstream

mechanisms, excitotoxicity and free radical attack by ROS/RNS (fig 2).66 Excitotoxicity likely

leads to pre-OL injury by promoting Ca2+ influx and, as a result, generation of ROS/ RNS.

However, it remains unproved whether excitotoxicity occurs entirely via generation of free

radicals. Moreover, because free radicals are generated by mechanisms other than excito-

toxicity—for example, microglial activation, we will consider excitotoxicity and free radical

attack separately. The critical role of a series of maturation-dependent factors that underlie the

particular vulnerability of cerebral white matter of the premature infant to injury will be a

recurring theme (box 1).

Vulnerability to free radical attack

Evidence for free radical attack in PVL: The most compelling direct evidence that free

radical attack by both ROS and RNS is involved in the injury to pre-OLs in PVL comes from

the study of the human lesion.53, 67 In our study of 17 cases, in which immunocytochemical

markers for oxidative (hydroxynonenal) and nitrative (nitrotyrosine) attack were used,
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abundant staining was documented in both pre-OLs and reactive astrocytes in the diffuse lesion.
53 The free radical attack seemed to lead to death of pre-OLs but not of the reactive astrocytes.

This key discovery of oxidative and nitrative attack in PVL is consistent with experimental

data indicative of66, 68:

▸oxidative and nitrative cellular injury with both hypoxic-ischemic and inflammatory

insults to brain, the two likely key upstream mechanisms in PVL;

▸an exquisite vulnerability of pre-OLs to ROS/RNS (fig 2).

Studies of CSF in living premature infants also support toxicity of ROS in PVL. Thus, in a

longitudinal study of premature infants, CSF levels of oxidative products (detected as protein

carbonyls), measured earlier in the neonatal period, were sharply raised in those with MRI

evidence for PVL at term, compared with CSF levels in premature infants without later MRI

evidence for PVL.69

Mechanisms for vulnerability of pre-OLs to ROS attack: The mechanisms underlying the

maturation-dependent vulnerability of pre-OLs to ROS attack have been addressed in both

human brain and experimental studies. The findings in human brain indicate a delay in

development of enzymes at the superoxide dismutase (SOD) step, both MnSOD and Cu/

ZnSOD, and catalase (box 1).70 In addition, the possibility that hydrogen peroxide

accumulates, and in the presence of iron is converted to the hydroxyl radical by the Fenton

reaction is suggested by the observations of the early appearance of iron in developing human

white matter71, 72 and the acquisition of iron by developing oligodendrocytes for

differentiation.73 Supportive of a relationship between iron and PVL is the demonstration in

premature infants that for many weeks after intraventricular haemorrhage, a disorder that

sharply increases the risk of PVL,74–76 CSF levels of non-protein-bound iron are markedly

increased.77 Taken together, the findings indicate a maturation-dependent window of

vulnerability to oxidative attack during oligodendroglial development related principally to

delayed development of antioxidant enzymes and acquisition of iron for differentiation.

Mechanisms for vulnerability of pre-OLs to RNS attack: The mechanisms underlying the

maturation-dependent vulnerability of pre-OLs to RNS attack have been addressed, especially

in studies of cultured cells.78, 79 Relevance of these mechanisms to human PVL is provided

by our preliminary data which show a significant increase in the number of inducible nitric

oxide synthase (iNOS)-positive glia in the diffuse component of PVL, especially in the reactive

astrocytes in the diffuse lesion.55 The data suggest that a key source of nitric oxide in the

human lesion, potentially leading ultimately to a major portion of the nitrative stress identified

previously in diffuse PVL,53 is the reactive astrocyte. However, it is likely that the superoxide

anion necessary for combination with nitric oxide to form the injurious RNS, peroxynitrite, is

derived from both the abundant activated microglia in diffuse PVL and the pre-OL itself. 78–

80 As noted earlier there is a relative deficiency of both SODs in pre-OLs in cerebral white

matter of the human premature infant.

