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Abstract 

HIV-associated sensory neuropathy (HIV-SN) is a frequent neurological complication of HIV 

infection and its treatment with some antiretroviral drugs. We review the pathogenesis of the 

viral-induced and drug-induced causes of the neuropathy, and its primary symptom, pain, 

based on evidence from in vivo and in vitro models of HIV-SN. Viral coat proteins mediate 

nerve fibre damage and hypernociception through direct and indirect mechanisms. Direct 

interactions between viral proteins and nerve fibres dominate axonal pathology, while somal 

pathology is dominated by indirect mechanisms that occur secondary to virus-mediated 

activation of glia and macrophage infiltration into the dorsal root ganglia. The treatment-

induced neuropathy and resulting hypernociception arise primarily from drug-induced 

mitochondrial dysfunction, but the sequence of events initiated by the mitochondrial 

dysfunction that leads to the nerve fibre damage and dysfunction still are unclear. Overall, the 

models that have been developed to study the pathogenesis of HIV-SN and hypernociception 

associated with the neuropathy are reasonable models of HIV-SN, and have provided useful 

insights in to the pathogenesis HIV-SN. As the models are developed they may ultimately 

lead to identification of therapeutics targets for the prevention or treatment of this common 

neurological complication of HIV infection.  
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Introduction 

Between 30 and 60% of individuals infected with the human immunodeficiency virus 

(HIV) develop HIV-associated sensory neuropathy (HIV-SN), a peripheral sensory 

neuropathy that is frequently painful, and is characterised by length-dependent degeneration 

of myelinated and unmyelinated nerve fibres (Keswani, et al., 2002; Ferrari, et al., 2006). 

The virus, the immune response to the virus, and antiretroviral drugs, in particular the 

nucleoside reverse transcriptase inhibitors (NRTIs), are all potentially neurotoxic, and these 

three factors, acting alone or in combination, are probably the most important mediators of 

HIV-SN (Keswani, et al., 2002; Ferrari, et al., 2006). However, our knowledge of how these 

factors damage sensory neurones is limited, which has impeded the development of effective 

prophylactic or therapeutic interventions for HIV-SN. Consequently, HIV-SN continues to be 

a major cause of disability and an area of therapeutic need despite the introduction of less 

neurotoxic treatment regimens, and improved virologic control (Smyth, et al., 2007; Ellis, et 

al., 2010; Maritz, et al., 2010; Phillips, et al., 2010).  

 

In the last decade, significant progress has been made in developing and 

characterising in vivo and in vitro experimental models of HIV-SN. Here we review studies 

that have investigated primary lesions to the peripheral nervous system by HIV or 

antiretroviral drugs. We discuss whether the in vivo models adequately reflect the 

pathological processes that occur in HIV-SN, and how data from in vivo and in vitro studies 

have advanced our understanding of the pathophysiology of HIV-SN and its primary 

symptom, pain. We do not provide a detailed description of the animal models of HIV-SN 

that have been developed since they have recently been reviewed (Bhangoo, et al., 2010). 

The review is divided into two parts: part one describes experimental models of HIV-

mediated neuropathy, part two describes experimental models of antiretroviral drug-induced 

neuropathy and the neurotoxic interaction that occurs between the virus and antiretroviral 

drugs. 

 

Virus-mediated neurotoxicity in the peripheral nervous system 

HIV-associated sensory neuropathy is characterised by distal axonal degeneration and 

reduced nerve fibre density along the peripheral nerve trunk (de la Monte, et al., 1988; 

Chaunu, et al., 1989; Rizzuto, et al., 1995), neuronal loss in the dorsal root ganglia (DRG) 

(Rance, et al., 1988), and dying-back of peripheral and central terminals of peripheral nerve 

fibres (Rance, et al., 1988; Holland, et al., 1997; Polydefkis, et al., 2002). Even in the 

absence of clinical features of HIV-SN, post-mortem neuro-anatomical studies have 

demonstrated immune cell infiltration and inflammatory mediator release in peripheral nerve 

trunks and DRG of individuals who had advanced disease (de la Monte, et al., 1988; Mah, et 

al., 1988; Yoshioka, et al., 1994; Rizzuto, et al., 1995; Nagano, et al., 1996; Bradley, et al., 

1998; Jones, et al., 2005). Neuronal damage in HIV-infected individuals is unlikely to result 

from active infection of neurones, especially since neurones do not express CD4 receptors, 
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which are required for viral entry into a cell (Dubois-Dalcq, et al., 1995; Jones, et al., 2005; 

Acharjee, et al., 2010). Rather, the infiltration of activated immune cells into peripheral 

nerves indicates that peripheral nerve damage may occur indirectly through inappropriate 

activation of immuno-competent cells by the virus or viral proteins (Tyor, et al., 1995; 

Keswani, et al., 2002). Alternatively, the damage may be mediated by direct viral-mediated 

neurotoxicity, similar to that observed in the central nervous system, but such evidence is 

scarce in the peripheral nervous system (Ahmed, et al., 2009; Acharjee, et al., 2010). Because 

active viral infection of nerves does not appear to be important in the neurotoxity of HIV, 

research on the neuropathology of HIV-SN has focused on experimental models employing 

soluble viral gene products rather than active virus. However, there have been several studies 

which have employed recombinant HIV-1 clones generated from virus derived from 

peripheral nerves or brain tissue of HIV-infected individuals (Zhang, et al., 2003; Jones, et 

al., 2005), or models employing lentivirus infections that result in immunodeficiency in felids  

(Zhu, et al., 2007) and non-human primates (Laast et al., 2007; Laast et al., 2011; Lehmann, 

et al., 2011) .  

