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INTRODUCTION

The entire surface of the human intestine reaches 200~ 

400 m
2
 (1). Moreover, it occupies a central position as 

the frontier of the innate immune system. The inner 

cell lining of the intestine works not only as a barrier to 

protect the host from harmful pathogens but also as a 

place where interactions with commensal microorganisms 

occur. These interactions are delicately modulated by 

the intestinal immune system and contribute to immune 

homeostasis. For various reasons, idiopathic intestinal 

inflammations such as inflammatory bowel disease (IBD) 
can occur when this homeostasis is disrupted (2,3).

  IBD is a multifactorial immune disorder characterized 
by chronic relapsing inflammation of the intestine (4). 

It is classified into two different disorders: Crohn’s 
disease (CD) and ulcerative colitis (UC). Clinically, CD 
and UC share similar symptoms, including diarrhea, 
hematochezia, and abdominal pain, whereas the location 

and depth of inflammation, as well as complications and 

prevalence can differ. Currently, the exact etiology of 

IBD is unclear. However, it is believed that disturbance 
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Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder with an unknown etiology. IBD is 
composed of two different disease entities: Crohn’s disease (CD) and ulcerative colitis (UC). IBD has been thought to 
be idiopathic but has two main attributable causes that include genetic and environmental factors. The gastrointestinal 

tract in which this disease occurs is central to the immune system, and the innate and the adaptive immune systems 

are balanced in complex interactions with intestinal microbes under homeostatic conditions. However, in IBD, this 
homeostasis is disrupted and uncontrolled intestinal inflammation is perpetuated. Recently, the pathogenesis of IBD 
has become better understood owing to advances in genetic and immunologic technology. Moreover, new therapeutic 

strategies are now being implemented that accurately target the pathogenesis of IBD. Beyond conventional immune-
suppressive therapy, the development of biological agents that target specific disease mechanisms has resulted in 

more frequent and deeper remission in IBD patients, with mucosal healing as a treatment goal of therapy. Future 
novel biologics should overcome the limitations of current therapies and ensure that individual patients can be treated 

with optimal drugs that are safe and precisely target IBD.
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of the immune system and/or imbalanced interactions 

with microbes leads to development of chronic intestinal 

inflammation when certain environmental factors trigger 

genetically susceptible hosts. Traditionally, Th1 cells have 

been thought to play an important role in pathogenesis 

related to the chronicity of intestinal inflammation, 

especially in CD, whereas Th2 cells have been thought 
to play an important role in UC (5). Recently, however, 
activation of Th17 cells and imbalance of Th17/regulatory 

T (Treg) cells are recognized to be an important com-

ponent in the development of intestinal inflammation (6). 

Since tumor necrosis factor (TNF)-a has been identified 

as a key cytokine in IBD pathogenesis, the introduction 
of anti-TNF-a treatment has led to the development of 

disease-modifying drugs (7-9). Compared to conventional 

therapies, anti-TNF agents have higher rates of remission 

induction and maintenance. Moreover, these drugs have 

been able to obtain mucosal healing through targeted im-

mune suppression. However, about a third of patients with 
IBD still do not show an appropriate response to existing 
therapies. This high rate of treatment failure suggests that 

there are still unknown aspects regarding the mechanism 

of IBD. Encouragingly, however, dozens of novel agents 
based on recent advances in our understanding of the 

mucosal immune system for IBD pathogenesis have been 
developed and are now in clinical trials worldwide. In 

this review, we will describe our current knowledge of the 

mucosal immune system in terms of IBD pathogenesis 
and discuss its therapeutic implications.

THE INTESTINAL EPITHELIUM AND MICROBIOTA

The intestinal epithelial cell (IEC) layer consists of several 
different cells, including enterocytes, goblet cells, neuro-

endocrine cells, Paneth cells, M cells, and epithelial 

resident intestinal stem cells. These cells structurally 

constitute crypts and villi, with a single columnar cell 

lining with a tight junction, and secrete mucus containing 

anti-microbial peptides; these cells separate intra-luminal 
pathogens from the subepithelial lamina propria (3,10,11).