Central role for microglia in ROS/RNS attack: Microglia may play a central role in the

generation of ROS/RNS species involved in PVL, and this role may be greatest under

conditions of the combination of ischaemia and infection/ inflammation (fig 3). As discussed

earlier, a potentiating interaction between systemic infection/inflammation and hypoxia-

ischaemia in the genesis of cerebral white matter injury is likely.64, 81–83 Microglia may have

a pivotal role in this interaction, and the deleterious effect of activation of microglia in this

context likely involves the generation of ROS/RNS. Recent study of human PVL has shown

a marked microgliosis in the diffuse component of PVL.53 The discovery of toll-like receptors

on brain microglia and their involvement in activation of microglia and production of diffusible

RNS toxic to pre-OLs suggest that innate immunity can be involved in the pathogenetic
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cascade.64, 66, 81 Taken together the findings suggest that the two potent activators of

microglia, hypoxia-ischaemia and infection/inflammation, converge on the microglial cell to

provoke a deleterious series of effects leading to secretion of toxic products, especially ROS/

RNS, and pre-OL death.

Cytokines released by activated microglia may also have a major role in the pre-OL toxicity,

at least in part via RNS (fig 3). Thus, in one series (n = 19) TNFα was shown to be abundant

in PVL lesions, all of which were associated with ‘‘asphyxia’’, and levels were still greater

when evidence for fetal inflammation or neonatal infection was also present.52 TNFα leads to

pre-OL toxicity in part by potentiating the toxicity of interferon γ, and the toxicity of both of

these cytokines is maturation-dependent—that is, greater to pre-OLs than to mature

oligodendrocytes.84–87 The major sources of interferon γ may be astrocytes, which contain

the cytokine in abundance in diffuse PVL, and the major target of its toxicity could be the pre-

OL, which expresses the interferon γ receptor.54 Induction of iNOS and thereby RNS appears

to be the principal mode of cell death induced by interferon γ.88

The particular involvement of microglia in the pathogenesis of cerebral white matter disease

in the premature infant may relate also to a recently discovered maturation-dependent feature.

Thus, it is noteworthy that microglial cells can be identified in normal human brain very early

in development, become abundant in forebrain from 16 to 22 weeks of gestation and notably

are concentrated in cerebral white matter, with a deep to superficial gradient.89–92 Relatively

few microglia are found in cerebral cortex at this time. In a recent longitudinal study of human

postmortem brain, density of microglia in white matter reached a peak during the period of

greatest vulnerability to PVL (third trimester of gestation) and declined markedly in white

matter after 37 weeks of gestation.92 This observation suggests that a wave of perhaps

migrating microglia is present in cerebral white matter at the optimum time for activation by

hypoxia-ischaemia or infection or both. Thus, although more data on these developmental

features are needed, a maturation-dependent population of cells—that is, microglia—may be

concentrated in cerebral white matter at the right time and in the right place to contribute to

white matter injury when activated.

Excitotoxicity

Vulnerability of pre-OLs to excitotoxicity: An intrinsic maturation-dependent vulnerability

of pre-OLs to excitotoxicity is suggested by recent experimental studies and now by related

observations of developing human brain (see later).66 Glutamate is capable of inducing

maturation-dependent death of pre-OLs by non-receptor and receptor-mediated mechanisms

(fig 2). The non-receptor-mediated mechanism involves glutamate competition for the cystine

transporter and promotion of cystine efflux under conditions of high extra-cellular levels of

glutamate.93–95 The result is depletion of intracellular glutathione (which requires cysteine

for biosynthesis) and cell death by oxidative stress. However, the substantial levels (millimolar)

of glutamate required for this effect suggest that this mechanism may not operate in vivo under

most pathological conditions. By contrast the receptor-mediated mechanism, which requires

micromolar levels of glutamate, is more likely to occur in vivo, as shown directly in animal

models by us and others (see later).