 

The primary viral gene product used in vivo and in vitro to investigate the 

pathogenesis of HIV-mediated neurotoxicity is HIV-1 gp120, the coat protein that mediates 

the binding to and transmission of HIV into permissive cells through interactions with the 

CD4 protein and the chemokine co-receptors, CCR5 and CXCR4. Even in its soluble form, as 

occurs when gp120 is shed from viral particles or released from infected cells, the molecule is 

able to activate sensitive cells (Conti, et al., 2004). Additionally, the HIV-1 viral protein R 

(Vpr), an accessory protein that regulates HIV-1 infectivity through a variety of mechanisms 

and that has been identified in macrophage-like cells in the DRGs of HIV-infected 

individuals, has been used experimentally to assess the neurotoxicity of viral gene products in 

vitro (Romani and Engelbrecht, 2009; Acharjee, et al., 2010).  

 

Pathogenesis of HIV-SN (Figure 1) 

Acute perineural application of gp120 to rat sciatic nerves caused acute axonal 

swelling and increased tumour necrosis factor (TNF)-a expression in the nerve trunk at the 

site of application (Herzberg and Sagen, 2001), in the DRG of the exposed nerve, and in glial 

cells in the dorsal horn of the spinal cord at the level the exposed nerve enters the spinal cord 

(Zheng, et al., 2011b). In addition, macrophage infiltration into the nerve at the site of gp120 

application has been demonstrated within one week of gp120 application (Wallace, et al., 

2007a). When the macrophage accumulation in the nerve trunk was at its greatest, about two 

weeks after gp120 application, there was associated dying-back of distal nerve fibre endings 

in the epidermis, and macrophage infiltration, activation of satellite cells, and inflammatory 

mediator production occurred in the DRG (Wallace, et al., 2007a; Wallace, et al., 2007b). 

The aforementioned changes were preceded by expression of ATF3, a marker of cellular 

stress and neuronal injury, in DRG neurones (Wallace, et al., 2007a). Thus, perineural 
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application of gp120 produced a localised inflammatory reaction similar to that seen in 

peripheral nerve trunks of individuals infected with HIV (de la Monte, et al., 1988; Mah, et 

al., 1988; Nagano, et al., 1996), and these localised changes were associated with 

pathological changes characteristic of the distal nerve fibre ending and DRG changes that 

occur in HIV-SN (Yoshioka, et al., 1994; Nagano, et al., 1996; Bradley, et al., 1998; 

Skopelitis, et al., 2007; Zhou, et al., 2007). However, unlike individuals infected with HIV, 

acute perineural application of gp120 in rats did not cause significant demyelination and 

axonal degeneration at the site of gp120 application, or apoptosis in DRG cells (de la Monte, 

et al., 1988; Chaunu, et al., 1989; Rizzuto, et al., 1995; Wallace, et al., 2007a). These 

differences from the clinical state may reflect the acute and localised exposure to gp120 in 

the model compared to the chronic and generalised exposure to gp120 that occurs in HIV-

infected individuals. Indeed, in a primate model of HIV-SN in which macaque monkeys were 

infected with simian immunodeficiency virus (SIV), the infection resulted in neuronal loss in 

the trigeminal nerve ganglia of the monkeys (Laast et al., 2007) and reduced conduction 

velocity in C-fibres (Laast et al., 2011) that correlated with accumulation of infected 

macrophages in the DRG. Similarly, in a feline model of HIV-SN in which cats were infected 

with feline immunodeficiency virus (FIV), infection was associated with reduced axonal 

density and dying-back of distal nerve fibre endings in the sural nerve (Zhu et al., 2007).  

 

Studies using cultured primary rat and human DRG neurones have shown that the 

neurotoxic effects of gp120 may be directly mediated by activation of chemokine receptors 

on the surface of neurones, or indirectly through the activation of Schwann cells and 

macrophages. Exposing co-cultures of rat DRG neurones and Schwann cells to gp120 caused 

dose-dependent neurite degeneration and neuronal apoptosis via caspase-3 and 

mitochondrial-dependent neuronal apoptosis involving inositol triphosphate-dependent 

calcium release from endoplasmic reticulum (Keswani, et al., 2003b; Hoke, et al., 2009). 

Activation of pro-apoptotic c-Jun N-terminal kinase-dependent pathways also may have 

contributed to the neurite retraction and apoptosis induced by gp120 (Bodner, et al., 2004). 

The toxicity observed by Keswani et al (2003b) required the presence of Schwann cells, and 

based on the available evidence, they proposed that binding of gp120 to CXCR4 receptors on 

Schwann cells stimulated the release of the chemokine CCL5, which activated CCR5 

receptors on DRG neuronal cells. This neuronal activation induced TNF-α release from the 

neuronal cells which, through an autocrine and/or paracrine mechanism, activated neuronally-

expressed TNFR1 receptors, leading to cell death (Keswani, et al., 2003b; Melli, et al., 2006). 

This proposed mechanism recently gained support from in vivo experiments, which showed 

increased expression of TNF-α in the DRG of exposed nerves following perineural 

application of gp120 in rats (Zheng, et al., 2011b). And, consistent with the findings of 

Keswani and colleagues, exposing mixed primary neuronal/glial/macrophage cultures from 

transgenic rats expressing human CD4/CCR5 receptors to recombinant HIV-1 clones 

containing the C2V3 region of the HIV env gene derived from virus isolated from peripheral 



Author manuscript 

Published in final form: Kamerman PR, Moss PJ, Weber J, Wallace VCJ, Rice ASC, Huang 

W. Pathogenesis of HIV-associated sensory neuropathy: evidence from in vivo and in vitro 

experimental models. Journal of the Peripheral Nervous System 17: 19-31, 2012. 