Mucus layer

To protect mucosa, a mucus layer covers the outer epithe-

lial surface. The mucus layer is composed of glycosylated 

mucin from goblet cells as well as defensins from Paneth 

cells and IECs. A major component of mucin is encoded 
by Muc2, and spontaneous colitis develops upon deletion 

of Muc2  in mice (12). A study showed that aberrant 

mucin production was accompanied by endoplasmic 

reticulum (ER) stress (13). Goblet cell depletion and a 
reduced mucus layer are characteristic findings in patients 

with UC (14). In addition to mucin, Paneth cells secret 
a-defensin, whereas most IECs produce b-defensin. 

Paneth cells are known to play an important role in the 

homeostasis of the intestinal epithelium. Genetic altera-

tions or ER stress causing Paneth cell dysfunction or 
depletion result in dysbiosis of commensal flora and in-

creased susceptibility to intestinal inflammation (15). It 

is known that IBD patients often have this Paneth cell 
dysfunction (16). Paneth cell abnormalities are thought to 

be a very early event in IBD development, particularly in 
CD. Therefore, there are studies examining the effects of 
applying ER-stress-reducing methods to IBD treatment. 
A study showed that the chemical chaperones taurourso-

deoxycholate (TUDCA) and 4-phenylbutyrate (PBA)—
small molecules that can reduce ER stress by facilitating 
protein folding—prevented the induction of intestinal 
inflammation in mice (17).

Integrity of the intestinal epithelium

Epithelial integrity is maintained by tight junctions 
between IECs. When the permeability of the intestinal 
epithelium is increased, external pathogens are easily 

introduced, which is known to affect the pathogenesis of 

IBD (18). Several lines of evidence showed that single-
nucleotide polymorphisms in the organic cation trans-

porter (OCTN), which mediates the transport of organic 

cations across the cell membrane, were associated with 

CD susceptibility (19,20). IECs also play a role as com-
municator between pathogens and lamina propria. Only 

small amounts of bacteria are generally capable of mo-

ving into the intestinal epithelium. This translocation is 

a method of antigen sampling and immune surveillance 

for the intestinal mucosal immune system that is essential 

for the host’s immune homeostasis (21). However, when 
the integrity of the intestinal epithelial layer is broken, 

a high influx of intestinal contents and/or a high burden 

of microorganisms is thought to initiate and maintain a 

sustained inflammatory response, which is considered 

to be one of the mechanisms underlying IBD (22). For 
example, in an animal model in which the barrier function 

of the intestinal epithelial layer is reduced, such as in 

mice with a dominant negative N-cadherin mutation (23) 

or mice lacking NOD1 and NOD2 (24), the mice develop 
IBD-like enteritis. Moreover, several genetic studies have 
identified several candidate genes in patients with UC 
(25,26), such as CDH1 and LAMB1, which are involved 

in regulation of the epithelial barrier. Therapeutic attempts 

to restore mucosal barrier function have also been attemp-
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ted. Phosphatidylcholine (lecithin) is abundant in the 

mucus of healthy colons, whereas reduced lecithin levels 

were observed in UC patients (27). A phase IIA, double-
blind, randomized, placebo-controlled study showed that 

oral administration of lecithin was effective for achieving 

clinical remission in patients with chronic active UC (28).

Intestinal microbiota

Generally, there are approximately 10
11

~10
14

 enteric 

commensal microorganisms from 300~500 bacterial 

species (29,30). Under normal circumstances, most 
commensal bacteria play an essential role in protecting 

intestinal homeostasis. They affect crucial nutrient pro-

vision, development of the immune system, and modula-

tion of energy metabolism (5,31). The majority of com-

mensal bacteria consist of gram-negative bacteria, such 

as Bacteroidetes , and gram-positive bacteria, such as 

Firmicutes (32). Other minor divisions are comprised 

of Proteobacteria , Actinobacteria , Fusobacteria , and 

Verrucomicrobia (32). Those mucosa-associated phyla 

are reduced in diversity and amount in patients with IBD 
compared to that in healthy humans (5,33,34). How ever, 
commensal microorganisms can be noxious for intestinal 

