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Periodontitis is a common intraoral infection and is inextricably linked to systemic

diseases. Recently, the regulation between host immunologic response and periodontal

pathogens has become a hotspot to explain the mechanism of periodontitis and related

systemic diseases. Since Porphyromonas gingivalis (P. gingivalis) was proved as critical

periodontal pathogen above all, researches focusing on the mechanism of its virulence

factors have received extensive attention. Studies have shown that in the development of

periodontitis, in addition to the direct release of virulent factors by periodontal pathogens

to destroy periodontal tissues, over-low or over-high intrinsic immune and inflammatory

response mediated by Toll-like receptors (TLRs) can lead to more lasting destruction

of periodontal tissues. It is very necessary to sort out how various cytopathic factors

of P. gingivalis mediate inflammation and immune responses between the host through

TLRs so as to help precisely prevent, diagnose, and treat periodontitis in clinic. This

review summarizes the role of three most widely studied pathogenic factors produced

by P. gingivalis (lipopolysaccharide, gingipains, pili) and their interactions with TLRs at the

cellular and molecular level in the progress of periodontitis.

Keywords: Porphyromonas gingivalis, Toll-like receptors, lipopolysaccharide, gingipains, fimbriae, virulence

factor, periodontitis

INTRODUCTION

Periodontitis refers to inflammatory pathological damage of the gums and periodontal
support tissues, including the gums, alveolar bone, periodontal ligament, and cementum.
Untreated periodontitis can cause the formation of deep periodontal pockets, which eventually
lead to loosening of the teeth (Pihlstrom et al., 2005; Bostanci and Belibasakis, 2012).
According to a survey by the World Health Organization, 10–15% of adults worldwide
suffer from periodontitis (Petersen and Ogawa, 2012). The factor initiating periodontitis
is biofilm plaques, in which Porphyromonas gingivalis (P. gingivalis), a Gram-negative
anaerobe and component of the “red complex” (categorized together with Tannerella
forsythia and Treponema denticola, highly relevant to periodontitis), has been irrefutably
shown to be the key pathogen underlying the pathogenesis of chronic periodontitis (CP)
(Parahitiyawa et al., 2010). Furthermore, host inflammatory and immune responses to microbial
communities change the subgingival environment, causing low-abundant key opportunistic
pathogens such as P. gingivalis to become the dominant bacteria in the biofilm, thus
breaking the homeostasis between symbiotic microorganisms and the host, promoting the
development of periodontitis, and even triggering systemic diseases (Abdi et al., 2017). For
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example, animal experiments have been used to demonstrate
that P. gingivalis can also colonize some distant organs, such
as the coronary artery, placenta, liver, and even the brain,
causing specific infections associated with the activation of Toll-
like receptors (TLRs) (Olsen and Yilmaz, 2016; Huck et al.,
2018). Based on these data, an increasing number of scholars
are investing in molecular biology to explore the pathogenic
mechanisms of P. gingivalis (Olsen et al., 2018). However, the
specific pathogenic effect of P. gingivalis virulence factors remain
incompletely understood, and many topics remain controversial.

The so-called virulence factors are molecules that cause
damage to the host at different stages of the organism’s
(bacteria, viruses, fungi, and protozoa) life cycle, increasing
their effectiveness. They mainly involve the following
functions: (1) colonization in the host; (2) immune escape; (3)
immunosuppression; (4) cellular entry and exit; (5) extraction of
nutrients from the host; and (6) release of virulence factors (How
et al., 2016). Porphyromonas gingivalis can produce various
virulence factors, such as lipopolysaccharide (LPS), gingipains,
fimbriae/pili, collagenase, (erythrocyte) lectins, capsule, protease,
and superoxide dismutase, to evade the host immune defense
system and destroy host periodontal tissues. Recent studies have
confirmed that LPS, gingipains, and fimbriae/pili are the most
important pathogenic substances of P. gingivalis and the most
widely studied in the field of periodontitis, and each of these
factors play key roles in the progression of periodontitis (Mysak
et al., 2014).

Although periodontal pathogens play very important roles
in the initial stage of periodontitis, directly destructing host
periodontal tissues by releasing toxic factors and metabolites, the
progression of periodontitis is regulated bymainly the interaction
between the host immune response and periodontal pathogens.
Because the indirect damage caused by host congenital and
adaptive immunological responses that are overactivated or
blocked by periodontal pathogens is more traumatic and lasts
longer, either low reactivity or hyperresponsiveness of the
immune response results in persistent periodontal tissue damage
(Meyle et al., 2017). As we know, an organism first relies
on innate immune responses to resist pathogenic microbial
invasion, which is also a prerequisite for adaptive immunity.
Typical pathogenic molecules are identified by multiple cell
surface receptors, which are called pattern recognition receptors
(PRRs) and include TLRs, NOD-like receptors (NLRs), C-type
lectin receptors (CLRs), and RIG-I-like receptors (RLRs). After
numerous pathogen-associated molecular patterns (PAMPs)
are distinguished by these receptors, the intracellular signal
transmission pathways are initiated, thereby stimulating the
expression of inducible costimulators and releasing inflammatory
factors, chemotactic factors, and interferons (except those of the
gamma type), among others (Akira et al., 2006). TLRs are the
most characteristic PRRs that activate and are widely expressed
in multiple cell types, including neutrophils, macrophages,
keratinocytes, and fibroblasts (Akira and Takeda, 2004). The key
point in the innate immune response during the pathogenesis
of periodontitis lies in the recognition between pathogenic
factors and PRRs. A new case-control study comparing the
relationship between early periodontitis and single nucleotide

polymorphisms (SNPs) of TLRs, NLRs, and RLRs showed
that TLR polymorphisms are associated with the susceptibility
of adolescents to periodontitis (Leite et al., 2018). Some
scholars performing a meta-analysis of the susceptibility of
TLR4 polymorphism to periodontitis revealed that TLR4 C>G
(rs7873784) may be associated with CP in the Asian population
and be transmitted to the next generation in a recessive form
(Jin et al., 2016). However, controversy exists regarding this topic
(Song et al., 2013; Chrzeszczyk et al., 2015).

This review focuses specifically on how three critical
P. gingivalis pathogenic factors explicitly contribute to the
pathogenesis of periodontitis and how they mediate innate
immunoinflammatory host responses via different TLRs.

