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Abstract

Polycystic ovary syndrome (PCOS) is a multifactorial disorder that arises from interactions between genetic, environmental and intra-

uterine factors. Small-for-gestational-age (SGA) babies and the daughters of mothers with PCOS represent possible postnatal clinical

targets for developmental programming by steroid excess. The presence of excess glucocorticoids and/or androgens during foetal

organogenesis and growth might promote changes in gene expression, and these changes might be related to an increase in the risk of

PCOS-like reproductive and metabolic disorders in postnatal life, such as rapid growth and weight gain during the first 2 years of life (only

in SGA babies), hyperinsulinaemia, adipocyte dysfunction and childhood visceral obesity, premature pubarche and adrenarche (only in

SGA babies) and PCOS. In the fourth decade of life, women who have PCOS may be at higher risk for type 2 diabetes mellitus,

dyslipidaemia and systemic arterial hypertension, which suggests that these women are also at higher risk for cardiovascular disease

during menopause. However, PCOS can also occur in women who were born at appropriate weight for GA or in newborns of women

without PCOS, which suggests that genetic variation and environmental factors play important roles in the development and

maintenance of PCOS in a population. Genome-wide association studies based on adequate population samples have shown a higher

frequency of genetic polymorphisms of the LHCGR, THADA and DENND1A genes in women with PCOS. Genetic studies of PCOS have

also included analyses of structural changes in the chromosome based on an assessment of telomere length in single, cross-sectional

evaluations, and these studies have produced controversial results. The present narrative review assesses the multifactorial origins of

PCOS (including environmental, genetic and intra-uterine factors) and the development of conditions associated with this disorder. It is

concluded that although PCOS might originate in the intra-uterine environment through developmental programming by steroid excess,

the interaction between genetic and environmental factors is crucial for its appearance. Follow-up studies should be conducted to assess

the same populations over their entire lifespans while taking into account different aspects of the pathogenesis of PCOS.
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Introduction

Polycystic ovary syndrome (PCOS) is a heterogeneous
and complex endocrine disorder with an estimated
prevalence of 5–13.9% in women of reproductive age
(Norman et al. 2007, Melo et al. 2010). In addition to
causing reproductive disorders (anovulation and inferti-
lity), PCOS may or may not have a clinical and metabolic
impact that varies according to ethnicity and geographic
region (Tian et al. 2006, Norman et al. 2007).

Although the clinical manifestations of PCOS appear
in adolescence, it has been suggested that the disease
has its origins in the intra-uterine environment (de
Zegher & Ibáñez 2006). Experimental studies in animals
(Abbott et al. 2002, 2005) and clinical observations in
human subjects (Melo et al. 2010) lend support to the
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hypothesis that developmental programming by steroid
excess plays a role in the development of PCOS and
its associated disorders at various stages of life (Jaquet
et al. 2005) (Fig. 1). However, because the interaction
between postnatal environmental factors and genetic
predisposition are crucial for its occurrence, PCOS
clearly has a multifactorial aetiology.

The developmental programming of PCOS represents
changes in gene expression that occur following
exposure to steroids (mainly glucocorticoids and/or
androgens) during critical periods of foetal development.
Some evidence suggests that this phenomenon is
associated with variable PCOS-related metabolic and
reproductive phenotypes in extra-uterine life and that
these phenotypes are associated with the stage of
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Figure 1 Natural history of PCOS. PCOS has a multifactorial aetiology
that includes intra-uterine, genetic and environmental factors which
might or might not be interrelated. Although the clinical manifestations
of PCOS appear in adolescence, it has been suggested that the natural
history of the disease has its origins in the intra-uterine environment
through developmental programming. This process might be associated
with several of the PCOS-related clinical and metabolic disorders that
occur at different stages of life as a function of the type and duration
of an individual’s exposure to postnatal environmental factors.
In addition, other mechanisms (such as genetic predisposition) might
play a role in the origin of PCOS, seeing as individuals who allegedly do
not undergo developmental programming (appropriate-for-gestational-
age subjects or daughters of women without PCOS) can also develop
PCOS and its associated comorbidities. Adapted from Galluzzo et al.
(2008). IUGR, intra-uterine growth restriction; SGA, small for
gestational age; T2DM, type 2 diabetes mellitus; SAH, systemic arterial
hypertension; CVD, cardiovascular disease.
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pregnancy during which the foetus was exposed to
excess steroids (Padmanabhan & Veiga-Lopez 2011,
Reynolds et al. 2012).

Developmental programming by glucocorticoid
excess might account for the higher risk of PCOS and
the associated clinical-metabolic disorders exhibited
by small-for-gestational-age (SGA) infants who present
compensatory growth. Although women who were born
SGA may have an increased risk for developing PCOS,
and both PCOS and SGA may lead to a higher risk of
cardiovascular disease during old age (Jaquet et al. 2005,
Martinez-Aguayo et al. 2007, Bonamy et al. 2008,
Anderson et al. 2014), these propositions have not been
evaluated in follow-up studies that simultaneously
considered subjects who were born SGA and those
who had PCOS. Thus, it is possible that individuals born
SGA who exhibit compensatory growth, PCOS and
cardiovascular and metabolic alterations represent part
of a spectrum of abnormalities in developmental
programming due to steroid excess.