inflammation under certain circumstances (35). There are 

some clues that commensal bacteria play an important 

role in the development of IBD. First, empiric antibiotic 
treatment has been effective in some IBD patients (36). 
Second, IBD patients have increased titers against 
indigenous bacteria (37). Third, genetic variants that are 

associated with bacterial detection, such as NOD2 (38), and 

T cell immunity, such as IL23R (39), are implicated in IBD. 
Fourth, most animal models of colitis require commensal 

bacteria for the initiation of intestinal inflammation (40). 

In addition, recent studies have focused on the contri-

bution of other enteric microorganisms, such as viruses 

or fungi, for IBD development. For example, a study (41) 
revealed that altered amounts and compositions of enteric 

virus were related to experimental colitis. In particular, 

mice without Toll-like receptor (TLR) 3 and TLR7 were 

more susceptible to the induction of colitis. Likewise, 

Iliev et al. reported that mice deficient for Dectin-1, which 
is an innate immune receptor responsible for interacting 

with commensal fungi, showed increased susceptibility to 

colitis (42).

  To date, several pathogens have been proposed as 

causative microorganisms for IBD development. Recent 
studies showed Proteobacteria, especially adherent-inva-

sive Escherichia coli (AIEC), as one of the candidates. 
AIEC has been detected more frequently in patients with 
CD than in healthy subjects (43-45). AIEC is known to 

be able to invade epithelium and replicate within macro-

phages (46). Some investigators isolated AIEC from the 
ileum of patients with CD (47,48). However, AIEC was 
rarely found in the colon tissues of CD patients and was 
not identified in UC patients (49), suggesting that AIEC 
performs an important role in the occurrence of small 

bowel inflammation (18).

  In contrast, Clostridium cluster XIVa and IV are thought 

to be a crucial part of gut homeostasis through Treg cell 

accumulation (50). Foxp3
+CD4+

 Tregs are known to be 

abundant in the colonic lamina propria and are the most 

important immune-regulating cells (51). Several studies 

showed that Treg cells were strongly affected by intestinal 

microbiota (52). In particular, Treg cells stimulated by 

CBir1, a microbiota flagellin, induce IgA+B cells in the 
intestine. As a result, decreased pathogenic loading by 

IgA leads to down-regulation of systemic T cell acti-

vation (53). An experimental murine model with an in-

creased Clostridium XIVa/IV population was resistant 

to allergy and intestinal inflammation (50). Conversely, 

patients with IBD showed a reduced Clostridium XIVa/IV 

compared to that in controls (34,54,55).

  Observations of dysbiosis in IBD patients led to efforts 
to restore microbiota to a normal composition. Fecal 

microbial transplantation (FMT) has emerged as a novel 

treatment in patients with IBD. One randomized control 
trial involving 75 UC patients showed a significantly 
higher remission rate (24%) in patients receiving FMT 
from unrelated donor enemas than that in the placebo 

group (5%) (56). However, a second randomized control 
trial with 48 UC patients reported a negative result 
(57). Currently, there are no randomized control trials 

comparing FMT with placebo treatment in CD patients. 
A meta-analysis using four case series data in 38 CD 
patients revealed a 60.5% pooled response rate (58). 
However, their outcome was not that of mucosal remis-
sion but of clinical response. Therefore, the effectiveness 

of FMT as a therapeutic application for IBD remains 
unclear. Furthermore, optimal donor selection, delivery 

methods, and donor feces processing have not yet been 

standardized. Probiotics are nutritional supplements that 

contain microorganisms that benefit the host's health 
when administered in the proper amount. Attempts have 

also been made to treat IBD by improving intestinal 
microbial balance through probiotics. In an experimental 

colitis model, probiotics showed an anti-inflammatory 

effect through TLR9 signaling (59). A recent meta-analy-

sis using 23 randomized controlled trials showed that 

administration of probiotics was associated with benefits 

regarding induction and maintenance of remission in 
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patients with UC but not in CD (60). Further studies are 
warranted to draw a concrete conclusion in terms of the 

therapeutic effects of probiotics in IBD.