EFFECT OF LPS ON P. GINGIVALIS

VIRULENCE

Heterogeneity of LPS
Porphyromonas gingivalis -LPS, located on the lateral lobule of
bacterial adventitia, is a bacterial endotoxin composed of lipid
A (a conserved inner region without species specificity), core
oligosaccharide (the bridge lipid A and O-polysaccharide), and
O-specific polysaccharide (has a highly variable outer region) that
has numerous biological activities and plays a strong pathogenic
role in periodontal tissues (Schromm et al., 2000). Lipid A
is the core factor underlying the immunological activity of
LPS and is structurally composed of a phosphorylated β (1-
6) D-glucosamine disaccharide backbone and multiacyl chains
acylated by fatty acids at specific positions on the backbone
(Dixon and Darveau, 2005; the schematic diagram of LPS
structure shown in Figure 1A). P. gingivalis-LPS is released
after the lysis of bacteria or as free vesicles outward from
the outer membranes of living bacteria. These LPS-containing
microvesicles, which function like “microbullets” that land on
the host, further perpetuate the invasiveness of P. gingivalis,
giving it the ability to destroy periodontal tissues and trigger
inflammation (Zhang et al., 2015; Singhrao andOlsen, 2018). The
basic chemical composition of P. gingivalis-LPS is nearly identical
to that of a typical bacterial endotoxin. The key difference
is that the LPS lipid A structure produced by P. gingivalis
can undergo isomeric acylation by two modes (tetra-acylation
and penta-acylation) depending on the environmental factors,
such as the hemin levels, phosphate availability, and incubation
temperatures, thus initiating differential immunoinflammatory
responses (Rangarajan et al., 2017). Accordingly, P. gingivalis-
LPS with tetra-acylated lipid A has been designated LPS1435/1449
based on its molecular weights of 1435 and 1449 Da, while
the other molecule is named P. gingivalis-LPS1690 based on its
molecular weight of 1690 Da (Curtis et al., 2011). Thus, TLR4
and TLR2 can be simultaneously activated after recognition of
P. gingivalis-LPS, while E. coli-LPS can activate only TLR4 (Liu
et al., 2008; Coats et al., 2009; different acylation structures of P.
gingivalis-LPS and E. coli-LPS shown in Figure 1B). Therefore,
the heterogeneous form of P. gingivalis-LPS is identified as a
PAMP, and its regulatory role associated with host cell-specific
TLRs has been extensively studied (Nichols et al., 2012).
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FIGURE 1 | (A) Structure diagram of P. gingivalis-LPS. LPS is composed of lipid A (the conserved inner region without species specificity), core oligosaccharide (the

bridge between lipid A and O-polysaccharide), and O-specific polysaccharide (a highly variable outer region) and located on bacterial outer membrane. (B) Contrast

different acylation structure of P. gingivalis and E. coli LPS. Lipid A is composed of a phosphorylated β (1-6) D-glucosamine disaccharide backbone and multi-acyl

chains acylated by fatty acids at specific positions. P. gingivalis-LPS with tetra-acylated chains is designated as LPS1435/1449 with its molecular weight of 1435 and

1449 Da, while the penta-acylated is named P. gingivalis-LPS1690 with a molecular weight of 1690 Da. The lipid A of E. coli-LPS is hexa-acylated.

Recognition and Transportation of LPS
via LBP-CD14-MD-2/TLR4
The combination of LPS and the MD-2/TLR4 complex triggers
the host innate immune response, induces inflammation
and cytokine production, and activates effector cells and
complementary systems. In the TLR family, TLR4 is unique
because it must form a dimer complex with MD-2 to capture
its ligand LPS. Because multiple acyl chains of LPS lipid A are
key to the MD-2/TLR4 complex, the LPS poly-acyl chains must
be protected until they are incorporated into the MD-2/TLR4
complex. In this process, LPS-binding protein (LBP) and CD14,
key auxiliary molecules, improve the efficiency of LPS transport,
and sensitivity of detection (Ryu et al., 2017). LBP, a 60 kDa
serum glycoprotein, is mainly produced by hepatocytes, lung,
and gastrointestinal epithelial cells. Compared with those of other
acute-phase proteins, the serum concentration of LBP increases
slowly, peaking at ∼2–3 days after acute infection. Surprisingly,
a high concentration of LBP inhibits inflammation induced by
LPS to some extent (Zweigner et al., 2001). Low concentrations of
LBP have a high affinity for lipid A and thus promote formation
of the LBP-LPS complex, which is subsequently transported to
membrane CD14 (mCD14) or soluble CD14 (sCD14) (Ding and

Jin, 2014). Soluble CD14 in the serum makes CD14-deficient
cells, including most epithelial and endothelial cells, respond
to LPS. Once CD14 binds to the LBP-LPS complex, LPS is
transiently transferred to CD14, which has a hydrophobic pocket
at its N-terminus that serves as the LPS binding site (Kelley
et al., 2013). Transport of LPS to surface MD-2/TLR4 in the
form of the LBP-LPS-CD14 complex is a prerequisite for TLR4
internalization and subsequent immune response (Tsukamoto
et al., 2018). Notably, LBP expression in gingival epithelial
cells (GECs) of the gingival-dental junction is significantly
lower in CP patients than in healthy people (Ding and Jin,
2014). Research has shown that the addition of exogenous
sCD14 substantially promotes the ability of human periodontal
ligament stem cells (PDLSCs) to produce the inflammatory
factors activated by P. gingivalis-LPS, including IL-6, IL-8 and
chemokine (C-C motif) ligand 2 (CCL2) (Andrukhov et al.,
2016). In fact, one study showed that both LBP and exogenous
sCD14 could promote the internalization of TLR4, but the
concentration of sCD14 required was higher than that of LBP
(Tsukamoto et al., 2018).