Developmental programming by androgen excess
during pregnancy could occur in women with obesity,
type 2 diabetes mellitus (DM), insulin resistance (IR)
(Escobar-Morreale et al. 2014), excessive weight gain
during pregnancy, PCOS and/or any other situation
associated with hyperandrogenism (Sir-Petermann et al.
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2009) and could result in an increased risk of PCOS and/
or associated clinical and metabolic comorbidities in
their offspring (Sir-Petermann et al. 2009, Padmanabhan
& Veiga-Lopez 2011, Escobar-Morreale et al. 2014).
Experimental studies show that androgen excess during
intra-uterine development may also be associated with
intra-uterine growth restriction (IUGR) (Beckett et al.
2014), hyperinsulinaemia, visceral obesity in childhood
and PCOS-like reproductive manifestations in women of
reproductive age (Abbott et al. 2005, Padmanabhan &
Veiga-Lopez 2011). Notwithstanding this association,
individuals who apparently did not undergo develop-
mental programming (subjects with birth weights
appropriate for their gestational age (AGA) and daugh-
ters of women without hyperandrogenism during
pregnancy) can also develop PCOS (Melo et al. 2010).
This observation suggests that genetic variation and
environmental factors play important roles in the
development of PCOS. Genome-wide association
studies (GWAS) have shown a higher frequency of
genetic polymorphisms of the LHCGR, THADA and
DENND1A genes in women with PCOS (Chen et al.
2011, Shi et al. 2012, Louwers et al. 2013). Genetic
factors associated with a higher frequency of PCOS also
include structural changes in chromosomes that have
been analysed in cross-sectional studies by assessing
telomere length at a single time point. These analyses
have presented controversial results, and additional
studies involving the longitudinal assessment of telomere
length dynamics in women with PCOS at different stages
of life are needed.

Existing studies of the pathogenesis of PCOS have
limitations. Because there are three supported
definitions of PCOS (Zawadski & Dunaif 1992,
Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus
Workshop Group 2004, Azziz et al. 2006), comparing
the results reported in different publications is somewhat
difficult. Whereas some authors use a PCOS diagnosis
based on criteria listed by the National Institutes of
Health (NIH) (Goodarzi et al. 2012, Jones et al. 2012,
Welt et al. 2012, Hwang et al. 2012, Mutharasan et al.
2013), others use the criteria proposed by the American
Society of Human Reproduction/European Society of
Human Reproduction and Embryology (Chen et al.
2011, Shi et al. 2012, Hwang et al. 2012, Louwers
et al. 2013), which thereby intensifies discrepancies in
the published work on the genetic analysis of PCOS.
Some authors have not even attempted to standardise the
diagnosis of PCOS (Davies et al. 2012, Hizli et al. 2012),
and they include in their studies women with polycystic
ovaries on ultrasonography only, a finding that alone
does not increase the risk for PCOS-associated
conditions (Cresswell et al. 1997), or they collect
retrospective data from medical records that antedate
the publication of the first consensus on PCOS by the
NIH (Mumm et al. 2013).
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The Rotterdam consensus criteria for the diagnosis
of PCOS (Rotterdam ESHRE/ASRM-Sponsored PCOS
Consensus Workshop Group 2004) defines some non-
hyperandrogenic phenotypes (menstrual irregularity plus
polycystic ovaries) as non-existent diagnoses according
to the criteria formulated by the NIH (Zawadski & Dunaif
1992) and the Androgen Excess Society (Azziz et al.
2006). Because the cardio-metabolic profile of PCOS
phenotypes characterised by hyperandrogenism and
chronic anovulation is poorer, the inclusion of non-
hyperandrogenic phenotypes might favour the occur-
rence of bias in the assessment of the aetiopathogenesis
of PCOS and its relationship to cardiovascular comor-
bidities during late stages of life (Melo et al. 2011, Daan
et al. 2014). Moreover, most of the existing studies are
multicentre cross-sectional or case–control studies in
which women at different stages of life and who have a
varied prevalence of comorbidities associated with
PCOS were analysed (Michelmore et al. 2001, Ibáñez
et al. 2008, Legro et al. 2010, Chen et al. 2011,
Hizli et al. 2012, Hwang et al. 2012, Jones et al. 2012,
Shi et al. 2012, Louwers et al. 2013, Shayeb et al. 2014).

The ethnic and geographic heterogeneity of PCOS
demonstrates that this disorder is associated with
environmental factors (Amsterdam ESHRE/ASRM-Spon-
sored 3rd PCOS Consensus Workshop Group 2012). The
identification of geographical variations in the morbidity
profiles of women with PCOS is therefore essential for
establishing preventive measures to improve their
health. In this context, birth cohorts seem to minimise
these limitations because they include women of the
same age range who are exposed to similar social,
cultural and geographic factors. Moreover, birth cohort
studies favour the simultaneous and prospective
assessment of a variety of environmental, genetic and
intra-uterine factors that may be associated with the
development of PCOS and its clinical/metabolic changes
at all stages of a woman’s life.