INNATE AND ADAPTIVE IMMUNITY IN IBD 
TREATMENT

Innate immune recognition

The innate immune system is at the forefront of defending 

against external pathogens in the human immune system. 

The innate immune system provides rapid and non-

specific protection to the host through pattern-recognition 

of pathogens, whereas the adaptive immune system 

mediates highly selective and long-lasting immunity. The 

innate immune system of the intestine is composed of 

intestine epithelia, macrophages, monocytes, neutrophils, 

eosinophils, basophils, dendritic cells (DCs), and natural 
killer cells. Intraluminal pathogens continuously com-

municate with innate immune cells through diverse 

innate immune receptors such as TLRs, NOD, leucine-
rich repeat receptors (NLRs), C-type lectin receptors 

(CLRs), and retinoic acid-inducible gene 1-like receptors 

(RLRs) (61). When intestinal macrophages and DCs 
sense pathogen-associated molecular patterns (PAMPs) 

of microbes, activated signal pathways, such as NF-kB, 
produce proinflammatory cytokines, chemokines, and 

anti-microbial peptides (62). Activation of macrophages 

by these cytokines and chemokines plays a role in the 

direct elimination of pathogens through free radicals 

and proteases and also results in antigen presentation to 

the adaptive immune system. Antigen presenting cells 

(APCs), such as DCs and macrophages, have a key role 
in connecting the innate and adaptive immune system. 

Comparing that macrophages perform antigen presentation 

and have a phagocytic function, activated DCs present 
intraluminal pathogens to naïve CD4+

 T cells at secondary 

lymphoid organs of the gut and modulate the polarization 

of naïve CD4+
 T cells to Treg cells and helper T cells, 

including Th1, Th2, and Th17 cells.

  Under non-inflammatory conditions, TLR signaling 
leads to tolerance towards luminal pathogens through 

down-regulation of pattern-recognition receptors and 

promotes mucosal wound healing. In IBD patients, 
impaired TLR signaling often leads to increased intestinal 

permeability and inappropriate mucosal healing. For 

example, TLR2-deficient mice showed an increased 

mortality rate after damage was induced to the colon 

mucosa via chemicals. TLR2 signaling stimulates the 

production of trefoil factor (TFF) 3 and restores damaged 

mucosa. In mice lacking TLR2, mortality was reduced 

when TFF3 was administered (63). Likewise, genetic 

studies showed the association between CD and the 
nucleotide oligomerization domain (NOD) 2 gene. NOD2 
polymorphisms lead to an impaired response to bacterial 

peptidoglycan sensing. While the exact mechanism between 
CD and impaired NOD2 function is still unclear, NOD2-
mediated chronic stimulation is thought to be one of the 

factors controlling proinflammatory cytokine production. 

Recent genome-wide association studies (GWAS) showed 
relationships between a variety of single-nucleotide poly-

morphisms (SNPs) and IBD risks: microbial sensing 
(NOD2, IRF5, NFKB1, RELA, REL, RIPK2, CARD9, 

and PTPN22), microbial elimination (ATG16L1, IRGM, 

and NCF4), and integration of antimicrobial adaptive 

immune responses (IL23R , IL10 , IL12 , IL18RAP/

IL1R1 , IFNGR/IFNAR1 , JAK2 , STAT3 , and TYK2) 

(64-66). Recent studies have shown that autophagy 

plays an important role in the innate immune system. 

