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Abstract: Throughout evolution, plants have developed a highly complex defense system against
different threats, including phytopathogens. Plant defense depends on constitutive and induced
factors combined as defense mechanisms. These mechanisms involve a complex signaling network
linking structural and biochemical defense. Antimicrobial and pathogenesis-related (PR) proteins
are examples of this mechanism, which can accumulate extra- and intracellular space after infection.
However, despite their name, some PR proteins are present at low levels even in healthy plant
tissues. When they face a pathogen, these PRs can increase in abundance, acting as the first line of
plant defense. Thus, PRs play a key role in early defense events, which can reduce the damage and
mortality caused by pathogens. In this context, the present review will discuss defense response
proteins, which have been identified as PRs, with enzymatic action, including constitutive enzymes,
β-1,3 glucanase, chitinase, peroxidase and ribonucleases. From the technological perspective, we
discuss the advances of the last decade applied to the study of these enzymes, which are important in
the early events of higher plant defense against phytopathogens.

Keywords: plant–pathogen interaction; plant protection; preformed mechanism; postformed
mechanism; signaling pathways

1. Introduction

As is well-known, higher plants are sessile organisms, and this condition could be
a weak point in their defense against stresses. Nevertheless, over the course of evolu-
tion, a highly specialized defense system developed [1]. The plant defense mechanism is
composed of a complex system that amplifies chemical and molecular signals [2,3]. It is
known that the first line of plant defense against pathogen attack can involve immediate
immune system responses with pattern-triggered immunity (PTI). When this first reaction
is ineffective, other factors may be triggered by the effector-triggered immunity (ETI),
which usually provides plant resistance (Figure 1). In ETI, plants are directly or indirectly
stimulated by effectors from pathogens, resistance proteins that will trigger a more effective
defense response, quickly, through a sophisticated defense network [4,5].

This complex defense network consists of combined mechanisms, preformed (con-
stitutive) and postformed (induced) mechanisms, that are capable of protecting plants
against several stresses including pathogen attack [2,6–8]. Among these post-formed and
performed mechanisms, proteins that play an essential role in plant defense are found.
Briefly, in the initial infection stages, plants produce proteins that accumulate, and many
of these proteins have antimicrobial activity and can induce the production of structural
compounds, including lignin and callose deposition [7]. Such proteins can act in the hy-
persensitivity reaction, accelerating cell death, to limit the propagation of phytopathogens.
Among these proteins, the pathogenesis-related (PR) proteins stand out (Table 1), which
are capable of inducing the plant’s innate immune system [4,5,9,10].
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Figure 1. Initial plant defense response in plant–pathogen interaction. At first, the pathogen is rec-

ognized on the plant cell wall surface. Then, the elicitors activate a signaling network, where defense 

genes are activated to produce PR proteins that accumulate and act in the degradation of the path-

ogenic cell (i.e., β-1,3-gluc and chit; the degradation products of these enzymes can also act as elici-

tors). The oxidative buster mediates the generation of ROS in an attempt to limit the spread of the 

pathogen. PRs (i.e., β-1,3-glucanases, chitinases, PRXs, PR10 together with Phyx) are able to induce 

a hypersensitivity response to prevent the spread of the pathogen to other tissues, releasing elicitors 

that induce the plant’s defense mechanism. PR10, RBPs and RIPs are also produced by the plant, 

mediating virus infection. NB-LRR and PR10 act together in gene defense induction. PRX, peroxi-

dase; PRs, pathogen-related proteins; Chit, chitinase; ROS, reactive oxygen species; Phyx, phytoa-

lexin; β-1,3-gluc, β-1,3-glucanases; Ethy, ethylene; JA, jasmonic acid; LRR-RLK, leucine-rich repeat 

receptor-like protein kinase; NB-LRR, nucleotide-binding and leucine-rich repeat; RBPs, RNA-bind-

ing proteins; RIPs, ribosome-inactivating proteins. 