The aim of the present narrative review is to assess
the multifactorial origins of PCOS and to explore how
its origin involves the interaction of environmental,
genetic and intra-uterine factors over a lifespan. With
respect to genetic studies of PCOS, only GWAS
published before November 2014 were included in
the present review, because the external validity of the
population case series of such studies is adequate.
No study has yet assessed the environmental factors
directly associated with PCOS, so articles on lifestyle
modifications and theories based on experimental
studies were considered. Articles were searched in
the PubMed database relative to observational studies
published in English from January 1990 to November
2014. The search keywords were (polycystic ovary
syndrome AND (foetal programming OR genetic
susceptibility)), (polycystic ovary syndrome AND foetal
programming AND (androgen OR glucocorticoids)),
(polycystic ovary syndrome AND (low birth weight
www.reproduction-online.org
OR birth weight OR small for gestational age)),
(polycystic ovary syndrome AND (association studies,
genome-wide OR association study, genome-wide OR
genome-wide association studies)) and (polycystic
ovary syndrome AND (gene environment interaction
OR environment OR lifestyle)). A total of 1114 articles
were located. Of them, 16 observational studies were
included in the present review; four of these were
relevant to the genetic component of PCOS, and
12 were relevant to intra-uterine factors associated
with PCOS.
Environmental factors associated with PCOS

Environmental factors associated with PCOS can be
classified as prenatal (foetal developmental program-
ming) or postnatal (diet, obesity, sedentary lifestyle,
environmental toxins and prescription drugs)
(Diamanti-Kandarakis et al. 2006). Evidence suggests
that environmental stimuli can both mimic hormonal
actions and activate pre-existing, predisposing factors
that trigger the endocrine activity characteristic of
PCOS (Escobar-Morreale et al. 2005, Norman et al.
2007). Dietary habits, exercise and cultural, social and
economic factors might modify environmental
exposure. For that reason, among others, the prevalence
of the metabolic conditions associated with PCOS
(obesity, metabolic syndrome and disorders of glucose
metabolism) might vary as a function of the type of
environmental exposure, especially in racially mixed
populations that do not have a predominant
genetic background. Thus, although environmental
factors cannot be homogeneous in studies of the
pathogenesis of PCOS in human subjects, the internal
validity of such studies can be increased by including
women of the same ethnicity who are from the same
geographic area.

It has been suggested that PCOS presents a non-
genetic inheritance pattern in populations with a poor
lifestyle (high-saturated-fat diet, sedentary lifestyle,
alcoholism and smoking). In such populations, changes
in the foetal–placental unit, the onset of IUGR and the
frequency of SGA newborns may occur. Hyperinsuli-
naemia and visceral obesity are more likely to develop
during childhood and to culminate in a higher
prevalence of IR, systemic arterial hypertension (SAH)
and hyperandrogenism (Ibáñez et al. 2001) in reproduc-
tive-age women. During pregnancy, women who were
born SGA also present a higher risk for placental
disorders and the delivery of SGA newborns, which
suggests a non-genetic inheritance pattern of PCOS.
If they maintained a proper lifestyle throughout their
childhood and their reproductive period, these women
would not experience placental changes; thus, the
process described earlier would be interrupted, and
their children would be born AGA (Fig. 2) (Escobar-
Morreale et al. 2005). Studies of familial aggregation in
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Figure 2 Environmental factors in the pathogenesis of polycystic ovary
syndrome. Adapted from Escobar-Morreale et al. (2005). IUGR, intra-
uterine growth restriction; IR, insulin resistance; SAH, systemic arterial
hypertension; SGA, small for gestational age; AGA, appropriate for
gestational age.
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which different members of the same family are
considered could establish the potential influence of
the genetic component in the cascade of events
described earlier.

The relevance of environmental factors to the
development of PCOS is evidenced by the effect of
lifestyle changes on obesity, which is a highly prevalent
comorbidity among women with PCOS. Such measures
might alter the phenotypic expression of PCOS.
Reduction in body weight is the first line of treatment
in obese women with PCOS. A loss of 2–5% of body
weight reduces hyperinsulinaemia, increases sex hor-
mone-binding globulin (SHBG) levels, reduces free
androgen levels, restores the ovulatory cycle and
improves clinical hyperandrogenism and metabolic
disorders, such as dyslipidaemia (Thessaloniki ESHRE/
ASRM-Sponsored PCOS Consensus Workshop Group
2008, Moran et al. 2011). Contrarily, diets that are high
in saturated fat and sedentary lifestyles are associated
with the development of PCOS and its metabolic
consequences, mainly obesity (Amsterdam ESHRE/
ASRM-Sponsored 3rd PCOS Consensus Workshop
Group 2012).
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Genetic factors associated with PCOS

Familial aggregation studies of PCOS suggest that it is an
inherited disorder. Genetic inheritance of the condition
has been demonstrated in studies of twins in which
women with monozygotic twin sisters affected by PCOS
were shown to have twice the risk of developing the
disorder by the time they reached reproductive age (Vink
et al. 2006). Studies of first-degree relatives of women
with PCOS demonstrated an increased incidence of
abnormal glucose metabolism and metabolic syndrome
in men, which suggests a genetic background effect
(Yildiz et al. 2003). Despite these considerations, the
absence of a male PCOS phenotype, differences in the
methodologies used in the studies, which were case–
controlled and did not consider the multifactorial
aspects of the aetiology of PCOS, fertility problems in
women with PCOS and the irreproducibility of the
results obtained in non-familial studies limit the internal
and external validity of current assessments of the
genetic components of PCOS.