DOI: 10.1111/j.1529-8027.2012.00373.x, PMID: 22462664 

nerves of HIV-infected individuals activated Schwann cells and induced neurite retraction 

(Jones, et al., 2005).  

 

Activation of the non-specific immune response probably also contributes to the 

indirect neurotoxicity of the virus. In vivo, trigeminal nerve ganglionitis in SIV-infected 

macaques was associated with infiltrating mononuclear cells, evidence of neuronophagia, and 

neuronal loss and replacement by satellite cells and immune cells (Laast et al., 2007), while 

in vitro, gp120 induced neuronal cell lysis in DRG cultures through activation of complement 

pathways (Apostolski et al., 1994), and several studies have reported that inflammatory 

mediators released by HIV-infected macrophages may contribute to the indirect neurotoxicity 

of the virus (Zhang, et al., 2003; Jones, et al., 2005; Hahn, et al., 2008). Hahn and colleagues 

(2008) showed that supernatant from cultured human monocytic cells infected with HIV 

inhibited neurite growth in cultured human foetal DRGs even when neuronally-expressed 

CCR5 and CXCR4 receptors were neutralised. Inhibition of neurite growth was associated 

with depolarisation of the mitochondrial membrane and generation of reactive oxygen 

species. Unfortunately, the substances in the supernatant that mediated the neurotoxicity were 

not determined, but presumably inflammatory substances such as interleukin(IL)-1β and 

TNF-α, which are involved in neuronal death in the central nervous system of HIV-infected 

individuals (Kaul and Lipton, 2006), and which have been found in the DRG and peripheral 

nerve trunks of people infected with HIV (Yoshioka, et al., 1994; Nagano, et al., 1996; Jones, 

et al., 2005), may have been responsible. Indeed, some recombinant HIV-1 clones derived 

from virus extracted from peripheral nerves of HIV-infected individuals increased the 

expression of IL-1β and TNF-α mRNA in cultured rat DRG, with the most likely source 

being macrophages (Jones, et al., 2005), and perineural application of gp120 in rats increased 

expression of TNF-α in the DRG (Zheng, et al., 2011b). The ability of recombinant HIV-1 

virions to induce production of inflammatory mediators by macrophages has been shown to 

be dependent on gp120 activating CXCR4 and CCR5 receptors on these cells (Zhang, et al., 

2003). Mitochondrial dysfunction similar to that reported by Hahn and colleagues (2008) in 

vitro was recently reported by Lehmann and colleagues (2011) in axonal mitochondria 

isolated from macaque monkeys infected with SIV. Although they did not identify the 

mechanism by which SIV infection induced mitochondrial dysfunction, the data from Hahn 

and colleagues (2008) and Lehmann and colleagues (2011) indicates that mitochondrial 

dysfunction may contribute to the virus-induced neuropathy.  

 

In addition to indirect neurotoxicity, there is experimental evidence for direct 

neurotoxicty of the virus on peripheral nerve fibres, especially along axons, which may also 

contribute to the neuronal degeneration and dying-back of epidermal nerve fibres observed in 

affected patients. Using compartmentalised culture systems, it has been demonstrated that 

selective application of gp120 to the neurites of cultured rat DRG neurones, in the absence of 

Schwann cells, resulted in direct gp120-mediated neurite degeneration (Melli, et al., 2006). 
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However, when Schwann cells were present in the axonal side chambers the magnitude of 

gp120-mediated axonal degeneration was reduced, probably by shielding the axon from 

gp120. The direct axonal toxicity of gp120 was mediated through an axonal caspase-3 

dependent mechanism, which was initiated following activation of neuronal CXCR4 and 

CCR5 receptors. Similar caspase-3 dependent axonopathy, which occurs independently of 

somal apoptotic pathways, has been reported following traumatic nerve injury in rats (Buki, et 

al., 2000). Recombinant HIV-1 virions also caused cell death in human neuroblastoma cells 

from the LAN-2 cell line through a gp120-dependent effect mediated through activation of 

CXCR4 and CCR5 receptors (Zhang, et al., 2003).  

 

Thus, similar to what has been observed in models of HIV-induced neurotoxicity in 

the central nervous system (Kaul and Lipton, 2006), gp120 mediated activation of glia and 

macrophages in the peripheral nervous system can produce indirect neurotoxicity through the 

release of inflammatory mediators. These in vitro effects fit with the clinical findings of 

macrophage infiltration and inflammatory cytokine release in peripheral nerve trunks and 

DRG of HIV-infected individuals (Yoshioka, et al., 1994; Nagano, et al., 1996; Bradley, et 

al., 1998; Skopelitis, et al., 2007; Zhou, et al., 2007). In addition, the virus, and in particular 

the gp120 protein, may cause direct axonopathy. This direct effect may contribute to the 

dying back of epidermal nerve fibres that is observed in HIV-infected individuals.  