In terms of the TLR-mediated innate immune response
induced by Gram-negative bacteria, such as P. gingivalis and
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C. burnetii (the pathogen that causes Q fever), TLR2 and TLR4
are the most widely studied (Ramstead et al., 2016; Song et al.,
2017). In particular, TLR2 requires heterodimerization with
TLR1 or TLR6 to function properly, wherein the TLR2/TLR1
binding region is triacylated lipopeptides, such as Pam3CSK4,
and the TLR2/TLR6 ligand is diacylated lipid/lipopeptides,
such as lipoteichoic acid (LTA) (Nguyen et al., 2017). Based on
this information, different subspecies of C. burnetii function
differently in innate immune recognition; for example, C.
burnetii Nine Mile is mediated by only the TLR1/TLR2
heterodimer, while C. burnetii 3262 is recognized by both
TLR1/TLR2 and TLR2/TLR6 (Ammerdorffer et al., 2015).
TLRs, as type I transmembrane proteins, are composed
of a transmembrane structure, an extracellular amino
terminus domain (recognizing PAMPs) and an intracellular
Toll/interleukin-1 receptor (TIR) homology domain. To
date, ten TLR subtypes have been found in humans, among
which TLR2/TLR1, TLR2/TLR6, TLR4, TLR5, and TLR10
are cell surface receptors mainly identifying proteins or
lipids, and TLR3, TLR8, and TLR9 bind the endoplasmic
reticulum membrane, mainly identifying nucleic acids (Akira
and Takeda, 2004). In conjunction with the downstream
TLRs, some adaptor protein molecules recognize the TIR
domain, including myeloid differentiation factor-88 (MyD88),
MyD88-adapter-like/TIR-domain-containing adaptor protein
(Mal/TIRAP), TIR-domain-containing adaptor-inducing IFN-β
(TRIF), TRIF-related adaptor molecule (TRAM) and selective
androgen receptor modulators (SARM). According to the
adaptor protein recruited, TLR active pathways are divided into
MyD88-dependent and TRIF-dependent pathways. TLR2/TLR1,
TLR2/TLR6, TLR5, TLR7/TLR8, and TLR9 are all related to
the MyD88-dependent pathway. TLR3 is activated through
a TRIF-dependent pathway. TLR4 can activate the MyD88
pathway on the plasma membrane and then trigger the TRIF
pathway by activating the TRAM adaptor on the endosomes (Liu
et al., 2014; Chen et al., 2016). When MyD88 is activated as the
downstream binding protein, nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), activating protein (AP-1)
and interferon response factors 1, 5, and 7 (IRF-1, IRF-5, IRF-7)
became active, inducing the participation of inflammatory
factor genes, while the TRIF pathway ultimately results in the
sensitization of IRF-3 and activation of type I IFN-inducible
genes (Roshan et al., 2016). The extracellular domain of TLR4
must initially bind to the MD-2 molecule to achieve the most
powerful recognition and transmission of LPS. By forming a
homodimer or a larger complex with the help of MD-2, TLR4
exhibits more binding sites for PAMPs on the cell membrane,
significantly enhancing the activation of the NF-κB pathway
(Visintin et al., 2001). The radioprotective 105 kDa protein
(RP105, also termed CD180), originally discovered to protect
B cells from radiation-induced apoptosis, is a specific inhibitor
of TLR4. As the specific homolog of TLR4, CD180 is not the
same Toll family receptor as other TLRs due to the loss of an
intracellular signaling domain. Because it is physically associated
with the MD-2-like molecule MD-1, substantial structural
similarity but contrasting regulation exists between CD180 and
TLR4 (Yang et al., 2018). Therefore, both MD-1/CD180 and

MD-2/TLR4 are cell surface receptors that mediate LPS signaling
pathways that have similar structures but opposite functions
(Maeshima and Fernandez, 2013).

Different Lipid a Structures of
P. gingivalis-LPS Trigger Different Signal
Pathways
Previous research reported that themediation of TLR2 is essential
for the loss of alveolar bone caused by P. gingivalis in animal
models, and treatment of E. coli-LPS-tolerant bone marrow-
derived macrophages (BMDM) with P. gingivalis resulted in
upregulation of TLR2 expression and excessive tumor necrosis
factor (TNF) production in vitro (Papadopoulos et al., 2013).
In fact, questions regarding the leading signaling pathway
activated in P. gingivalis-LPS-triggered immunoinflammatory
reactions are controversial, as studies found that TLR4 exerts a
dominant function, while others demonstrated that TLR2 is the
primary contributor (Wang and Ohura, 2002). Some studies have
reported that downstream cytokine changes are mainly caused
by the NF-κB pathway, while others believe that the mitogen-
activated protein kinase (MAPK) pathway and others, such as
JunN-terminal kinases (JNKs) and phosphatidylinositol 3-kinase
(PI3K), are active during this process (Bainbridge and Darveau,
2001; Liu et al., 2013). For example, researchers found that
P. gingivalis-LPS reduced the osteogenic polarization potential
of PDLSCs via the TLR4-NF-κB signaling pathway. Moreover,
blocking either TLR4 or NF-κB signaling hindered LPS-induced
alveolar bone loss (Li et al., 2014). Other results indicated that
P. gingivalis-LPS activates M1 and M2 macrophages mainly via
TLR2, accompanied by the phenomena that high concentrations
of LPS stimulate M1 macrophages to produce nitric oxide (NO),
while low concentrations primarily increase the expression of
TNF-α and IL-6 (Holden et al., 2014).

Regarding the involvement of the TLR4 pathway, penta-
acylated P. gingivalis-LPS1690 is similar to classical hexa-acylated
E. coli-LPS to some extent (Bozkurt et al., 2017). For example,
both P. gingivalis-LPS1690 and E. coli-LPS elevate the expression
of the LBP protein through TLR4 in human oral keratinocytes,
among which the former induction is achieved via NF-κB and
p38/MPAK pathways, whereas the latter regulation is controlled
by the NF-κB, p38/MPAK and JNK signaling pathways (Ding
et al., 2013). Another study showed that P. gingivalis-LPS
distinctly enhanced IL-6 mRNA expression but downregulated
the cell surface molecules TLR2 and TLR4, but not at the
transcriptional level, while E. coli-LPS induced a similar but
more obvious alteration than P. gingivalis-LPS (Andrukhov et al.,
2014). However, some differences do exist between P. gingivalis-
LPS1690 and E. coli-LPS based on cell types and their exact
molecular biological activities. For example, P. gingivalis-LPS1690
significantly enhanced the transcription of NF-κB in mouse
cementoblasts via TLR2, while E. coli-LPS was regulated by
TLR4 (Nemoto et al., 2006). In addition, a study revealed that
P. gingivalis-LPS1690 not only upregulated TLR4 expression in
human gingival fibroblasts (hGFs) with positive correlations
of dose and time, but also induced the expression of TLR2
(Herath et al., 2013a). Another study further demonstrated that
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FIGURE 2 | Contrast inflammatory signals in human gingival fibroblasts

triggered by the different acylation structures of P. gingivalis LPS and E. coli

LPS. P.g-LPS1690 upregulates the expression of IL-6 and IL-8, mainly via the

MD-2/TLR4-NF-κB pathway. This process seemed to mimic hexa-acylated

E. coli-LPS. Both P.g LPS1435/1449 and LPS1690 stimulate increased

expression of TLR2, but E. coli LPS did not trigger TLR2. P.g-LPS1435/1449

primarily induced the p38/MAPK signaling pathway with little sensitization of

the NF-κB pathway.

the 16 kDa lipoprotein from P. gingivalis-LPS extracted by the
phenol-water method activated hGFs to induce IL-8 production
via the NF-κB pathway by means of TLR2, while E. coli-LPS was
assisted by only TLR4 (Hashimoto et al., 2004).