Although gene variants of hundreds of coding genes
associated with the clinical and laboratory features of
PCOS (genes related to hyperandrogenism, IR, SHBG,
gonadotrophins, metabolic and inflammatory markers
and obesity, among others) have been demonstrated
in specific populations (Escobar-Morreale et al. 2005),
these results present low external validity. A group of
researchers from China conducted the first large GWAS
on the human genome in Chinese women with PCOS
and demonstrated a higher frequency of genetic
polymorphism at 2p16.3 (rs13405728), 2p21
(rs13429458) and 9q33.3 (rs2479106) in women with
PCOS. These single-nucleotide polymorphisms (SNPs)
were related to the following genes: LHCGR (the LH/
hCG receptor gene, which is associated with increased
luteinising hormone (LH), enlarged ovaries, oligomenor-
rhea, resistance to LH or human chorionic gonado-
trophin (HCG) and infertility), DENND1A (a gene that
codes for a modifier of guanine that is associated with
multiple organ dysfunction, including dysfunction of
the ovary, hypothalamus, pituitary and adrenal glands
and tissue-specific responses to insulin, type 2 DM and
obesity) and THADA (a thyroid adenoma gene associ-
ated with disorders of glucose metabolism, polycystic
ovarian morphology, hypersecretion of LH, hyperandro-
genism and dyslipidaemia) in the PCOS group (Chen
et al. 2011). However, the cases included in this initial
evaluation were insufficient to establish genetic suscep-
tibility to PCOS, which requires the evaluation of other
polymorphisms in a larger sample. Subsequently, in
2254 cases of PCOS vs 3001 controls (women without
PCOS), eight new loci were identified by the Chinese
group. These included C9orf3, which is associated
with hyperandrogenism and is located at 9q22.32
(rs3802457), YAP1, a gene associated with cell prolifer-
ation and apoptosis at 11q22.1 (rs1894116), RAB5B and
www.reproduction-online.org
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SUOX, two genes associated with type 1 DM at 12q13.2
(rs705702), HMGA2, a gene associated with infertility
at 12q14.3 (rs22720), TOX3, a gene associated with
DNA modification at 16q12.1 (rs4784165), INSR,
a gene associated with IR at 19p13.3 (rs205980),
SUMO1P1 and ZNF217, two genes associated with
telomere dysfunction at 20q13.2 (rs6022786) and
LHCGR at 2p16.3 (rs2268361). These new findings have
demonstrated other genetic variants related to glucose
metabolism disorders, sex hormone functions, insulin/
calcium signalling and endocytosis. The discovery of
these new loci confirms the genetic predisposition to
PCOS in Chinese women (Shi et al. 2012).

Although the findings obtained in Chinese popu-
lations have been confirmed in women with PCOS in
the USA with respect to variants in the DENND1A
(Goodarzi et al. 2012, Welt et al. 2012), THADA
(Goodarzi et al. 2012), LHCGR and FSHR (Mutharasan
et al. 2013) genes as well as in European populations
(12 genetic variants in the LHCGR, THADA,
DENND1A, FSHR, c9orf3, YAP1, RAB5B/SUOX and
Table 1 Genome-wide association study in women with polycystic ovary s

Author Population G

Chen et al. (2011)
(China)
(GWAS1)

PCOS: 744 vs control: 895
Replication 1
(North China)
PCOS: 2840 vs control: 5012
Replication 2
(South China)
PCOS: 498 vs control: 780

D
L
T

Shi et al. (2012)
(China)
(GWAS2)
and
(Meta-analysis GWAS1 and 2)

GWAS2
PCOS: 1510 vs control: 2106

Meta-analysis
(GWAS1 and 2)
PCOS: 2254 vs control: 3001

C
H
IN
L
R
S
T
Y

Jones et al. (2012)
(USA)

PCOS: 443 vs control: 193 N

Hwang et al. (2012)
(Korea)

PCOS: 774 vs control: 967 G

Louwers et al. (2013)
(The Netherlands/Dutch study)
and
(Meta-analysis of the population

of USA, China and
The Netherlands)

Dutch study
PCOS: 703 vs control: 2164

Meta-analysis
(USA, China and The Netherlands)
PCOS: 2254 vs control: 3001

C
D
T
Y
M
C
D
F
L
R
S
T
Y

GWAS, genome-wide association study; LHCGR, luteinising hormone/hum
associated gene; DENND1A, gene modifier of guanine; C9orf3, chromoso
oncogene family; SUOX, sulphite oxidase gene; HMGA2, high-mobility gr
INSR, insulin receptor gene; ZNF217, zinc finger protein 217; GYS2, glycog
aAll of the studies mentioned were case–control studies. This table include
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SUMO1P1 loci) (Louwers et al. 2013). A GWAS study
conducted by a Korean group failed to confirm these
results and found that only the glycogen synthase 2
(GYS2) gene could be linked to PCOS and its
metabolic complications (Hwang et al. 2012). Another
GWAS study conducted in the USA that analysed
genes that code for proteins associated with metabolic
and cardiovascular abnormalities also did not demon-
strate a hereditary component of PCOS (Jones et al.
2012). These discrepancies may occur because genetic
background varies according to ethnicity. Furthermore,
some multicentre case–control studies included
women at stages of life that ranged from adolescence
to menopause who had heterogeneous social/cultural
lifestyles and different clinical and metabolic mani-
festations of PCOS (certain patients were too young to
present comorbidities). In addition, these studies did
not consider other aspects of the pathogenesis of
PCOS, such as birth weight and environmental factors.
Table 1 presents data from GWAS studies of women
with PCOS.
yndromea.

enes Loci

ENND1A (9q33.3)
HCGR (2p16.3)
HADA (2p21)

rs2479106
rs13405728
rs13429458

9orf3 (9q22.32)
MGA2 (12q14.3)
SR (19p13.3)