 

Neuropathic pain-like behaviours in animal models of HIV-SN (Figure 2) 

Pain is the primary symptom of HIV-SN (Smyth, et al., 2007; Wadley, et al., 2011), 

and consistent with this feature of the disease, perineural exposure of rat sciatic nerve to 

gp120 resulted in thermal (Herzberg and Sagen, 2001) and mechanical hypernociception; 

where hypernociception is defined here as enhanced nociceptive sensitivity (Herzberg and 

Sagen, 2001; Oh, et al., 2001; Wallace, et al., 2007a; Wallace, et al., 2007b; Zheng, et al., 

2011b). Oh and colleagues (2001) showed that injection of gp120 or chemokines that activate 

CXCR4 and CCR5 receptors into the foot pad of rats produced significant mechanical 

hypernociception. At the cellular level, these same ligands caused Substance P release, and 

induced direct depolarisation of cultured rat DRG, which were putative nociceptive DRG 

cells (Oh, et al., 2001). Thus, binding of gp120 to its chemokine receptors causes activation 

of nociceptive neurones, and this activity may have contributed to the hypernociception 

observed in animals exposed to gp120 and the pain reported by HIV-infected individuals. 

Similar increases in neuronal excitability also occurred when the viral accessory protein, Vpr, 

was applied to cultured rat and human DRG cells, indicating that viral gene products other 

than gp120 may also contribute to the development of hypernociception, but it is unknown 

what cell types were being assessed (Acharjee, et al., 2010).  

 

Exposure of nerve fibres to gp120 through intraplantar injection or direct application 

to the sciatic nerve trunk probably only results in acute exposure to gp120 before it is 
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denatures or cleared by the immune system. Yet, pain-like behaviours described by several 

investigators lasted several weeks, indicating that more long-term changes in the processing 

of nociceptive signals had occurred (Herzberg and Sagen, 2001; Wallace, et al., 2007a; 

Wallace, et al., 2007b; Zheng, et al., 2011b). The sustained thermal (Herzberg and Sagen, 

2001) and mechanical (Herzberg and Sagen, 2001; Wallace, et al., 2007a; Wallace, et al., 

2007b; Zheng, et al., 2011b) hypernociception observed in rats, correlated loosely with 

increased TNF-α expression at the site of gp120 application (Herzberg and Sagen, 2001), in 

the DRG of the exposed nerve and in the dorsal horn of the spinal cord at the level of entry of 

the exposed nerve (Zheng, et al., 2011b), and macrophage accumulation  at the site of gp120 

application (Wallace, et al., 2007a; Wallace, et al., 2007b). All these changes are important 

factors in the development of chronic pain-like behaviours in animal models of neuropathic 

pain (Thacker, et al., 2007). Furthermore, hypernociception to cold and mechanical stimuli 

also developed in immunodeficient transgenic mice expressing Vpr in monocytoid cells 

(Acharjee, et al., 2010). This hypernociception was associated with increased expression of 

interferon-a, but not IL-6, in DRG and sciatic nerves of the mice. Thus inflammatory changes 

caused by at least two viral gene products of HIV have been shown to induce inflammatory 

changes in peripheral nerves associated with hypernociception.  

 

In addition to changes in the peripheral nervous system, exposing the sciatic nerve of 

rats to gp120 resulted in activation of microglia and astrocytes in the dorsal horn of the spinal 

cord (Herzberg and Sagen, 2001; Wallace, et al., 2007a; Wallace, et al., 2007b; Zheng, et 

al., 2011b). The time course of this gliosis coincided with the development of peak 

hypernociception (Wallace, et al., 2007a), and its maintenance for up to 30 days post gp120 

exposure (Herzberg and Sagen, 2001). Zheng and colleagues recently demonstrated this 

gliosis is associated with expression of TNF-α by astrocytes and microglia, and that 

neutralising TNF-α attenuated gp120-mediated mechanical hypernociception in rats, as did 

neutralising TNF-α in the DRG (Zheng, et al., 2011b). Thus, increased expression of TNF-α 

in the central and peripheral nervous system appears to have a pivotal role in the maintenance 

of the hypernociceptive state in animals exposed to gp120. Another possible contributor to 

hypernociception is the pro-nociceptive chemokine CCL2, which is increased in the DRG of 

the exposed nerve root (Wallace, et al., 2007b; White, et al., 2007). The DRG and CNS 

changes described in animals exposed to gp120 are consistent with those described in other 

rodent models of painful peripheral neuropathy (Latremoliere and Woolf, 2009). Thus, the 

pain experienced by individuals with HIV-SN may arise from direct stimulation of 

nociceptive neurones by gp120 or Vpr, and be augmented and sustained through 

inflammatory reactions in peripheral nerves, DRG and spinal cord dorsal horn, resulting in 

peripheral and central sensitisation of nociceptive pathways.  

 

In summary, in vivo and in vitro evidence indicates that HIV may cause nerve 

pathology via direct and indirect mechanisms, with direct mechanisms dominating the axonal 
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pathology and indirect mechanism dominating the somal pathology. This dual effect of the 

virus on peripheral nerve fibres, in terms of direct and indirect mechanisms of action, and 

somal versus axonal sites of action, may be additive or synergistic, enhancing the overall 

nerve pathology caused by HIV infection, leading to the high incidence of neuropathy in the 

infected population. However, data from in vivo and in vitro studies needs to be considered in 

the context of the pharmacological doses of gp120 used in these studies (Klasse and Moore, 

2004), the acute onset of the toxicity in the models compared to the slower progression to 

clinically apparent neuropathy in HIV-infected individuals, and the potentially confounding 

effects of species differences in receptor affinity for viral gene products and differences in 

receptor tropism depending on the source of the gp120 used. To overcome these problems, 

further use of more sophisticated experimental models, such as those models that employ 

recombinant HIV-1 clones derived from nervous system tissues of infected patients, and 

transgenic animal expressing viral gene products or myelogenous cells expressing human 

CD4, CXCR4 or CCR5 receptors, needs to occur.  