Autophagy is a biological process that activates cellular 

autodigestion of the cell’s own cytosolic materials, in-
cluding intracellular microbes. Additionally, autophagy 

enables antigen presentation by major histocompatibility 

complex class II. Repeated GWAS studies consistently 
showed the association between CD and autophagy-
related genetic polymorphisms, such as ATG16L1 and 

IRGM (67-71). The accumulation of both macrophages 

and DCs is observed in the lamina propria of IBD patients 
and in experimental colitis models (3). If interactions 

between DCs and T cells are interrupted, experimental T 
cell-mediated colitis is prevented (72). Moreover, DCs 
and macrophages also play a role in maintaining gut 

homeostasis against the inflammatory conditions of the 

intestine. A study showed that a pro-resolution mediator, 

prostaglandin D (2), was specifically up-regulated in UC 
patients with long-term remission (73). Likewise, another 

study revealed that a SNP associated with low levels of 

CD39/ENTPD1, which hydrolyzes proinflammatory 
nucleotides and generates adenosine, was related to an 

increased risk of developing CD (74). Taken together, an 
impaired innate immune response might promote IBD 
development via inappropriate stimulation of adaptive 

immunity through failure to control microorganisms (66). 

Therefore, researchers have focused on enhancing innate 

immunity as a therapeutic target of IBD. For example, 
certain growth factors, such as granulocyte-macrophage 

colony-stimulating factor (GM-CSF) and granulocyte 

colony-stimulating factor (G-CSF), which are critical 

for modulation of cellular proliferation, differentiation, 

angiogenesis, and inflammation, have been evaluated for 
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treatment of intestinal inflammation (75).

Adaptive immunity

Chronic inappropriate activation of the adaptive immune 

system against commensal microorganism has been 

thought to be the main pathogenesis of IBD. Increased 
production of IFN-g from Th1 cells and cytokines related 

with Th17 cell, such as IL-17A/F, IL-21, IL-22, and 

CXCL8, are observed in the intestine of CD patients, 
while T cells from the lamina propria of UC patients 
highly produce Th2 cell-related cytokines, such as IL-5 

and IL-13 (3,76,77).

  Classically, immune-modulating treatments of IBD have 
focused on adaptive immunity. Corticosteroids have been 

widely used to treat acute flares of IBD since Truelove 
and Witts reported the effectiveness of oral corticosteroids 
in patients with UC in 1955 (78). Suppression of pro-
inflammatory cytokines, such as TNF-a and IL-1b, is 

known to be the primary mechanism underlying how 

corticosteroids control IBD (79). In addition, recent stu-
dies highlighted that corticosteroids play an important 

role in regulation of T helper cell differentiation and 

type I interferon (IFN) production (79). Clinically, cor-

ticosteroids are effective for remission induction of 

IBD. A study observed that the first course of oral corti-
costeroid treatment achieved 89.5% of therapeutic re-
sponse after 1 month, 69.5% after 4 months, and 56.6% 
after 1 year in patients with CD (80). Likewise, various 
immunomodulators that down-regulate the proinflam-

matory cytokines of T cells have been a well-established 

treatment for IBD. For example, cyclosporine A and 
tacrolimus are used for remission induction of active UC, 
and methotrexate is used for chronically active CD (81-
83). Of these treatments, the most widely used agent is 

thiopurines, such as azathioprine and 6-mercaptopurine. 

Thiopurine inhibits purine nucleotide synthesis and 

breaking of DNA in leukocytes via 6-thioguanine 
nucleotides (6-TGNs), which is the effector product 

of thiopurine metabolism (84). Moreover, thiopurine 

sup presses CD4+
 T cell acti vity and promotes T cell 

apoptosis by inhibiting GTPase Rac1 in inflamed in-

testine (85). Recently, a study showed that autophagy-

relate genetic variant, ATG16L1, was associated with 

the good clinical towards thiopurine treatment in patients 

with CD but not in UC (86). In addition, a study showed 
that local administration of thioguanine improved murine 

colitis by promoting autophagy and killing translocated 

bacteria at the site of the inflamed intestine indepen-

dently of systemic myelosuppression (87). Therefore, 

thiopurine probably works by multiple mechanisms to 

improve IBD. Meanwhile, thiopurine may cause life-
threatening leukopenia. The TPMT mutation is known 

to be associated with this complication (88). More speci-

fically, a study involving immunochip genotyping of 

Asians revealed that NUDT15 SNP was strongly re-

lated to thiopurine-induced leukopenia, and another 

study showed an association between FTO variant and 

leukopenia by GWAS analysis (89,90). Although non-
specific immunosuppression using immunomodulators 

is generally safe and effective for disease control to an 

extent, advances in the understanding of the specific 

mechanisms of IBD led to the development of targeted 
treatment, i.e., biologics.