This complex defense network consists of combined mechanisms, preformed (consti-

tutive) and postformed (induced) mechanisms, that are capable of protecting plants 

against several stresses including pathogen attack [2,6–8]. Among these post-formed and 

performed mechanisms, proteins that play an essential role in plant defense are found. 
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compounds, including lignin and callose deposition [7]. Such proteins can act in the hy-

persensitivity reaction, accelerating cell death, to limit the propagation of phytopatho-

gens. Among these proteins, the pathogenesis-related (PR) proteins stand out (Table 1), 

which are capable of inducing the plant’s innate immune system [4,5,9,10]. 

Table 1. Pathogenesis-Related Proteins (sPRs) properties and roles in plant defense. 

Family Properties/Functions References 

PR-1 

(11a, 1b and 1c) 

• Abundant proteins in the apoplast during plant–pathogen interac-

tion 

• Inhibit pathogens 

• Antifungal and antivirus activity 

• Metal tolerance 

[11–17] 

PR-2 

(Classes: I, II, and III) 

• Plant cell wall (β-1,3-glucan hydrolysis) 

• Antibacterial, antifungal and antivirus activity 
[15,18–20] 

Figure 1. Initial plant defense response in plant–pathogen interaction. At first, the pathogen is
recognized on the plant cell wall surface. Then, the elicitors activate a signaling network, where
defense genes are activated to produce PR proteins that accumulate and act in the degradation of
the pathogenic cell (i.e., β-1,3-gluc and chit; the degradation products of these enzymes can also
act as elicitors). The oxidative buster mediates the generation of ROS in an attempt to limit the
spread of the pathogen. PRs (i.e., β-1,3-glucanases, chitinases, PRXs, PR10 together with Phyx) are
able to induce a hypersensitivity response to prevent the spread of the pathogen to other tissues,
releasing elicitors that induce the plant’s defense mechanism. PR10, RBPs and RIPs are also produced
by the plant, mediating virus infection. NB-LRR and PR10 act together in gene defense induction.
PRX, peroxidase; PRs, pathogen-related proteins; Chit, chitinase; ROS, reactive oxygen species;
Phyx, phytoalexin; β-1,3-gluc, β-1,3-glucanases; Ethy, ethylene; JA, jasmonic acid; LRR-RLK, leucine-
rich repeat receptor-like protein kinase; NB-LRR, nucleotide-binding and leucine-rich repeat; RBPs,
RNA-binding proteins; RIPs, ribosome-inactivating proteins.

Table 1. Pathogenesis-Related Proteins (sPRs) properties and roles in plant defense.

Family Properties/Functions References

PR-1
(11a, 1b and 1c)

• Abundant proteins in the apoplast during
plant–pathogen interaction

• Inhibit pathogens
• Antifungal and antivirus activity
• Metal tolerance

[11–17]

PR-2
(Classes: I, II, and III)

• Plant cell wall (β-1,3-glucan hydrolysis)
• Antibacterial, antifungal and antivirus activity [15,18–20]

PR-3; PR-4; PR-8; PR-11
(Classes: I, II, IV, V, VI, and VII)

• Plant cell wall (Chitin hydrolysis)
• Antibacterial and antifungal activity
• Salt tolerance

[15,18,20,21]

PR-5
• Similarities with thaumatin
• Antifungal activity
• Cause osmotic rupture of fungal plasma membrane

[18,22,23]
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Table 1. Cont.

Family Properties/Functions References

PR-6
• Protease inhibitors
• Cleave exopeptidases produced by bacteria, fungus

and insects
[24–26]

PR-7

• Endoproteases
• Mechanism of action is understudied
• Might be antimicrobial (pathogen cell

wall degradation)

[25–27]

PR-9
• Peroxidase activity
• Catalyze the oxidation of hydrogen peroxide on

substrates (organic and inorganic)
[28,29]

PR-10

• Ribonucleases—degrade RNA
• Programmed cell death during

hypersensitivity reaction
• Antibacterial, antifungal, antinematode and

antivirus activity
• Slat and cold stress tolerance

[20,30–32]