HCGR (2p16.3)
AB5B and SUOX (12q13.2)
UMO1P1 and ZNF217 (20q13.2)
OX3 (16q12.1)
AP1 (11q22.1)

rs3802457
rs2272046
rs205980
rs2268361
rs705702
rs6022786
rs4784165
rs1894116

one None

YS2 rs6487237, rs7485509,
rs10841843

9orf3
ENND1A
HADA
AP1
eta-analysis
9orf3
ENND1A
SHR
HCGR
AB5B and SUOX
UMO1P1
HADA
AP1

rs4385527
rs10986105
rs12468395, rs12478601
rs1894116

rs2349415, rs4385527
rs10818854, rs10986105
rs2268361
rs13405728
rs1894116
rs705702, rs6022786
rs12468394, rs12478601
rs3802457

an chorionic gonadotrophin receptor gene; THADA, thyroid adenoma-
me 9 open reading frame 3; YAP1, yes-associated protein1; RAB5B,
oup AT-hook2; TOX3, TOX high-mobility group box family member3;
en synthase 2 (liver); FSHR, follicle-stimulating hormone receptor gene.
s only the genome-wide association studies on women with PCOS.

Reproduction (2015) 150 R11–R24

Downloaded from Bioscientifica.com at 08/25/2022 06:13:38PM
via free access



R16 A S Melo and others
Genetic studies of PCOS also include the analysis of
structural/anatomical changes in chromosomes (changes
in non-coding sequences) based on the assessment of
telomere length. The telomere is a structure located at
the end of the chromosome that is involved in chromatin
organisation, the control of cell proliferation, the
preservation of genome integrity and the stability and
prevention of chromosome fusion (Allsopp et al. 1992).
Physiologically, telomere length decreases with ageing.
However, this process can be accelerated by cardiovas-
cular disease, SAH, hypercholesterolaemia and type 2
DM, conditions that are associated with an inflammatory
and oxidative environment (Fuster & Andres 2006).
Because women with PCOS are at greater risk for these
clinical and metabolic conditions, and because PCOS
is associated with inflammation and oxidative stress
(Cussons et al. 2006), telomere shortening may be
another mechanism associated with the pathogenesis
of PCOS and its comorbidities. In this context, a Chinese
group showed that women with PCOS have shorter
telomeres than do subjects without PCOS in a single-
assessment, cross-sectional study of women of various
ages (PCOS: nZ698 vs control: nZ611) (Li et al. 2014).
These data were not confirmed by other investigators
who assessed Brazilian women with PCOS (PCOS:
nZ150 vs control: nZ124) (Pedroso et al. 2014). The
discrepancy might occur because the two studies
compared women at different stages of life (reproductive
age and menopause) and the assessments of women at
reproductive age might have occurred too early to detect
differences in telomere length between women with
PCOS and those without PCOS. Birth cohort studies may
be more suitable for elucidating the dynamic of telomere
shortening because this methodology can assess the
same population at different stages of life (lifespan
assessment).
Role of developmental programming in the
pathogenesis of PCOS

Developmental programming refers to changes in gene
expression that result from the presence of increased
levels of steroid hormones in the foetal circulation at
critical stages of foetal development and that result in
permanent structural and functional modifications of the
body organs. This phenomenon might be caused either
by the presence of excess glucocorticoids (resulting from
foetal hypoxia and IUGR) (Wells 2011, Longo et al.
2013) or by the elevation of maternal androgen levels
during pregnancy (Padmanabhan & Veiga-Lopez 2011,
Escobar-Morreale et al. 2014). In addition to anatomic
and functional changes in organs and organ systems,
developmental programming might also be associated
with the programming of endocrine pathways and thus
also with clinical, metabolic and reproductive changes
during postnatal life.
Reproduction (2015) 150 R11–R24
Changes in gene expression are necessary for the
physiological development of the foetus. However,
under unfavourable intra-uterine conditions, excessive
steroid levels might induce alterations in gene
expression that can result in epigenetic modifications
(hereditary changes in the genome that do not involve
any alteration in the DNA nucleotide sequence and are
transmitted during cell division). DNA methylation, in
which the chemical structure of cytosine is modified
through the addition of a methyl group (CH3), is one
such epigenetic alteration (Li & Huang 2008). Xu et al.
(2011) have shown that exposure of foetal female
monkeys to testosterone excess changes the epigenome
of their visceral fat cells. Therefore, epigenetic altera-
tions might represent the molecular basis of develop-
mental programming related to the reproductive and
metabolic phenotypes exhibited by women with PCOS
over the course of their lives (Wang et al. 2014).
Developmental programming by glucocorticoid
excess

The proper growth of the foetus results from a balance
between anabolic and catabolic processes that occur
during the functional maturation and differentiation of
foetal organs and tissues. If foetal hypoxia develops
during this period because of dietary restrictions and/or
maternal or placental disease, the catabolic process will
predominate, which results in IUGR and ultimately an
SGA newborn. To assure survival and reduce energy
expenditure (‘thrifty phenotype’) (Barker 1995), foetal
blood flow is redirected to essential organs (heart, brain
and adrenal glands) in a phenomenon called centralisa-
tion. Consequently, there is an increased production of
glucocorticoids because of the hyperactivity of the
hypothalamic–pituitary–adrenal (HPA) axis, which
results in epigenetic modifications (Wells 2011, Longo
et al. 2013).