 

Antiretroviral drug mediated neurotoxicity in the peripheral nervous system 

The use of nucleoside reverse transcriptase inhibitors (NRTIs) zalcitabine, didanosine 

and stavudine to treat HIV infection is strongly associated with the development of HIV-SN 

(Dalakas, 2001; Dalakas, et al., 2001; Cherry, et al., 2009; Ellis, et al., 2010). Of the three 

drugs, stavudine is the only one currently in widespread use (WHO, et al., 2010). 

Experimental evidence for the pathological processes by which NRTIs may cause neuropathy 

is growing and indicates a pivotal role for mitochondrial dysfunction. However, elucidation 

of the specific neuropathological processes that ultimately cause nerve fibre dysfuncion are 

confounded in HIV-infected individuals by concomitant viral-induced nerve damage. 

Therefore, delineation of the mechanisms that underlie the drug-induced component of the 

neuropathy has required the development of in vitro and in vivo models of pure NRTI-

induced neurotoxicity.  

 

 Toxicity of NRTIs in vitro 

Zalcitabine, didanosine and stavudine induce dose-dependent inhibition of neurite 

outgrowth and mitochondrial DNA synthesis in neuronal cell line PC-12 cells (Cui, et al., 

1997), neurite degeneration in disassociated embryonic and neonatal rat DRG neurones 

(Keswani, et al., 2003a; Bodner, et al., 2004; Keswani, et al., 2004), and reduced soma size 

and neurite length in feline DRG neurones (Zhu, et al., 2007). The reduced soma size and 

neurite length in cultured feline DRG neurones was associated with reduced expression of 

mRNA for brain-derived neurotrophic factor (BDNF) and its receptor, TrkB.  Accordingly, 

these effects could be reversed by administration of BDNF, indicating that the impaired 

neuronal growth caused by NRTI’s may be secondary to reduced expression and 

responsiveness to neurotrophic factors (Zhu, et al., 2007). In addition to impairing neuronal 

growth, didanosine induced c-Jun N-terminal kinase-dependent apoptosis of the neonatal 
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DRG cells (Bodner, et al., 2004), while zalcitabine reduced PC-12 cell proliferation (Cui, et 

al., 1997) and resulted in a loss of mitochondrial membrane integrity and calcium-dependent 

necrosis in embryonic rat DRG neurones (Keswani, et al., 2003a; Keswani, et al., 2004). 

Thus, NRTI-induced cell death may be mediated by apoptotic and necrotic mechanisms. The 

reduced neuronal growth and increased cell death induced by some NRTIs probably involves 

disrupted mitochondrial function due to drug-dependent inhibition of mitochondrial DNA 

polymerase and depletion of mitochondrial DNA (Keilbaugh, et al., 1997; Kakuda, 2000). As 

such, the in vitro data supports the findings of Dalakas and colleagues (2001) who reported 

that the majority of HIV-positive individuals who developed a neuropathy after starting 

zalcitabine therapy had enlarged, vacuolated mitochondria, and depleted mitochondrial DNA 

in peripheral nerves and Schwann cells. However, direct disruption of mitochondrial proteins 

by the drugs may have also contributed to the mitochondrial dysfunction observed in 

neuronal tissues in vitro and in vivo (Skuta, et al., 1999). In the following section, we 

describe the evidence for, and mechanism of, NRTI-induced neurotoxicity in vivo.  

 

Neuropathological features of NRTI-induced neuropathy in vivo 

In the first animal model of NRTI-induced neuropathology, Anderson and colleagues 

(1992) showed that chronic oral administration of zalcitabine to rabbits resulted in reduced 

sural nerve conduction velocities and amplitudes.  These changes were associated with dose 

and duration-dependent neuropathology, including myelin splitting, intramyelinic oedema, 

demyelination/ remyelination, and axonal loss. The ultrastructural features of the nerve 

pathology induced by zalcitabine in rabbits, led the authors to conclude that the primary event 

involved damage to Schwann cells, with secondary axonopathy (Feldman, et al., 1992). 

Similarly, decreases in conduction velocity (Chen and Levine, 2007), myelin hypertrophy and 

disruption of Remak bundles (Bhangoo, et al., 2007), and morphological changes in neuronal 

cell mitochondria (van Steenwinckel, et al., 2008) have been reported to occur in rats within a 

week of a single parenteral dose of zalcitabine. Thus, even acute exposure to zalcitabine 

increases risk of neuropathy, which is consistent with the epidemiological data showing that 

any previous exposure to zalcitabine, didanosine or stavudine increases risk of developing 

HIV-SN (Smyth, et al., 2007; Cherry, et al., 2009). However, this acute exposure was not 

sufficient to cause significant demyelination, remyelination , axonal degeneration (Bhangoo, 

et al., 2007; van Steenwinckel, et al., 2008), or decreases in intraepidermal nerve fibre (IENF) 

density in hind paw glabrous skin of rats (Siau, et al., 2006), indicating that these 

pathological features may require sustained exposure to the drug. Indeed, intraperitoneal 

injections of zalcitabine three times a week for three weeks did decrease IENF density in the 

plantar skin of the hind paw of rats (Wallace, et al., 2007b), which is consistent with the 

time-course of HIV-SN developing in individuals starting antiretroviral therapy (Husstedt, et 

al., 2001). 
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Development of in vivo models using didanosine and stavudine has proven difficult. 