Modulation of anti-inflammatory cytokines

The era of biologic therapy began with an anti-TNF 

agent, infliximab, in patients with CD (91). TNF-a is a 

proinflammatory cytokine that is produced by activated 

macrophages, monocytes, and T lymphocytes (7). 

Intestinal specimens of CD patients were shown to have 
increased levels of TNF-a protein and mRNA expression 

(92). Excessive production of TNF-a using experimental 

deletion of the adenosine-uracil (AU)-rich elements 
(ARE) from the 38-untranslated region (38-UTR) of the 
TNF-a gene in mice resulted in development of chronic 

inflammatory arthritis and CD-like IBD phenotype (93). 
Another experimental study revealed that inhibiting 

TNF was able to improve dextran sulfate sodium (DSS)-
induced colitis in a mice model (94). Therefore, TNF-a 

has been thought to play a pivotal role in the development 

of IBD.
  TNF-a has two forms in the human intestine: trans-
membrane TNF (mTNF) and soluble TNF (sTNF). 

mTNF is generally expressed on the surface of CD14+
 

macrophages and targets TNF-R2 of T cells, whereas 

sTNF is secreted by several immune cells as a signaling 

molecule and targets TNF-R1 of effector cells (95,96). 

In IBD, increased levels of both mTNF and sTNF play 
various pro-inflammatory functions in the inflamed gut, 

such as angiogenesis, Paneth cell death, matrix metal-

loproteinase production from myofibroblasts, and the 

undermining of the barrier function of IECs (77). Recent 
studies have shown that interaction between mTNF and 

TNF-R2 is more important for IBD pathogenesis than that 
of sTNF and TNF-R1 (97,98). 

  Several anti-TNF-a monoclonal antibodies have been 

developed since infliximab (chimeric antibody with a 

murine sequence) and adalimumab (fully humanized 

antibody) showed effectiveness for induction and main-

tenance of remission, as well as mucosal healing of 
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IBD (99-103). A humanized, pegylated anti-TNF Fab 
fragment, certolizumab pegol, also showed benefits and 

was approved for CD treatment (104). Moreover, goli-
mumab, a transgenic fully human monoclonal immuno-

globulin G1 antibody, was recently launched for the 

treatment of UC (105). However, another anti-TNF agent 
that targets sTNF, etanercept, showed no benefits regar-

ding treatment of IBD (106,107). Although there are 
several limitations of anti-TNF treatment, such as safety 

issues, relatively high cost, and loss of effectiveness, 

the potential benefits of anti-TNF agent may outweigh 

these drawbacks, because blocking the TNF signal in 

IBD works through various mechanisms, including T cell 
apoptosis, inhibiting T cell differentiation, induction of 

Treg cells and macrophages, and barrier improvement 

(96,108-110). Therefore, efforts to overcome the draw-

backs of anti-TNF agents, such as oral formulations, 

bacteria-producing nanobodies, and therapeutic vaccines 

against TNF are still in development (111-113).

  Other important cytokines in the treatment of IBD are 
related to Th17 cells (IL-17A, IL21, IL-22, and IL-23) 

(114). Th17 cells are differentiated from naïve CD4+
 T 

cells that are stimulated with transforming growth factor 

(TGF)-b and IL-6 in mice models. The inflamed intestinal 

tissue of IBD patients was shown to contain higher levels 
of Th17 cells and its cytokines (115). Additionally, a 

chemoattractant of Th17 cells, CCL20, is also elevated 

in the intestinal mucosal of IBD patients (116). While the 
exact role of Th17 cells and their cytokines in regards to 

intestinal inflammation has not yet been fully understood, 

the balance between Th17 and Treg cells are thought to 

be an important aspect in development of IBD (117). 
Based on those viewpoints, a humanized IFN-g antibody, 