Clinical assessments of the effects of developmental
programming that result from glucocorticoid excess on
the development of disease at later stages of life are
hindered by the multifactorial aetiology of most
reproductive, metabolic and cardiovascular diseases.
However, studies with experimental animals have found
that foetuses with IUGR caused by placental insuffi-
ciency or maternal malnutrition were born SGA and that
these animals showed a predisposition to developing
pathologies in postnatal life after compensatory growth
during the first 2 years of life (Bloomfield et al. 2003,
Reynolds 2012). Clinical data show that compensatory
growth might also be associated with the development
of comorbidities in humans, such as precocious
puberty (Ibáñez et al. 1998), SAH (Elting et al. 2001),
cardiovascular disease (Bonamy et al. 2008), type 2
DM, glucose intolerance (Willemsen et al. 2008),
dyslipidaemia, obesity (Martinez-Aguayo et al. 2007),
www.reproduction-online.org
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Table 2 Main reproductive and metabolic disorders associated with
developmental programming by androgen excess in monkeysa.

Reproductive Metabolic

Anovulation Insulin resistance
Ovarian hyperandrogenism Glucose intolerance
Polycystic ovaries Type 2 diabetes mellitus
LH hypersecretion Visceral obesity
Infertility Dyslipidaemia

Pathogenesis of polycystic ovary syndrome R17
metabolic syndrome (Jaquet et al. 2005) and PCOS
(Pandolfi et al. 2008, Melo et al. 2010, Hizli et al. 2012).
Thus, children born SGA would exhibit a clinical marker
of developmental programming by glucocorticoids
associated with the development of PCOS and its
associated comorbidities, although SGA may also be
constitutional (variation of normal).
LH, luteinising hormone.
aPCOS-like reproductive disorders occur in the offspring of animals
treated with androgens in both the first and second halves of pregnancy,
whereas PCOS-related metabolic disorders appear in the offspring of
animals treated with androgens at the beginning of pregnancy.
Developmental programming by androgen excess

In addition to elevated glucocorticoid levels, hyperac-
tivity of the HPA axis secondary to IUGR might also
favour the occurrence of hyperandrogenism resulting
from overactivity of the adrenal gland. Excessive levels of
adrenal androgens may alter gene expression in such a
way as to favour the development of the reproductive
and metabolic phenotypes of PCOS in animals
(Reynolds 2012). Among other factors, this mechanism
might account for the higher risk of PCOS and associated
clinical/metabolic conditions exhibited by the offspring
of mothers with PCOS (Padmanabhan & Veiga-Lopez
2011). Adrenal androgen excess in the maternal
circulation occurs in the absence of IUGR (a charac-
teristic that has been shown in animal models) (Zhou
et al. 2005), and hyperandrogenism might be conse-
quence of obesity, DM, IR (Escobar-Morreale et al.
2014), PCOS and/or any other condition associated with
androgen excess (Sir-Petermann et al. 2009).

Obesity (Chandrasekaran et al. 2014), DM, IR and
excessive weight gain during pregnancy (Xiang et al.
2015) are predictors of large-for-gestational-age (LGA)
offspring. Because these conditions may also be
associated with hyperandrogenism (Macut et al. 2014),
LGA babies might exhibit a higher risk for PCOS via
developmental programming by androgen excess, but
this hypothesis remains to be confirmed through clinical
studies. Mumm et al. (2013) found that the risk of PCOS
was not higher among LGA female babies of mothers
with type 2 DM. However, those authors used data they
had located through a search of medical records using
International Classification of Diseases (ICD) codes that
was performed before the publication of any consensus
on the diagnostic criteria for PCOS.

Based on the results of experiments conducted in
animals, it has been established that the stage of
pregnancy during which exposure to androgen excess
occurs is crucial for determining the reproductive and
metabolic phenotypes associated with PCOS. PCOS-like
reproductive disorders were found to predominate in
animals that had been treated with androgens during
both the first and second halves of pregnancy, whereas
problems related to glucose metabolism and visceral
obesity predominated in animals that had been treated
with androgens during the first half of pregnancy (Abbott
et al. 2005; Table 2).
www.reproduction-online.org
Developmental programming related to PCOS
manifestations: aspects relevant to childhood
and adolescence

Approximately 90% of SGA children present rapid
growth and weight gain during the first 2 years of life
(compensatory growth). At the end of this period, the
growth curves and development of these children are
similar to the patterns observed in children born AGA
(Albertsson-Wikland et al. 1998). Compensatory growth
is associated with hyperinsulinaemia, central obesity and
adipose tissue dysfunction in childhood, factors that can
alter the distribution of body fat and accelerate the onset
of adrenarche and puberty, especially pubarche (Ibáñez
et al. 1998).