Whereas chronic, twice daily oral administration of didanosine to rats induced myelin 

splitting and intramyelin oedema in peripheral nerve fibres (Schmued, et al., 1996; Patterson, 

et al., 2000), Zhu and colleagues (2007) failed to induce nerve fibre loss, electrophysiological 

changes or dying back of intraepidermal nerve fibres in cats administered oral didanosine 

daily for 6 weeks.  Moreover, Warner and colleagues (1995) failed to observe morphological 

or electrophysiological evidence of peripheral nerve toxicity in rabbits given once daily oral 

didanosine for 24 weeks, even though the drug was given at near-lethal doses and plasma 

levels confirmed systemic drug exposure. This study also failed to demonstrate any 

neurotoxic effects of chronic once daily oral administration of high-dose stavudine. This lack 

of overt neuropathology in animals administered stavudine has also been reported in rats 

administered the drug daily for six weeks at doses previously shown to induce the 

development of hypernociception to a noxious mechanical stimulus (Weber, et al., 2007; 

Makweya, et al., 2008). Moreover, no signs of neuropathy were reported in monkeys 

administered the drug on a daily basis for one year (Kaul, et al., 1999), although the details of 

how neuropathy was assessed in the monkeys was not provided. The variability in response 

to didanosine and the lack of neurotoxic effect of stavudine on peripheral nerves in 

previously reported animal models has meant that zalcitabine-based animal models have 

formed the basis of investigations into the mechanisms of NRTI-induced neuropathology and 

neuropathic pain-like behaviours, despite the drug no longer being used clinically.  

 

Pathogenesis of NRTI-induced neuropathy (Figure 3) 

The mechanisms underlying neuropathy in animals given zalcitabine have been 

studied primarily in the context of the neuropathic pain-like behaviours in rodents. In a series 

of experiments, Levine and colleagues (Joseph, et al., 2004; Joseph and Levine, 2004; 

Joseph and Levine, 2006; Chen and Levine, 2007) demonstrated that a single intravenous 

injection, or chronic daily oral dosing, of zalcitabine in rats resulted in dose-dependent 

mechanical and thermal hypersensitivity of the hind paws, which in the case of intravenous 

injection, developed rapidly and was sustained for at least twenty days. The hypernociception 

was associated with a reduction in C-fibre conduction velocity and a change in the 

distribution of the interspike interval, but not with a decrease in firing threshold or an 

increase in response to sustained stimulation with threshold or supra-threshold stimuli 

(Joseph and Levine, 2004; Chen and Levine, 2007). The behavioural and electrophysiological 

changes appear to have been related to increased calcium signalling in the nerve fibres 

(Joseph, et al., 2004) and activation of pro-apoptotic caspase pathways (Joseph and Levine, 

2004); data which supports a hypothesis of drug-induced mitochondrial damage leading to 

altered calcium homeostatis and activation of apoptotic pathways. Yet, the same group of 

investigators also showed that disrupting the mitochondrial electron transport chain and 

preventing mitochondrial phosphorylation attenuated zalcitabine-induced hypernociception 

(Joseph and Levine, 2006). These findings are counterintuitive given the authors’ earlier 
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findings, and the standard explanation of disrupted mitochondrial function causing the 

neuropathy in rodents and humans. Indeed, Lehmann and colleagues (2011) recently showed 

increased mitochondrial DNA mutation deletions and decreased mitochondrial protein levels, 

including the catalytic subunit of cytochrome c oxidase I, in sural nerves biopsies of HIV-

infected individuals who had been exposed to neurotoxic antiretroviral regimens and who had 

developed HIV-SN. Thus data from affected HIV-infected individuals complements a model 

of mitochondrial dysfunction.  

 

Recently, Wallace and colleagues (2007b) demonstrated that zalcitabine, injected 

intraperitoneally three times a week for three weeks, induced mechanical, but not thermal,  

hypersensitivity and anxiety-like behaviour in rats. Overt pathological changes in peripheral 

nerves, including dying back of intraepidermal nerve fibres and macrophage infiltration into 

the DRG of exposed nerves were also seen. The infiltration of macrophages was 

accompanied by increased expression of the pro-nociceptive chemokine CCL2, which could 

have contributed to the animals’ hypernociceptive state. Another possible contributor to 

hypernociception that develops after exposure to zalcitabine is TNF-a. Zheng and colleagues 

(2011c) showed that a single intraperitoneal injection of zalcitabine in rats that induced 

sustained mechanical hypernociception was associated with increased expression of the pro-

nociceptive cytokine TNF-a by DRG neurones. Unfortunately, neither group of investigators 

determined whether neutralising TNF-a or CCL2 in the DRG attenuated the 

hypernociception, so the contribution of these molecules to the hypernociception remains 

speculative. Indeed, with regards to CCL2, Bhangoo and colleagues (2007) reported that a 

single intraperitoneal injection of zalcitabine in rats, which induced mechanical 

hypersensitivity, failed to induce upregulation of CCR2, the receptor for CCL2, in dissociated 

DRG neurones, or to increase the responsiveness of these cells to application of the 

chemokine. Rather, Bhangoo and colleagues reported enhanced mRNA expression of the 

chemokine CXCR4 in DRG neurones and glia, and its ligand, CXCL12, in glia. Blocking 

CXCR4 blocked the development of the zalcitabine-induced mechanical hypersensitivity, 

demonstrating the involvement of CXCR4 activation in the development of the 

hypernociception. Thus, chemokines may be involved in the development of NRTI-induced 

neuropathy, but the nature and extent of that involvement, and whether there are differences 

across animal models, is unclear.  