In fact, signaling pathways triggered by P. gingivalis-LPS are
closely related to its acylated lipid A isomer and target cells.
As mentioned earlier, P. gingivalis can be classified into two
groups based on the different acylation configurations of lipid A,
namely, penta-acylated LPS1690 and tetra-acylated LPS1435/1449,
which differentially modulate innate host response and produce
diverse substances, e.g., skin-antimicrobial peptide 1 (SAP1),
inflammatory cytokines (IL-6, IL-8), and MMP-3 (Reife et al.,
2006; Herath et al., 2011, 2013b). For example, P. gingivalis-
LPS1690, but not LPS1435/1449, significantly increased TLR4, and
MD-2 expression in hGFs at concentrations ≥0.1µg/mL. Both
of LPS1690 and LPS1435/1449 could significantly enhance the
expression of TLR2 in hGFs, but the effect of LPS1435/1449 was
stronger than that of LPS1690 (Herath et al., 2013a). Subsequent
experiments demonstrated that P. gingivalis-LPS1690 significantly
activated the NF-κB (mainly), p38/MAPK, and extracellular
signal-regulated kinase (ERK)1/2 signaling pathways, while P.
gingivalis-LPS1435/1449 primarily induced the p38/MAPK and
ERK1/2 signaling pathways with little sensitization of the NF-κB
pathway (Figure 2).

Interestingly, P. gingivalis-LPS1435/1449 can block the
expression of ELAM-1 induced by E. coli-LPS on human
endothelial cells at the level of combination with the TLR4
receptor ectodomain, exhibiting a TLR4 antagonist ability

(Coats et al., 2003). As a structure-determined function,
researchers proposed that the shared MD-2 and MD-1 protein
module mediates diverse biological functions through specific
interactions with lipid structures (Nagai et al., 2005). As
mentioned earlier, the MD-2/TLR4 compound-mediated
immune response induced by bacterial LPS is closely associated
with the combined MD-1/CD180 formation (Nagai et al., 2005).
Due to the common features and functional interrelationship of
MD-1/CD180 and TLR4/MD-2, the LPS-originating pathway
can be restrained by MD-1/CD180 acting as an MD-2/TLR4
antagonist, which occurs in a wide ranges of cell types, including
human embryonic kidney 293 (HEK293) cells, dendritic
cells, and macrophages (Divanovic et al., 2005). In fact, this
antagonistic activity results from the combination of the TLR4
SV1 splicing variant binding with MD-2, resulting in the absence
of signaling molecules in the extracellular N-terminal domain
(Coats et al., 2005). As another example, a recent study found
that LBP alone can upregulate IL-6 expression in human oral
keratinocytes, a process mediated by TLR2 and involving NF-κB,
JNK/p38 and IRF. When P. gingivalis-LPS1435/1449 and LPS1690
interacted with LBP, both downregulated the expression of
IL-6 in keratinocytes, and LPS1435/1449 was downregulated to
a greater extent than LPS1690. Further studies verified that the
expression levels of both CD180 and MD-1 were significantly
increased after LPS1435/1449 bound LBP, while the combination
of LPS1690 and LBP upregulated CD180 expression but decreased
MD-1 expression. This result provided a precise explanation
for the previously mentioned result that the downregulation of
IL-6 caused by LPS1435/1449 binding with LBP was more obvious
than that of LPS1690 (Figure 3). The above results lead to the
conclusion that MD-1/CD180 acts as a fine-tuning mediator
of the regulation of P. gingivalis-LPS heterogeneity induced
signaling pathways (Ding et al., 2017).

In summary, we can draw the following conclusions:
regarding the TLR2 pathway, either P. gingivalis LPS1690 or
LPS1435/1449 serves as an excitomotor; in particular, LPS1690
is a strong TLR4 agonist, while LPS1435/1449 is only a weak
stimulant, and more precisely, a potent antagonist of TLR4
(Herath et al., 2013a). In vitro experiments indicated that the
response to P. gingivalis-LPS varied considerably depending on
the cell types examined or the type of LPS produced (especially
in some experiments, as LPS extracted from P. gingivalis was
not completely pure; Darveau et al., 2004). Furthermore, both P.
gingivalis LPS1690 and LPS1435/1449 increased the amount of IFN-
γ in whole blood cell cultures (WBCCs) fromCP patients, and the
former showed higher secretion results. Moreover, P. gingivalis-
LPS1690 could trigger the abnormal whole blood cell secretion
of IL-10 in healthy individuals, while P. gingivalis-LPS1435/1449
could not, further proving that different types of P. gingivalis-LPS
induce unequivocal changes in the blood systems of CP patients
(Nogueira-Filho et al., 2014). On the other hand, considering
the complex circumstances of local and systemic hosts in vivo,
one study demonstrated that both LPS1690 and LPS1435/1449
were effective stimulators of inflammation, and LPS1435/1449 was
more effective than LPS1690 but less harmful than E. coli-LPS
at the site of inoculation (Liu et al., 2008). Currently, how host
cells protect against different P. gingivalis phenotypes dependent
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FIGURE 3 | Inflammatory signals in human oral keratinocytes triggered by P.

gingivalis-LPS heterogeneity. Either tetra-acylated P.g-LPS1435/1449 or

penta-acylated LPS1690 downregulated the expression of IL-6 through the

MD-2/TLR4-NF-κB pathway. Because MD-1/CD180 complexes negatively

mediate the MD-2/TLR4 pathway, the degree of LPS1435/1449

downregulation via increasing MD-1 was more pronounced than that of

LPS1690 via reducing MD-1.

on the microenvironmental condition is not fully understood
(Ding et al., 2017). However, changing the heterogeneous lipid
A structure to adapt to tissue-specific cellular receptor signaling
pathways has clearly been demonstrated to be a mechanism by
which P. gingivalis avoids the host’s innate immune attack and
accesses the periodontal tissue (Olsen and Singhrao, 2018).