fontolizumab, was developed. However, it did not show a 
satisfactory result in patients with moderately to severely 

active CD (118). Likewise, an attempt to target IL-17A 
through a monoclonal antibody, secukinumab, in patients 

with CD also failed (119). In experimental colitis models, 
Th17 cells and their related cytokines are thought to 

play both inflammatory and anti-inflammatory roles in 

the intestine (114). Anti-inflammatory cytokines such as 

IL-22 are also produced by Th17 cells. These cytokines 

are known to promote epithelial proliferation, mucosal 

healing, and anti-microbial peptides in the mucus 

(120). Moreover, plasticity reflecting the environmental 

conditions during the inflammatory process between Th1/

Treg and Th17 cells is observed, and these reciprocal 

alterations are thought to be important for maintaining 

intestinal homeostasis (121). The contribution of Th17 

cells for intestinal inflammation might be controlled by 

more detailed interactions between immune cells. 

  Considering the complex interactions between various 

cytokines that contribute IBD, the targeting of multiple 
cytokines is thought to be a reasonable approach in the 

treatment of IBD. Ustekinumab, a human monoclonal 
antibody against the p40 subunit that is a component of 

both IL-12 and IL-23, is theoretically relevant for the 

treatment of CD involving both Th1 and Th17 aspects 
of CD. IL-12 induces Th1 polarization of naïve CD4+

 T 

cells and IL-23 promotes Th17 cell differentiation (122). 

In moderate-to-severe CD patients, ustekinumab showed 
a significant clinical benefit in both remission induction 

and maintenance (123). Similarly, other biologics 

targeting the IL-12/23 pathway, such as ABT-874 (124) 
and apilimod mesylate (125), are under evaluation. IL-10-

deficient mice can develop spontaneous T cell-dependent 

colitis and colitic cancer (126,127). IL-10 is known as an 

anti-inflammatory cytokine and the UC-related IL10 gene 

variation was also noted from a GWAS study. Given this, 
a study used an interesting approach to treat experimental 

murine colitis involving the genetically engineered IL-

10-secreting bacteria Lactococcus lactis . Intra-gastric 

administration of this bacteria resulted in a 50% reduction 
of DSS-induced colitis in IL-10- knockout mice (128).

Targeting inter-/intra-cellular signaling pathways

Interactions between proinflammatory cytokines and 

their receptors lead to activation of intracellular signal 

transduction and production of inflammatory proteins. 

Janus kinase (JAK)-signaling transducers and activator 

of transcription (STAT) cytokine signaling pathways are 

recently thought to be a potential therapeutic target of 

IBD. Because various key cytokines such as IFN-g, IL-

2, IL-4, IL-7, IL-9, IL-15, IL-12, IL-21, IL-22, and IL-

23 depend on the JAK-signaling pathway, inhibiting JAK 

might result in the downregulation of multiple inflam-

matory cytokines (129). The JAK family consists of four 

intracellular proteins, JAK1, JAK2, JAK3, and tyrosine 

kinase (TYK) 2 (130). A JAK1/JAK3 inhibitory small 

molecule, tofacitinib, showed promising results for the 

treatment of UC in a phase II study. In 194 moderately to 
severely active UC patients, 78% of patients who received 
15 mg of oral tofacitinib twice a day showed a favorable 

clinical response (131). However, these clinical responses 
were not repeated in patients with moderate-to-severe CD 
in another phase II trial (132). Currently, various kinds 

of JAK inhibitors are now in development and awaiting 

clinical results.

  In IBD patients, defective tumor necrosis factor 
(TGF)-b1 activity is related to up-regulation of SMAD7. 
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Inhibition of TGF-b1 in healthy human intestines results 

in increased production of proinflammatory cytokines 

(133). In a double-blind, placebo-controlled, phase 2 trial, 

an oral SMAD7 anti-sense oligonucleotide, mongersen, 
showed a better clinical remission rate in patients with 

CD compared to that in patients who received a placebo 
(134).

  Several approaches involving the targeting of differen-

tiation and activation of T cells have been attempted. 