 

The behavioural and neuropathological changes induced by sustained exposure to 

zalcitabine were also associated with modest increases in dorsal horn astrocyte and microglial 

activation (Wallace, et al., 2007b).  However, blocking microglial activation did not attenuate 

zalcitabine-induced mechanical hypersensitivity, indicating that the microgliosis was not 

significantly contributing to the hypersensitivity in this model of neuropathic pain. A more 

recent study also shows that spinal microgliosis does not appear to be responsible for the 

development of zalcitabine-induced SN (Zheng, et al., 2011a). Yet, a single intraperitoneal 
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injection of zalcitabine did result in release of TNF-a by activated astrocytes, and 

neutralisation of this TNF-a attenuated zalcitabine-induced hypernociception (Zheng, et al., 

2011c).  These conflicting data on the role of spinal glia in mediating the hypernociception 

induced by zalcitabine may reflect differences in experimental design (e.g., chronic versus 

single administration of zalcitabine), or they may reflect the selective importance of activated 

astrocytes rather than microglia in mediating the central sensitization of nociceptive 

pathways. Whatever the case may be, there is accumulating evidence for changes in the 

dorsal horn contributing to NRTI-induced hypernociception. In a recent study, Renn and 

colleagues (2011) reported increases in BDNF concentrations in the dorsal horn of mice after 

a single intravenous injection of stavudine, and that this rise in dorsal horn BDNF was 

correlated with mechanical hypersensitivity and enhanced activity in dorsal horn wide 

dynamic range neurones. And, this hypersensitivity was reduced in BDNF heterozygous mice 

(BDNF
+/-

)
 
compared to homozygous (BDNF

+/+
) mice, and in animals depleted of BDNF by 

intrathecal administration of trkB chimeric protein.  

 

Models of combined NRTI and virus-induced neuropathy 

Wallace and colleagues (2007b) demonstrated that chronic intraperitoneal 

administration of zalcitabine induced sustained mechanical hypernociception and some 

evidence of nerve fibre pathology in rats, but in contrast to their gp120-model of HIV-SN 

(Wallace, et al., 2007a), this treatment did not induce macrophage infiltration of the nerve 

trunk or the expression of markers of neuronal stress, such as ATF3 and c-Jun, in DRG 

neurones. Thus, the overt neurotoxicity of the drug was limited compared to that induced by 

gp120 alone. However, in a model that more closely mimics the clinical situation, where 

patients exposed to antiretroviral drugs typically also have an underlying HIV infection, the 

authors reported that the algesic effects of acute perineural exposure to gp120 in rats was 

enhanced by administration of zalcitabine, and that this enhanced mechanical hypersensitivity 

was associated with increased expression of CCL2 in the DRG and increased microgliosis in 

the dorsal horn of the spinal cord. Other studies have also shown positive neurotoxic 

interactions between NRTIs and viral components. In transgenic mice expressing gp120 

under a GFAP promoter, constitutive expression of gp120 within the nervous system did not 

induce any significant neuropathology, but administration of didanosine in the drinking water 

of the mice, at a dose that in itself was not neurotoxic, resulted in the development of 

hypersensitivity to noxious heat. This neurotoxicity was associated with loss of unmyelinated 

axons in peripheral nerves and dying back of intraepidermal nerve fibres; all features of the 

pathology seen in humans with HIV-SN (Keswani, et al., 2006). In a feline model of HIV-SN 

using FIV, administering didanosine to cats infected with FIV enhanced the virus induced 

loss of intraepidermal nerve fibres. Moreover, addition of didanosine to ex vivo preparations 

of DRG cells from the cats, enhanced the reductions in neurite length and soma size, and the 

reductions in mitochondrial cytochrome C oxidase subunit I and BDNF mRNA induced by 

FIV (Zhu, et al., 2007). The enhanced toxicity of NRTIs, even those like didanosine that do 
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not produce reliable animal models of pure NTRI-induced neuropathy, when given in 

combination with virus or viral antigens, may explain the continued problem of HIV-SN in 

individuals on antiretroviral therapy since the use of zalcitabine was stopped. It remains to be 

determined whether this positive virus-drug interaction will maintain the rate of HIV-SN 

even with the substitution of stavudine for reverse transcriptase inhibitors like tenofovir, 

which exhibit very low levels of mitochondrial toxicity in vitro (Lee, et al., 2003).  

 

In summary, animal models of pure NRTI-induced neuropathy have yielded mixed 

results, with only zalcitabine producing reliable models. Even then, the different zalcitabine 

models have identified slightly different mechanisms for the nerve pathology, especially with 

regards to the involvement of the chemokine CCL2. But even within models, the nature of 

the mitochondrial dysfunction induced by zalcitabine, and its contribution to the development 

of the neuropathy, is equivocal. For example, zalcitabine induced hypernociception was 

associated with mitochondrial dysfunction sufficient to initiate mitochondrial-dependent 

caspase signalling, but maintenance of the hypernociception was dependent on sustained 

functional mitochondria, implying adequate mitochondrial function. Similar findings were 

reported in another model of drug-induced neuropathy, vincristine-induced neuropathy, 

suggesting possible overlap in the underlying mechanisms of these two drug-induced 

neuropathies (Joseph and Levine, 2004; Joseph et al., 2006). Thus, further investigation into 

either model may yield answers pertinent to both models. Models of combined NRTI and 

virus-induced neuropathy, however, have provided useful insight into the positive neurotoxic 

interactions between the two, and may help explain the continuing problem of HIV-SN in the 

era of combination antiretroviral therapy.  