EFFECT OF GINGIPAINS ON P. GINGIVALIS

VIRULENCE

Classification of Gingipains
Gingipains (named after P. gingivalis clostripain), belonging
to the cysteine protease family and existing in the outer
membranes, vesicles, and extracellular structures of P. gingivalis,
are important virulence factors that exert the vital function
of mediating the interaction between P. gingivalis bacteria
and hosts (Yongqing et al., 2011). Gingipains can be divided
into two categories: arginine-dependent gingipain R (Rgp) and
lysine-dependent gingipain K (Kgp). Together, the two kinds
of P. gingivalis gingipains complete 85% of the proteolysis
outside the cell (de Diego et al., 2014). Rgp has been further
subdivided into RgpA and RgpB on the basis of structure.
The molecular weights of RgpA, RgpB, and Kgp, which are
coded by the rgpA, rgpB, and kgp genes, are 95, 50, and
105 kDa, respectively. Collectively, these enzymes are primarily
composed of the following components: a signal peptide, an N-
terminal domain, a catalytic domain (CD), an immunoglobulin

superfamily-like domain (IgSF), a hemagglutinin/adhesion (HA)
domain and a C-terminal domain (Nakayama, 2015). Among
these proteins, the structure of RgpB is the simplest, as it has
no HA domain, while RgpA contains four HA domains (called
RgpAA1-RgpAA4) located in the middle of the IgSF and C-
terminal domains. Kgp also has 3 to 5 such domains (called
KgpAA1-KgpAA5) in different bacterial strains (de Diego et al.,
2013; structure of gingipains shown in Figure 4). The CDs of
RgpB and RgpA are highly homologous in terms of their amino
acid sequences, but no proteins with CD structures similar to
those of Kgp have been reported. Based on analysis of the high-
resolution crystal structure of Kgp competent fragments, the key
catalytic mechanism of Kgp probably lies in the requirement
of a triplet (C477-H444-D388) instead of a cysteine-histidine
dimer (de Diego et al., 2014; Gorman et al., 2015). In addition,
dimerization of the pro-domain also plays a substantial role
in the specific latency mechanism of Kgp (Pomowski et al.,
2017). In an animal experiment designed to test the efficacy
of three gene vaccines (rgpA, rgpB, and kgp) in treating peri-
implant inflammation, the kgp and rgpADNA vaccines enhanced
immune responses and significantly retarded alveolar bone
loss in vivo, whereas the rgpB vaccine was ineffective (Guo
et al., 2014). Given the different biological properties of RgpA,
RgpB, and Kgp, the virulence rankings of the three gingipains
explored using periodontitis model mice was Kgp > or = RgpB
>> RgpA (Pathirana et al., 2007).

Secretion and Activation of Gingipains
The biosynthesis of gingipains (secretion and activation) is
a complicated process that has not yet been fully explored.
The overall process is as follows: when gingipains have just
been translated, they are present in the form of an inactive
zymogen to block the unwanted proteolytic activity inside the
cell. After posttranslational processing, gingipains are converted
into catalytically active proteases and then transported to the
extracellular environment. Although the process of converting
from an inactive zymogen to a catalytic gingipain is not fully
defined, acetylated-lysine residues were found in the structures
of these three mature proteases, suggesting that acetylation
is a potential mechanism underlying gingipain activation and
maturation (Ren et al., 2017). Herein, Vim A must be mentioned
as a necessary acetyltransferase in the maturation process of
gingipains to modulate the virulence of P. gingivalis, and it is
indispensable for the maturation of RgpA (Aruni et al., 2013).
However, RgpB and Kgp can be synthesized and secreted via
a Vim A-independent pathway, which accounts for the late-
onset protease activity observed inVimA-deficientmutants (Dou
et al., 2015). A recent study showed that PG1842 can act as
an acetyltransferase to replace Vim A in the process of RgpB
acetylation. In any case, acetylation is definitively a requisite
posttranslational protein modification during the process of
gingipain maturation (Mishra et al., 2018).

Contribution of Gingipains to Pathogenic
Polymicrobial Biofilms
Regarding the status of P. gingivalis during oral biofilm, gingipain
protease activity affects the composition of multimicrobial
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FIGURE 4 | Structure of gingipains. Gingipains are divided into Rgp (arginine-dependent gingipain R) and Kgp (lysine-dependent gingipain K). Rgp has been further

subdivided into RgpA and RgpB. The molecular weight of RgpA, RgpB and Kgp is 95, 50, and 105 kDa, respectively. Gingipains are primarily made up of the following

components: the signal peptide, the N-terminal domain, the catalytic domain (CD), the immunoglobulin superfamily-like domain (IgSF), the hemagglutinin/adhesion

(HA) domain, and the C-terminal domain. The structure of RgpB is the simplest without HA domains. RgpA has four HA domains (called RgpAA1 to RgpAA4) located

in the middle of the IgSF and C-terminal domain. Kgp also has 3–5 such domains (called KgpAA1 to KgpAA5) in the light of different bacterial strains.

biofilm quantitatively and qualitatively (Hocevar et al., 2018).
Gingipains also function as ligands in the coaggregation of
P. gingivalis with other oral bacteria, such as T. denticola, to
promote the colonization of P. gingivalis in dental plaque (Ito
et al., 2010). In a biofilm model consisting of ten subgingival
bacteria, the most prominent outcome of replacing the normal
strain with a P. gingivalis Rgp/Kgp mutant was the change in
the T. denticola three-dimensional distribution throughout the
biofilm. Among these proteins, Rgp enhanced the growth of T.
denticola, and Kgp promoted the accumulation of T. denticola in
the biofilm. This synergistic effect was shown to be beneficial to
not only the survival and virulence of biofilm colonies but also to
their ability to form the red bacterial complex (Bao et al., 2014).
Kgp has been proven to play a very important role in the shedding
and reduction of biofilms, improving the competitive advantage
of P. gingivalis in plaque biofilms. In addition, both RgpA and
Kgp participate in P. gingivalis adhesion to oral epithelial cells,
aggregating with other bacterial species (Sakanaka et al., 2016).