Sources of glutamate: The principal sources of elevated extracellular glutamate in cerebral

white matter with hypoxia-ischaemia are glutamate transporters.96, 97 Failure of glutamate

uptake and actual reversal of transport occurs in the setting of energy failure because of the

failure of the Na+/K+ ion pump. These transporters are high-affinity, sodium-dependent

systems. That this transport disturbance may occur in the human infant is suggested by the

recent discovery of a maturation-dependent overexpression in cerebral white matter of the

principal glutamate transporter during the peak period of PVL.98 The principal locus for this
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transporter is the pre-OL.98 Axons may be a second major source of glutamate under conditions

of hypoxia-ischaemia.99 In addition, with inflammation activated microglia also release

glutamate via reversal of a Na+-dependent transporter, operation of the cystine-glutamate

antiporter and vesicular release (fig 3).97 Additional links of altered glutamate homeostasis to

inflammation include the potent inhibition of glutamate transport in multiple cell types by

TNFα and IL1β.100, 101

Elevations of glutamate in vivo: Elevations of extracellular glutamate have been documented

in cerebral white matter in a sheep hypoxia-ischaemia model of PVL.102 The extent of the

increase in glutamate correlated directly with the ultimate extent of the white matter injury.

The major increase in glutamate occurred over the hours after the insult, and this delayed

increase is characteristic of models in which an effect on glutamate transport is responsible.

Receptor-mediated excitotoxicity: Receptor-mediated glutamate toxicity is the principal

mode of excitotoxicity and only in the past decade has it become clear that pre-OLs contain

glutamate receptors which, when excessively activated, lead to cell injury. The most widely

studied glutamate receptor in pre-OLs, the AMPA/kainate (AMPA/KA)-type, is concentrated

in cell somata and leads to cell death when excessively activated (see later). The more recently

discovered type, the NMDA receptor, is concentrated in oligodendroglial processes and leads

to loss of cell processes when excessively activated. We discuss both these receptors next.

Oligodendrocytes express AMPA/KA-type glutamate receptors, the activation of which results

in cell death.96, 103–106 Our study of excitotoxicity in the major phases of the

oligodendroglial lineage in culture showed that the toxicity is maturation-dependent and that

both functional activity and subunit expression of AMPA/KA receptors are upregulated in pre-

OLs rather than in mature oligodendrocytes.104, 107 Relevance of these findings to hypoxia-

ischaemia was suggested by the demonstration in culture by others and by us that receptor-

mediated excitotoxicity is the principal mechanism for pre-OL death with oxygen-glucose

deprivation (OGD), an in vitro model of ischaemia.108–111 Relevance to hypoxia-ischaemia

in vivo was shown after the development of a rodent model of hypoxia-ischaemia-induced

PVL (P-7 rat subjected to unilateral carotid ligation and hypoxaemia).37 Importantly, this white

matter injury could be prevented by systemic administration, beginning immediately post-

insult, of NBQX, an AMPA/KA antagonist.37 NBQX may not be clinically safe, and in

subsequent work topiramate, a clinically safe anticonvulsant drug with AMPA blocking

properties, was shown to also have a similar protective effect.112 Additional support for a

relationship between hypoxia-ischaemia, excitotoxicity and PVL comes from the observation

that AMPA receptors are overexpressed (relative to the mature brain) in white matter of

developing rats during the peak period of vulnerability of this species (ie P7) for selective,

hypoxic-ischemic white matter injury (see earlier).113

The mechanism of the receptor-mediated toxicity appears to involve Ca2+ influx.103, 107–

110, 113–115 The basis for the Ca2+ influx relates to the expression in developing versus

mature oligoden-drocytes of AMPA receptors which lack the GluR2 subunit, the subunit that

renders the receptor Ca2+ impermeable.103, 108, 112 Relevance to PVL is suggested by the

observation that in human brain, not only are AMPA receptors also overexpressed in cerebral

white matter in pre-OLs during the peak period of vulnerability to PVL, but these receptors

also are relatively deficient in the GluR2 subunit and thereby Ca2+-permeable.112, 116