 

Conclusion  

Models of virus and drug-induced HIV-SN have provided significant insight into the 

pathological processes that underlie the morphological, and to a lesser extent, the 

electrophysiological changes seen in patients with the neuropathy. The models of virus-

induced neuropathy strongly support direct and indirect mechanisms of viral toxicity, with 

indirect damage involving inappropriate activation of immuno-competent cells and the 

subsequent release of inflammatory mediators in peripheral nerves. The in vivo models of the 

drug-induced neuropathy provide evidence supporting mitochondrial dysfunction as a key 

process in the development of neuropathological changes, but the sequelae of events initiated 

by the mitochondrial dysfunction that leads to the neuropathy still is unclear. In general, the 

in vivo models have construct validity, and the models of pure drug-induced neuropathy and 

combined drug and virus-induced neuropathy developed by Wallace and colleagues (2007b) 

appear to have predictive validity also. For example, congruent with efficacy in clinical trials 

for painful HIV-SN, amitriptyline did not reduce mechanical hypersensitivity in these rat 

models, but the mixed CB1/CB2 cannabinoid receptor agonist WIN 55,212-2 did (Phillips, et 

al., 2010).  Also, the models have started to address the interaction between the viral or drug 
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induced neuropathy and co-morbid conditions that may affect the development and 

progression of the painful symptoms of the neuropathy. For example, depression has been 

linked to the presence of pain in individuals with HIV-SN (Lucey, et al., 2011) and Wallace 

and colleagues demonstrated interaction between the presence of pain and anxiety-like 

behaviour in rat models of HIV-SN (Wallace, et al., 2008). Yet, there remains significant 

scope for the models to also address co-morbid medical conditions such as diabetes mellitus, 

isoniazid therapy for tuberculosis infection and nutritional deficiencies (e.g., vitamin B12), 

that are common in the HIV-infected population and which may increase the risk of 

developing HIV-SN. Indeed, as we move forward in the development of animal models of 

HIV-SN we anticipate advances in models that address co-morbid conditions, but probably 

the most significant advances will come with development of models that better reflect viral 

exposure of the peripheral nervous system in infected individuals, such as the FIV and SIV 

models employed by Zhu and colleagues (2007) and Laast and colleagues (2007, 2011), 

respectively, and the modern drugs and drug combinations that are used clinically to treat 

HIV. Ultimately, the goal of the models is to provide insight into potential therapeutic targets 

that may either prevent or attenuate the development of the neuropathy, or treat the symptoms 

of the neuropathy, of which pain is the primary symptom. To date the models have not 

identified potential targets for either of these two goals, and neither have the models 

identified a clear link between the nature of the nerve damage and whether pain develops of 

not. However the continued development, study and refinement of animal models of HIV-

SN, such as recent investigations into changes in gene expression in the dorsal horn and DRG 

cells of animals exposed to systemic NRTIs and gp120 (Dorsey et al., 2009; Maratou, et al., 

2009; Renn et al., 2011), hold promise for the identification of new and efficacious 

therapeutic targets for this debilitating neuropathy that is common in the HIV-positive 

population, and whose symptoms are resistant to conventional treatments.  
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Figure legends 

Figure 1. Pathogenesis of HIV-induced peripheral nerve fibre damage. In dorsal root ganglia 

activation of Schwann cells and recruitment of macrophages following gp120-mediated 

activation of chemokine receptors CXCR4 and/or CCR5 causes the release of inflammatory 

mediators by these cells, ultimately causes apoptosis. In the nerve trunk, activation of 

apoptotic pathways by gp120 contributes to axonal degeneration and intraepidermal nerve 

fibre die-back. Axonal Schwann cells provide a barrier to gp120-mediated axonal damage. 

The details of pathways shown with dashed lines are uncertain. 

 

Figure 2. HIV-induced hypernociception. Activation of chemokine receptors CXCR4 and/or 

CCR5 by gp120 causes membrane depolarization, sensitization of TRPV1 and 

bradykinin(BK) receptors, and release of Substance P, all of which contribute to the 

development of acute hypernociception. gp120 also causes macrophage infiltration along the 

nerve trunk and the release of pro-hypernociceptive cytokine TNF-α. Sustained exposure to 

gp120 leads to release of pro-hypernociceptive molecules CCL2 AND TNF-α in the dorsal 

root ganglia (dashed line). Ultimately, hyperactivity in the affected primary afferents results 

in gliosis in the dorsal horn of the spinal cord, which contributes to the maintenance of the 

hypernociceptive state. Viral protein R (Vpr) also may contribute to the development of 

hypernociception through membrane depolarization and release of interferon-γ in the dorsal 

root ganglion (dashed lines). However the mechanisms behind these processes are largely 

unknown. The details of pathways shown with dashed lines are uncertain. 

 

Figure 3. Drug-induced hypernociception. The nucleotide reverse transcriptase inhibitor 

zalcitabine induces mitochondrial dysfunction associated with altered intracellular calcium 

homoeostasis and cytochrome C release, which initiates apoptotic pathways. These apoptotic 

pathways can lead to hypernociception through an imprecisely known mechanism. Activation 

of apoptotic pathways in the axon may contribute to drug-induced die-back of intra-epidermal 

nerve fibres. In addition, Zalcitabine causes activation of Schwann cells and macrophage 

infiltration into the dorsal root ganglia. Activated Schwann cells express the chemokine 

CXCL12, which probably mediates hypernociception through activation of CXCR4 receptors 

expressed on neurone. The dorsal root ganglion neurones also express the pro-nociceptive 

molecules CCR2 and TNF-α. An astrocytosis develops in the dorsal horn of the spinal cord 

following exposure to zalcitabine, which contributes to the development of hypernociceptive 

state through expression of TNF-α. The details of pathways shown with dashed lines are 

uncertain. 
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