Proteolytic Action of Gingipains in the Host
TLR-Mediated Immune Response
By virtue of the proteolytic action of gingipains, P. gingivalis
cleaves or degrades a variety of host proteins to escape immune
defense, including immunomodulatory proteins, signaling
pathway regulatory proteins, and adhesion molecules (Barth
et al., 2013; Hocevar et al., 2018). P. gingivalis can also recognize
NLRs in a gingipain-independent manner, activate NLR pyrin
domain-containing 3 (NLRP3)-modified inflammatory corpuscle
and release the inflammatory factors IL-1β and TNF-α, inducing
an inflammatory response in the host. Interestingly, gingipains
released by P. gingivalis itself can degrade mature IL-1β and
TNF-α, weakening the inflammatory response of the host to
some extent. Both the positive and negative immunomodulatory
effects of P. gingivalis on the host mentioned above are
actually beneficial to long-lasting colonization in periodontal
tissues (Jung et al., 2015). For instance, gingipains inhibit the

cellular PI3K/Akt signaling pathway by cleaving extracellular
PI3Kp85α-associated membrane proteins, thereby achieving
immune regulation of GECs, and this process is independent of
virulence factor invasion (Nakayama et al., 2015). The purified
gingipains RgpA and Kgp downregulate mCD14 expression
in a time- and concentration-dependent manner, resulting in
low responsiveness of macrophages to P. gingivalis infection
(Wilensky et al., 2015). This reduced mCD14 expression relies
on the presence of the HA domain, causing RgpA and Kgp to
exhibit the shedding enzyme effect, while RgpB is not active
because of its lack of the HA domain. The weakening of CD14
efficacy is not only beneficial for the reproduction of eosinophilic
bacteria in bacterial biofilms but also leads to more severe
chronic inflammation (Olsen et al., 2017).

For the most part, P. gingivalis withstands the bactericidal
lytic activity in blood serum because gingipains are the
main force in combating complement systems, which can be
applicated in hosts via three mechanisms: classical, lectin, and
alternative. The initial stages of these three pathways differ,
but the final outcomes involve the insertion of membrane
attack complexes into cell membranes, inducing the generation
of chemicals and phagocytosis of targeted Gram-negative
bacteria (Ricklin et al., 2010). P. gingivalis-specific gingipains
decompose C5 into C5a and C5b in two ways, by directly
exerting C5 convertase-like activity and activating thrombin to
replace C5 convertase by activating prothrombin (Hajishengallis
et al., 2013a). It is worth noting that gingipains induce the
polarization of M1 macrophages as a regulatory factor, thereby
facilitating P. gingivalis infection via a C5a-mediated pathway
(Hou et al., 2017). C5a is an effective chemotactic agent and
phagocyte activator that is unfavorable for P. gingivalis. However,
P. gingivalis itself has some resistance to complement dissolution
due to the anionic polysaccharide structure of lipid A anchored
on the surface (Olsen et al., 2017). In addition, RgpA hijacks
and adsorbs C4b-binding protein, a complement physiological
regulator, on the surface of P. gingivalis, inhibiting the classical
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and lectin pathways of the complement system (Hertz et al.,
2018). More importantly, recent studies have found an important
mechanism of combined action between the C5a receptor (C5aR)
and TLR2 in macrophages to promote the adaptability of
P. gingivalis (Wang et al., 2010). While the pili or lipoproteins
of P. gingivalis activate TLR2/TLR1 on macrophages and induce
a small amount of cyclic adenosine monophosphate (cAMP),
C5a-C5aR synergistically enhances the weak cAMP response
activated by TLR2/TLR1 alone by stimulating calcium-dependent
intracellular signaling, resulting in a large amount of cAMP.
Moreover, the continuous increase in cAMP activates cAMP-
dependent protein kinase A (PKA) in macrophages and destroys
the bactericidal function of inducible NO synthase (iNOS),
which is dependent on NF-κB (Wang et al., 2010). In fact,
the cross-talk mechanism of C5aR-TLR2 resulting in maximal
macrophage cAMP production stimulated by P. gingivalis is
specifically attributable to the assistance of CXC-chemokine
receptor 4 (CXCR4), although the coassociation of C5aR and
TLR2 in lipid rafts can effectively increase cAMP production in a
CXCR4-independent manner (Wang et al., 2010). The regulatory
action of the cAMP/PKA pathway on cell activity depends
on mainly the binding of phosphorylated cAMP response
element binding protein (CREB) to nuclear coactivator CREB-
binding protein (CBP) (Dyson and Wright, 2016). Because
intracellular CBP is limited, CREB (Ser133) phosphorylated
by PKA and NF-κB p65 (Ser276) competently binds to CBP.
Because cAMP/PKA mediates CREB to capture the binding CBP
sites, the NF-κB pathway is suppressed (Figure 5). Moreover,
upon the addition of glycogen synthase kinase 3β (GSK3β)
inhibitors, the iNOS and NO produced by the coactivation of
P. gingivalis-excited C5a/TLR2 were reduced to some extent but
not completely inhibited, demonstrating that GSK3β partially
promotes the iNOS signaling pathway. On the other hand, the
aggregation of PKA also inhibits IRF-1, which is the key to
the IFN-γ-mediated synergistic promotion of iNOS transcription
(Salim et al., 2016). Therefore, the cross-talk between C5aR
and TLR2 induces a cAMP-dependent immune overthrow,
which leads to the reduction of iNOS and weakening of the
bactericidal efficacy of macrophages. At the same time, GSK3β
(Ser9) is inactivated by PKA phosphorylation, which is key
to regulating proinflammatory and anti-inflammatory factors,
inhibiting the production of TLR-mediated proinflammatory
mediators (e.g., IL-6, TNF-α, IL-12, and IFN-γ) in host
cells (Martin et al., 2005). The C5a-C5aR signaling axis
also inhibits TLR4-induced IL-12p35, IL-12/23p40, and IL-
23p19 expression at the transcriptional level in macrophages
and downregulates IL-12p70 and IL-23 at the translation
level by the PI3K and ERK1/2 signaling pathways, thereby
alleviating latent tissue damage regulated by effector Th1 and
Th17 cells (Weaver et al., 2007).