During the peripubertal period, increased levels of
leptin caused by dysfunctions in adipose tissue are
associated with the hypersecretion of LH and the
development of ovarian hyperandrogenism. Conse-
quently, anovulatory cycles are more frequently
observed in women who were born SGA (Ibáñez et al.
2002), which suggests that these women have a higher
risk of developing PCOS. In addition, insulin acts on
the ovarian theca through insulin-like growth factor 1
(IGF1), which results in increased levels of ovarian
androgens. This process occurs because hyperinsulinae-
mia decreases the hepatic synthesis of IGF binding
protein 1 (IGFBP1), which thus increases the free fraction
of IGF1 (Poretsky et al. 1999). A reduction in the hepatic
synthesis of SHBG, with a resulting increase in the levels
of the free fraction of circulating androgens in SGA
women, is another process that may be associated with
hyperinsulinaemia (Ibáñez et al. 1998, 2002). Foetuses
of animals exposed to androgen excess at the beginning
of pregnancy may also exhibit an increased risk of
hyperinsulinaemia and visceral obesity in infancy
(Escobar-Morreale et al. 2014). Although developmental
programming by androgen excess might be associated
with IUGR in rodents (Sathishkumar et al. 2011) and
sheep (Beckett et al. 2014) and with low birth weight
(LBW), these characteristics are not frequently found in
that process in non-human primate models for PCOS
(Abbott et al. 2010).
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Development programming related to PCOS

manifestations: aspects relevant to reproductive age

The hyperinsulinaemia and hyperandrogenism observed
during and after the immature stage of development of
the HPA in SGA women, which is associated with a
higher frequency of anovulatory cycles (Ibáñez et al.
Fetal programming
(by steroids excess)

IUGR
(by glucocorticoids excess)

SGA

Compen
grow

Hyperinsu

Adrenal
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SHB

Premature adrena

Hyperandr

Anovulation

PCO

Free androgen

IGF1

Hyperandro

Daughter
hyperandrogenic

mothers
(by androgen excess)
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facto

Figure 3 Aetiology of PCOS: multifactorial assessment from the intra-uterin
SGA, which suggests later phenotypes of developmental programming by g
hyperandrogenic mothers, which suggests manifestation of developmental p
with the intra-uterine effects of both steroids. IUGR, intra-uterine growth re
globulin; SHBG, sex hormone-binding globulin; GnRH, gonadotrophin-rel
factor 1; PCOS, polycystic ovary syndrome.
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2002), characterises SGA women as a group that is at risk

for developing PCOS at reproductive age (Fig. 3). During

the third decade of life, this risk can be twice as high in

women born SGA as it is in women born AGA (Melo et al.

2010). However, PCOS does not occur in all women born

SGA (Laitinen et al. 2003, Mumm et al. 2013), and
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women born AGA or daughters of women without PCOS
can also develop this disorder, which suggests a multi-
factorial aetiology of PCOS (Melo et al. 2010).

Because women born SGA and the daughters of
hyperandrogenic women show higher frequencies of
hyperinsulinaemia, visceral obesity, adipose tissue
dysfunction and IR during childhood, these charac-
teristics could be considered early clinical markers of the
development of SAH, dyslipidaemia, metabolic syn-
drome and type 2 DM related to PCOS. Typically, these
metabolic comorbidities are more prevalent after the age
of 40 in the general population without PCOS. However,
PCOS women, especially obese women with family
histories of type 2 DM, histories of gestational diabetes,
acanthosis nigricans or irregular menstrual cycles and
hyperandrogenism, begin to present these comorbidities
beginning in the fourth decade of life (Elting et al. 2001,
Moran et al. 2010).

In addition to the multiple aetiological aspects of
PCOS, ethnicity and geographical region are relevant
factors in the study of birth weight and the development
of PCOS. Although SGA women in Brazil (Melo et al.
2010) and those with LBW in Italy (Pandolfi et al. 2008)
and Turkey (Hizli et al. 2012) present a higher risk for
developing PCOS, these findings were not confirmed
in individuals from the USA (Legro et al. 2010), UK
(Cresswell et al. 1997, Michelmore et al. 2001, Shayeb
et al. 2014), The Netherlands (Sadrzadeh et al. 2003),
Finland (Laitinen et al. 2003), Spain (Ibáñez et al. 2008)
or Denmark (Mumm et al. 2013). One study conducted
in Australia analysed birth weight as a continuous
variable and found that each 100 g increase in birth
weight increased the risk of hyperandrogenism. The
authors of that study also found that the subjects’
thinness was related to PCOS symptoms and to IR
(Davies et al. 2012; Table 3). These apparent regional
differences may result from the limitations of these
studies, which include the use of varying definitions
of PCOS (Cresswell et al. 1997, Laitinen et al. 2003,
Sadrzadeh et al. 2003, Ibáñez et al. 2008, Hizli et al.
2012, Mumm et al. 2013), the inclusion of women using
hormonal contraceptives (Ibáñez et al. 2007, Davies
et al. 2012, Mumm et al. 2013), the small numbers of
participants (Ibáñez et al. 2001, Pandolfi et al. 2008), the
use of self-reported birth data (Laitinen et al. 2003,
Sadrzadeh et al. 2003, Legro et al. 2010, Hizli et al.
2012), the inclusion of women with immature HPG axes
(Ibáñez et al. 2001) and the absence of compensatory
growth assessments (Cresswell et al. 1997, Michelmore
et al. 2001, Laitinen et al. 2003, Sadrzadeh et al. 2003,
Ibáñez et al. 2008, Pandolfi et al. 2008, Legro et al. 2010,
Melo et al. 2010, Hizli et al. 2012, Mumm et al. 2013,
Shayeb et al. 2014). The use of birth weight classi-
fications as an exposure factor across studies was
perhaps the most important limitation, because not all
of the studies adjusted the subjects’ birth weight for GA.
For that reason, some of the studies included preterm
www.reproduction-online.org
newborn infants. This feature might indicate the
presence of selection bias (Cresswell et al. 1997,
Michelmore et al. 2001, Sadrzadeh et al. 2003, Ibáñez
et al. 2008, Legro et al. 2010, Hizli et al. 2012, Mumm
et al. 2013, Shayeb et al. 2014), especially considering
that the functional maturation of organs and tissues of
a preterm newborn is completed during postnatal life
(Ben 2008).