A major advance in the understanding of oligodendroglial excitotoxicity was the recent

discovery of NMDA receptors on processes of oligodendrocytes, from the developing to the

mature, myelin-producing stages.106, 117–120 When activated by ischaemic conditions or

exposure to agonists, loss of processes occurs. Moreover, NMDA receptors are permeable to

calcium, and it is likely that downstream mechanisms related to Ca2+ influx—that is, generation
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of ROS/RNS, account for the deleterious effects. Because axons can release glutamate the

findings suggest that the presence of NMDA receptors on oligodendrocytes provide a

physiological mechanism of axonal-oligodendroglial signalling important for myelination.

However, with excessive glutamate, as occurs with ischaemia, this normal mechanism becomes

pathological. Importantly, the data suggest an additional site for protection of pre-OLs from

ischaemic injury. Indeed, in preliminary data our group has shown a potent protective effective

of memantine, a specific NMDA antagonist, in a neonatal rat model of hypoxic-ischemic white

matter injury.121 Moreover, preliminary studies of human brain show, analogous to the

findings with AMPA receptors, a marked expression of NMDA receptors in pre-OLs in human

cerebral white matter during the peak period of vulnerability to PVL (Talos et al., 2007,

manuscript in preparation). The findings of NMDA receptors on pre-OLs may help explain the

white matter injury produced in developing mice and rabbits by intracerebral injection of

ibotenic acid and NMDA, both agonists of the NMDA receptor.122–125 However, because

NMDA receptors are also present on microglia and astrocytes, secondary effects involving pre-

OLs could account for some of the white matter injury in these models. At any rate, the findings

of an overexpression of both Ca2+-permeable AMPA receptors and NMDA receptors on pre-

OLs suggest a particular maturation-dependent vulnerability of these cells to excitotoxicity

(box 1).

Relation of excitotoxicity to ROS/RNS toxicity: A direct relation of the two downstream

mechanisms leading to death of the pre-OL—that is, excitotoxicity and ROS/RNS toxicity (fig

2)—is suggested by the recent demonstrations that AMPA/KA receptor toxicity to

oligodendroglial precursors is accompanied by generation of ROS and RNS.110, 115, 126 The

occurrence of nitrotyrosine immunoreactivity in the pre-OLs suggested that under these

conditions peroxynitrite is involved. This deadly compound is probably formed from nitric

oxide, produced by Ca2+-activated inducible NOS, and superoxide anion, produced by one or

more of several Ca2+-inducible enzymes resulting in ROS formation.126 Notably the oxidative

stress associated with AMPA receptor activation in oligoden-drocytes is greater than that

associated with such activation in neurons.127 Importantly, use of a superoxide dismutase/

catalase mimetic, Euk, protected pre-OLs from OGD-induced excito-toxicity.110 This small

non-peptidyl molecule can penetrate the blood–brain barrier and has neuroprotective properties

in vivo.

CONCLUSIONS

Data indicate how multiple maturation-dependent characteristics of pre-OLs interact in an

amplifying manner to produce a highly vulnerable cell, with the upstream mechanisms,

hypoxia-ischaemia and inflammation, converging on two interacting downstream mechanisms,

excitotoxicity and free radical attack (fig 2). Interruption of these mechanisms has been shown

in experimental models to lead to prevention or amelioration of white matter injury. A selected

summary of the most promising interventions is provided in box 2. Limitations of space

preclude a detailed discussion and listing of primary references, available elsewhere.66

Nevertheless, it is now clear that the extraordinary insights into pathogenesis of cerebral white

matter injury in recent years has provided considerable hope that prevention of this common

and serious form of brain injury of the premature infant may soon be possible.