Transpeptidation Function of Gingipains
In addition to the powerful protein degradation function
mentioned above, gingipains have recently been found to
have an undeniable transpeptidation effect, which results from
the transfer of several amino acids between peptide chains.
Considering that heme must be ingested to provide iron and
protoporphyrin IX and thus ensure viability and virulence

FIGURE 5 | Antibactericidal mechanisms of C5a-TLR2-CXCR4 cross-talk

induced by P. gingivalis in macrophages. P. gingivalis pili activated the

TLR2-MyD88-dependent pathway and caused a small amount of cAMP

production, while C5a-C5aR activation mediated by P. gingivalis

gingipain-degradation of C5 synergistically enhances the production of cAMP.

The combination of pili and CXCR4 helped maximize cAMP production via

C5a-TLR2 cross-talk. The continuous increase in cAMP activated PKA to

mediate CREB capturing the limited binding sites of CBP and inhibited NF-κB,

thus reducing macrophage-forming NO and destroying the bactericidal

function.

(Ohya et al., 2016), P. gingivalis, an obligate anaerobic bacterium
located in subgingival plaque, utilizes the transpeptidase
activity of gingipains to extract the required nutrients from
human hemoglobin (Smalley and Olczak, 2017). During this
process, small peptides such as glycylglycine (GlyGly) not
only enhance the proteolytic activity of gingipains but also
act as receptor molecules participating in gingipain-catalyzed
transpeptidation. In general, the trans-peptide reaction is much
more efficient than the corresponding hydrolysis reaction,
causing simple pathogenic proteins to become “transpeptidases”
in a short time, which may induce the destruction of immune
tolerance and trigger autoimmune diseases (Zhang et al.,
2018). In addition, Kgp may not only act as a sensor of
the hemoglobin concentration in the environment, thereby
regulating the acetylation mode of lipid A in P. gingivalis-LPS,
but also directly participate in the aggregation and degradation
of hemoglobin, affecting its type, growth, and infection of
P. gingivalis (Smalley and Olczak, 2017).

EFFECT OF FIMBRIAE/PILI ON
P. GINGIVALIS VIRULENCE

Structure and Genotype of Pili
Pili are filamentous structures located on the P. gingivalis surface
that enhance the bacterial adhesion to multiple types of surfaces,
such as the extracellular matrix, host cells and other bacteria,
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and take part in the formation of biofilm (Nagano et al.,
2013). P. gingivalis pili can be exhibited in at least two forms,
namely, the major FimA and the minor Mfa, both of which
regulate bacterial dependence on various molecules and oral
substrates and are important for biofilm formation (Nagano et al.,
2012). The major proteins, which protrude ∼3µm above the
surface, are composed of the FimA protein subunit (the main
P. gingivalis pilus subunit) and are encoded by the fimA gene,
while the minor subunits, which are also called short fimbriae,
are composed of mainly Mfa1 structural subunit proteins and
are encoded by the mfa1 gene, and their lengths differ from
60 to 500 nm (Nakano and Amano, 2013). In addition to the
primary Mfa1 protein, mature pili also have affiliated Mfa2-
5 proteins. Mfa2 plays an anchor role, while Mfa3 can bind
with Mfa1/2/4/5 in vitro, connecting with other pilus subunits
as a binding protein (Ikai et al., 2015). Recent data indicate
that the C-terminal domain of Mfa1, rather than Mfa3, affects
the aggregation and maturation of downstream pilus proteins
(Hall et al., 2018); however, the aggregation of Mfa1 does not
depend on other pilus proteins but requires the proteolytic
action produced by the gingipains RgpA and RgpB (Lee et al.,
2018). Based on nucleotide sequence differences between the
translational reading frame on the gene fimA, P. gingivalis is
divided into six genotypes (type I to V and Ib). Among these
genotypes, the fimA genotypes II and IV are widely distributed
in periodontitis isolates (Nagano et al., 2018). The adhesive and
invasive abilities of epithelial cells in patients with type II fimA
clones were shown to be significantly enhanced compared with
those of other fimA clones, suggesting that these clones are most
closely associated with CP (Enersen et al., 2008). A recent study
showed that type II fimA genotype is also detected at high rates
in patients with both periodontitis and rheumatoid arthritis (RA)
(Ayala-Herrera et al., 2018).

Role of Fimbriae/Pili in TLR-Mediated Host
Immune Response
Adhesion is an indispensable process in the pathological
development of periodontitis. Because the pili are the most
prominent structure on the surface of bacteria, it is highly
likely that their attachment is the first step in the reaction
between microorganisms and the host (Mantri et al., 2015). It
has been confirmed that pili can mediate the attachment of P.
gingivalis to hydroxyapatite, hGFs and epithelia (Sojar et al.,
2002; Baek et al., 2013). Porphyromonas gingivalis long fimbrial
proteins were capable of activating human GECs through
TLR2 with a complex of sCD14 and LBP and significantly
upregulating IL-8 expression and NF-κB activation, which
were involved in bone resorption (Kusumoto et al., 2004).
Porphyromonas gingivalisminor pili not only enhanced the bone
resorption of osteoclasts by producing IL-1β, TNF-α, and IL-
6 but also promoted the differentiation of osteoclast precursor
cells. The addition of anti-TLR2 antibody significantly inhibited
the formation of osteoclasts caused by short fimbriae, while
anti-TLR4 antibody did not obviously block pit formation on
dentine blocks (Hiramine et al., 2003). Moreover, similar results
demonstrated that the 67-kDa minor pili on the P. gingivalis

surface stimulated the expression of TNF-α, IL-1α, IL-1β, and IL-
6 cytokines in macrophages via the TLR2/complement receptor
3 (CR3) pathway, which showed the vital function of regulating
immunity and mediating tissue damage during the development
of periodontitis (Wang et al., 2007). Similar to CD14 regulating
the sensitivity of TLR4-MD2 combination with LPS, P. gingivalis
fimbriae upregulated IL-6 expression via the TLR2-p38/MAPK
pathway in human monocytes, while LBP improved the reaction
(Pollreisz et al., 2010). In addition, although sCD14 is a necessary
molecule to recognize P. gingivalis by epithelial cells, mCD14
can cause a more violent reaction in response to activation
of downstream pathways, producing IL-6, IL-8, granulocyte-
macrophage colony-stimulating factor (GM-CSF), and TNF-α
(Eskan et al., 2007).