There are two main birth weight classifications: i) the
classification of birth weight based on GA (AGA: birth
weight between P10 and P90 for GA; SGA: birth weight
below P10 for GA; LGA: birth weight above P90 for GA),
which is the most frequently used classification to
confirm IUGR using postnatal data (birth weight, GA
and newborn sex), can be used to determine the effects
of foetal growth deficits regardless of prematurity
(Battaglia & Lubchenco 1967) and is crucial for reducing
bias (prematurity, for example) in the interpretation
of results; and ii) the classification of birth weight
independent of GA (macrossomic: birth weight
R4000 g; appropriate: 3000–3999 g; inadequate:
2500–2999 g; LBW: 1500–2499 g; very LBW !1500 g;
extremely LBW: !1000 g) (FIGO 1977). This infor-
mation is an important health indicator that reflects the
living conditions, nutrition and access to healthcare
services in a population, which is extremely important
when prenatal data are not available (Paneth 1995).
However, birth weight data alone cannot determine
preterm individuals; thus, this classification is inappropri-
ate for studying the relationship between birth weight and
the prevalence of disease at different stages of life. For
example, a newborn weighing 2300 g can be either a
preterm AGA newborn or a full-term SGA newborn.
Development programming related to PCOS
manifestations: aspects relevant to menopause

Subclinical cardiovascular disease is common in repro-
ductive-age women with PCOS (increased carotid
intima-media thickness, reduced arterial elasticity and
calcification of the coronary artery and aorta), regardless
of the presence of obesity, IR or SAH (Talbott et al. 2004,
Luque-Ramı́rez et al. 2007). The characteristics associ-
ated with early exposure to cardiovascular risk factors
in inflammatory and oxidative environments during the
reproductive years suggest an increased risk of cardio-
vascular events for patients in menopause and for elderly
patients with PCOS (Cussons et al. 2006). However, the
multifactorial aetiology of cardiovascular disease and
the lack of well-designed prospective studies in which
these women were assessed at different stages of life
make conclusions regarding this possible association
difficult. Although currently available evidence suggests
that women with PCOS have twice the risk for
cardiovascular events than that of the population without
PCOS, this finding has some limitations: i) the lack of a
Reproduction (2015) 150 R11–R24
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standardised diagnosis of PCOS; and ii) the lack of case
stratification as fatal and non-fatal (De Groot et al. 2011).
When such stratification was performed, an increased
risk of non-fatal stroke was observed in menopausal
PCOS women (OR, 1.94; 95% CI, 1.19–3.17) (Anderson
et al. 2014), but no increased risk for acute myocardial
infarction and/or mortality caused by cardiovascular
events in women aged 61–79 years was observed during
a 21-year follow-up (Schmidt et al. 2011). However,
these studies did not provide proper external validity to
allow these findings to be extrapolated to menopausal/
elderly PCOS women of other ethnic groups who might
have been exposed to different environmental factors.

Although the aetiology of cardiovascular disorders is
multifactorial, visceral obesity and hyperinsulinaemia
play an important role in the development of cardiovas-
cular events in women with PCOS. Visceral obesity and
increased insulin levels may promote adipose tissue
dysfunction and the subsequent elevation of inflam-
matory and metabolic markers that have an atherogenic
effect in women of reproductive age (Melo et al. 2014).
This adipose tissue dysfunction is associated with an
increased prevalence of SAH, dyslipidaemia, metabolic
syndrome, IR, type 2 DM and maintenance of hyperan-
drogenism, and it promotes endothelial dysfunction in
inflammatory, oxidative and procoagulant environ-
ments, so it thus favours the occurrence of arterial
thrombosis during menopause (Fig. 4; Cussons et al.
2006). However, regional studies are needed to
determine the profile of morbidity and mortality of
specific populations and to establish effective preventive
interventions for PCOS and the metabolic and cardio-
vascular changes with which it is associated.
Genetic
predisposition

Environmental
factors

PCOS

Foetal
reprogramming

Dyslipidaemia Type 2 diabetes
mellitus

SAH Hyperandrogenism

Inflammation
Oxidative stress

Procoagulant state

Atherosclerosis
Myocardial dysfunction

Cardiovascular diseases

Figure 4 Pathogenesis of PCOS: evolutionary and multifactorial
assessment from the reproductive age to menopause/senescence.
Modified from Cussons et al. (2006). SAH, systemic arterial
hypertension; IR, insulin resistance.
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Conclusion

PCOS has a multifactorial aetiology with ethnic and
regional aspects. Although being born SGA or being the
child of a hyperandrogenic mother might be considered
clinical markers for developmental programming by
steroids, individuals who are not exposed to excess
steroids and the offspring of non-hyperandrogenic
mothers can also develop PCOS. This indicates that
postnatal environmental factors and genetic predispos-
ing factors also lie at the origin of this disorder. Follow-up
studies that assess the same population at different stages
of life will facilitate a better understanding of the
interactions between environmental, genetic and intra-
uterine factors in the development of PCOS and its
comorbidities over a lifespan.
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