Box 1 Pathogenesis of periventricular leukomalacia—maturation-dependent factors

in premature infants*

Upstream mechanisms

Ischaemia

▸Vascular anatomic factors—arterial border and end zones
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▸Vascular physiological factors—low physiological blood flow to cerebral white

matter

▸Pressure-passive cerebral circulation

▸Systemic hypotension

▸Hypocarbia

Infection/inflammation

▸Propensity for maternal intrauterine infection and fetal systemic inflammatory

response

▸Propensity for postnatal infection

Downstream mechanisms

Free radical attack

▸Vulnerability of pre-OLs to free radical attack

– Abundant production of both ROS and RNS in PVL (by pre-OLs, microglia,

astrocytes)

– Delayed development of antioxidant defences in pre-OLs

– Acquisition of Fe++ by pre-OLs

▸Central role for microglia in free radical attack

– Microglia, abundant in diffuse PVL, are potent sources of ROS/RNS

– Presence of toll-like receptors on microglia; activation results in release of free

radicals

– Maturation-dependent concentration of microglia in normal cerebral white

matter during the third trimester of human gestation

– Interferon γ expression in astrocytes in diffuse PVL

– Interferon γ receptor expression on pre-OLs

– TNFα derived from microglia in diffuse PVL; likely interacts with interferon γ

– Interferon γ toxicity greater to pre-OLs than to mature cells and potentiated by

TNFα from microglia

▸Central role for excitotoxicity in free radical attack (see below) Excitotoxicity

▸Vulnerability of pre-OLs to excitotoxicity

– Exuberant expression of major glutamate transporter (source of glutamate) by pre-

OLs

– Exuberant expression on pre-OLs of AMPA receptors, which also are deficient

in the GluR2 subunit and therefore Ca2+-permeable

– Exuberant expression on pre-OLs of NMDA receptors, which also are Ca2+-

permeable

– Likely mechanism of excitotoxic death is generation of ROS/RNS

*Factors shown to be present in human premature brain—additional potentially relevant

factors defined in experimental systems are described in the text.
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Box 2 Selected potential preventive interventions for periventricular leukomalacia*

Upstream mechanisms

Ischaemia

▸Detection of pressure-passive cerebral circulation

▸Avoidance of hypotension

▸Avoidance of hypocarbia Infection/inflammation

▸Antenatal corticosteroids

Downstream mechanisms

Free radical attack

▸Prevention of free radical generation

– Oxygenase inhibitors (indometacin, 12-lipo-oxygenase inhibitors)

– Inhibitors of nitric oxide synthase

– Vitamin K

– Antimicroglial agents—minocycline

▸Replenish antioxidant defences

– Antioxidant enzyme mimetics

▸Scavenge free radicals

– Vitamin E

– Idebenone, N-acetylcysteine, other drugs

Excitotoxicity

▸Block AMPA receptors

– Topiramate

▸Block NMDA receptors

– Memantine

▸Anti-apoptotic agents

– Oestradiol

– Insulin-like growth factor-1

▸Other agents – multiple downstream effects

– Melatonin

– Erythropoietin

– Caffeine

*A partial list of potential preventive interventions.
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Figure 1.

Schematic diagram of the three major forms of white matter abnormality in premature infants.

Cystic (A) and non-cystic (B) periventricular leukomalacia exhibit the two components of the

lesion—that is, focal necrosis deep in the white matter and more diffuse injury characterised

by a loss of pre-oligodendrocytes and marked astrogliosis. In cystic disease (A) the focal

necrotic lesions are macroscopic and evolve to cysts, whereas in non-cystic disease (B) the

focal lesions are microscopic and evolve to glial scars. Diffuse white matter gliosis (DWMG)

(without focal necrosis) may represent the mildest form of the spectrum of cerebral white matter

injury.
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Figure 2.

Pathogenetic mechanisms in PVL. See text for details.
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Figure 3.

Microglia as a convergence point for upstream and downstream mechanisms in pathogenesis.

See text for details.
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