However, a cytotoxic T-lymphocyte antigen 4 (CTLA4) 
agonist, abatacept, which blocks APC and T cell interac-

tion, showed no clinical benefits in regards to either 

remission induction or maintenance in patients with IBD 
(135). Similarly, a humanized monoclonal antibody to 

CD3 on the activated T cell, visilizumab, was shown to 
have no clinical benefits for treatment of IBD in phase III 

study (91). 

Inhibition of lymphocyte trafficking

Effector lymphocytes must travel from the periphery to 
the intestine for development of IBD. In this process, 
various adhesion molecules act on specific lymphocytes. 

Different lymphocytes express specific cell surface 
adhesion molecules targeting specific organs. Therefore, 

selective inhibition of those adhesion molecules poten-

tially has a therapeutic role for IBD. Natalizumab is a 
humanized monoclonal antibody that binds the a4 subunit 

of integrin on T cells. Theoretically, gut homing of T cell 

results from the interaction between a4b7 integrin and 

mucosal vascular addressing cell adhesion molecule 1 

(MAdCAM-1). Natalizumab showed clinical benefits for 

remission maintenance (136). However, natalizumab also 

Figure 1. Intestinal immune system. IL, interleukin; IFN, interferon; TNF, tumor necrosis factor; TGF, transforming growth factor; Th, helper T cell; 
Treg, regulatory T cell; TCR, T cell receptor; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cell; TLR, toll-like receptor; NOD, 
nucleotide oligomerization domain.
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blocks a4b1 integrin, which is important for T cell homing 

to the central nervous system, and fatal complications 

such as progressive multifocal leukoencephalopathy have 

emerged as a result (137). Therefore, using natalizumab 

for IBD treatment is restricted in some countries such as 
the USA. A more recently developed intestine-specific, 
anti-adhesion molecule, vedolizumab (monoclonal 

antibody against a4b7), showed promising results for 

inducing and maintaining remission in UC, and clinical 
remission in CD, with a relatively good safety profile 
(138,139). Etrolizumab, a monoclonal antibody against 
the b7 subunit of integrin, is under phase III studies for 

CD and UC. Etrolizumab acts as dual inhibitor of the 
a4b7-MAdCAM-1 and aEb7-E-cadherin interactions. 
Therefore, etrolizumab prevents both gut homing of 

lymphocytes and intraepithelial leukocyte retention 

of intestinal mucosa. A recent phase II trial in UC 
patients treated with etrolizumab showed a significantly 

higher clinical remission rate than that in the placebo 

group (140). Direct inhibition of MAdCAM-1 by its 
monoclonal antibody, PF-00547659, was also developed 

and attempted in clinical trials. Recently, mixed results 

were obtained, with one study showing significantly 

higher clinical remission rate in UC (TURANDOT study) 
compared to that in the placebo group, whereas another 

study yielded negative results for CD (OPERA study) 
(141,142).

CONCLUSION

As IBD-related research progresses, understanding of 
these diseases is deepening (Fig. 1). However, it is not 
believed that only one obvious mechanism of disease 

will be readily apparent. With the opening of the era of 
biologics, it has become possible to expect deep remission 

in IBD patients, unlike in the past; however, about one-
third of patients still do not show clinical improvement to 

the biological agents. A variety of new biologics specific 

to IBD pathogenesis are now emerging and under clinical 
investigation (Fig. 2). With this development, more and 
more patients will benefit from these novel agents. More-

Figure 2. Biologics regarding therapeutic targets (black: showed benefits; violet: no benefits). APC, antigen presenting cell; IEC, intestinal epithelial 
cell; TNF, tumor necrosis factor; MHC, major histocompatibility complex; TCR, T cell receptor; JAK, Janus kinase; TGF, transforming growth 
factor; IL, interleukin; MAdCAM, mucosal vascular addressing cell adhesion molecule.
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over, future IBD therapy should be approached in terms 
of “patient-customized treatment,” and it is anticipated 

that it will be a great help in clinical practice to have a drug 

repertoire targeting various mechanisms of the disease. 
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