It was shown that the different combinations between
the coreceptor and TLR2 directly affect the activation of
microbial molecules and TLR2; for instance, CXCR4 acts as
a pattern recognition receptor and is also a coreceptor for
TLR2 (van Bergenhenegouwen et al., 2013). The combination
of pili and CXCR4 blocks the production of TNF-α mediated
by NF-κB activation and simultaneously promotes IL-10
production. Further studies indicated that cross-talk exists
between the TLR2/CXCR4 signaling pathway and the inhibition
of the NF-κB pathway following TLR2 recognition of the
pili. The key factor of this mechanism is that cAMP-
dependent PKA inhibits the MyD88-dependent antibacterial
pathway induced by TLR2 activation, which is the signaling
transducer downstream of CXCR4 asmentioned before, reducing
macrophage-forming NO and enhancing P. gingivalis against
host clearance (Hajishengallis et al., 2008). In addition, the
recognition of CXCR4 by P. gingivalis pili can activate the β2
integrin CR3 induced by PI3K in a TLR2-dependent manner,
representing another cellular adhesion signaling pathway widely
distributed in neutrophils, natural killer (NK) cells and
macrophages. Upon CR3 activation, the safe entry of P. gingivalis
into macrophages is mediated, simultaneously inhibiting the
production of IL-12p70 and enhancing its capacity to evade
death (Hajishengallis et al., 2013b).

Many studies have concluded that TLR2-MyD88 is a classical
inflammatory pathway that mediates the periodontal tissue
destruction caused by P. gingivalis (Burns et al., 2010). Recently,
the TLR2-MAL/TIRAP-PI3K pathway was shown to promote P.
gingivalis infection-driven alveolar bone resorption in vivo, even
in the absence of the typical TLR2 adapter protein MyD88. At
the same time, in vitro experiments demonstrated that activation
of the TLR2-PI3K signal caused neutrophils to produce the
proinflammatory cytokine TNF-α, thus inhibiting thematuration
of phagosomes and prolonging survival time in host cells
(Makkawi et al., 2017). While MyD88 contributes to the defense
of neutrophils against P. gingivalis, pathogens can eliminate this
host anti-infection mechanism by inducing the degradation of
MyD88 in both humans and mice. The ability of P. gingivalis to
degenerateMyD88 in neutrophils has been proven to be achieved
through the C5aR-TLR2 cross-talk mechanism, in which the
ubiquitin-proteasome and smad ubiquitin regulatory factor 1
(Smurfl) are involved, rather than via cAMP-dependent PKA
(Maekawa et al., 2014). Furthermore, the MyD88-independent
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FIGURE 6 | Antibactericidal mechanisms of C5a-TLR2 cross-talk induced by

P. gingivalis in neutrophils. The C5aR-TLR2 cross-talk activated by P. gingivalis

pili induced degradation of MyD88 in neutrophils. Without MyD88, the

coassociation of C5aR-TLR2 promoted P. gingivalis infection through

activation of the TIRAP-dependent PI3K signaling pathway, not only producing

the inflammatory cytokine TNF-α but also blocking RhoA activation and actin

polymerization to inhibit the maturation of phagosomes, thus blocking P.

gingivalis phagocytosis.

signaling pathway was also shown to work together with C5aR-
TLR2 to promote P. gingivalis infection, during which PI3K acts
as an effector of C5aR-TLR2 induced by the adaptor TIRAP
(Hajishengallis, 2015) and blocks Ras homolog gene family
member A (RhoA) activation and actin polymerization, thereby
inhibiting P. gingivalis phagocytosis (Figure 6). In this regard,
this result differs from the C5aR-TLR2 cross-talk in macrophages
mentioned earlier.

CONCLUSION

The oral cavity is an open microecological environment with
more than 700 species of microorganisms that normally
maintain a dynamic balance with the host’s immune system.
When the balance between bacteria and the host is perturbed,
opportunistic pathogens, including periodontal pathogens,
will become dominant. Periodontitis caused by periodontal
pathogens destroys the epithelial junction between the teeth and
periodontal tissue, forming a periodontal pocket. Furthermore,
the periodontal pocket provides an anaerobic and nutrient-
rich growth microenvironment for periodontal pathogens to
survive and spreading (Wolf and Lamster, 2011). As the most
important pathogen of periodontal tissue infection, P. gingivalis
can directly destroy periodontal tissues by secreting toxic

factors such as LPS, gingipains and pili, and these important
virulence factors can activate a wide range of host immune
cells in periodontal tissues, triggering a local immune response,
allowing the defense cells to release numerous inflammatory
mediators and leading to secondary damage to the periodontal
tissue. Regarding periodontitis pathogenesis, TLRs, as PAMP
recognition receptors, can mediate the inherent immunological
reactions of the host to P. gingivalis, which is the basis of adaptive
immunity and plays a vital role during the occurrence and
development of periodontitis (Nakayama and Ohara, 2017). This
review therefore details how the most critical virulence mediators
of P. gingivalis trigger host defense cells and regulate the
microbial-host immune-inflammatory responses by interacting
with TLRs at the molecular biology level, hopefully providing
an opportunity to more clearly understand the pathogenesis
of periodontitis.

Considering the different experimental methods, cell types,
reagents, and other experimental details used by different
scholars, contradictions and controversies in the experimental
results remain. To date, we still do not fully understand how
P. gingivalis can not only induce bodily inflammation but also
escape the host immune surveillance and flourish under the
microecologically imbalanced system by fully exploiting its key
virulence molecules. In addition, other toxicity factors produced
by P. gingivalis also play substantial roles in the pathogenesis of
periodontitis, such as capsules activating the host complement
system (Singh et al., 2011), the hemophore HmuY helping P.
gingivalis capture and internalize heme from the host (Smalley
et al., 2011), and outer membrane proteins adhering to the
host outer membrane (Chen et al., 2011). Regarding other
virulence factors, their specific pathogenic mechanisms and
how they regulate host immunity through TLRs will be further
summarized. Elucidating the unique pathogenic mechanism of
P. gingivalis virulence factors is an arduous task, and a substantial
amount of work remains and requires the joint efforts of scholars.
We believe that with the rapid development of biomedicine,
these problems will eventually be solved to provide more effective
clinical therapy for patients with periodontitis and periodontal-
related systemic diseases.
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