PR-12

• Defensins
• Produced constitutively in plant structures (leaves,

flowers, tubers, pods and seeds)
• Increased abundance during plant–pathogen

interaction
• Antibacterial activity

[15,18,26]

PR-13
(Classes: I, II, III and IV)

• Thionins—bacterial membrane lysis
• Distributed in the plant cell wall, vacuole and

protein bodies
• Defense against a wide range of pathogens

[26,33–36]

PR-14

• Nonspecific lipid transfer proteins (ns-LTPs)—cuticle
synthesis

• Secreted and are associated with plant cell wall
• Defense against a wide range of pathogens

[26,37–39]

PR-15; PR-16

• Oxalate oxidase and oxalate-oxidase-like protein
(OLP’s), respectively

• Generation of ROS immediately after pathogen
attack, which has antimicrobial activity

[25,26,40,41]

PR-17

• Similarities with aminopeptidase (such as that found
in eukaryotes and bacteria)

• Secretory protein
• Proteolytic activity
• Antifungal and antiviral activity

[18,25,42]

PR-18

• Carbohydrate oxidases properties
• Substrate specificity resulting in hydrogen peroxide

as one of the reaction products
• Antibacterial activity

[25,43]

PR-19
• Biological role is not deciphered yet
• Antimicrobial activity [25,44]

These proteins can have direct or indirect action in plant resistance against microor-
ganisms. PR proteins can inhibit pathogen growth and/or spore germination, and can also
act as antimicrobial agents, hydrolases, and proteinase inhibitors and perform other activi-
ties [45,46]. PR defense proteins are molecules with different molecular weights, ranging
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from 6 to 43 kDa. They are thermostable, soluble at pH < 3, and protease-resistant, thus
contributing to quantitative changes in protein levels during defense responses [9,18,25].
It is believed that PR proteins are encoded, but it is only after the presence of a stimulus
that they will be expressed in plants. The stimuli that can lead to the expression of such
proteins include infection by pathogens, the induction of resistance by elicitors, the accu-
mulation of high plant hormone concentrations and some stresses, including cytoplasm
disruption [10,47].

In general, elicitor molecules are found naturally in the cell wall of pathogens (Figure 1),
and some PR proteins can hydrolyze these polysaccharides. The action of these proteins
transforms these polymers into eliciting oligosaccharides. Thus, elicitors can induce three
types of resistance, including local acquired resistance (LAR), acquired systemic resis-
tance (ASR) and induced systemic resistance (ISR). The latter can be considered the most
important [10,47–49].

In ASR plant defense, induction can occur through the modification of the cell wall
and phytoalexin production, besides inducing the expression of several plant defense
genes involved, including the expression of PR-producing genes. PR proteins can prevent
pathogen colonization in plant cells, containing infection by efficiently activating host
defense mechanisms [50]. Among the PRs, some have enzymatic activity, such as β-
glucanases (PR-2), chitinases (PR-3, PR-8, PR-11), peroxidases (PR-9), and ribonucleases
(PR-10) [10,26,40,47]. These enzymes and their participation in plant protection against
pathogenic agents are highlighted below.

Currently, about 19 families of PRs have been reported (Table 1), including β-1,3-
glucanases, chitinases, thaumatin-like proteins, peroxidases, ribosome-inactivating proteins,
defensins, nonspecific lipid transfer proteins, oxalate oxidase, and oxalate-oxidase-like
proteins, amongst others [46,51]. In this context, the present review will discuss PRs with
enzymatic activity (β-1,3-glucanase, chitinase, peroxidase and ribonuclease), important in
the early events of higher plant defense against phytopathogens, and also the technological
advances of the last decade, applied to the study of these proteins. Technological innova-
tions have allowed the study of natural enzymes, mainly with advances in recombinant
DNA technology and protein engineering. These tools have been important for enzyme
studies, especially for understanding sequence–function relationships. In addition to being
useful for prospecting and producing natural enzymes, biotechnological tools contribute to
the obtention of bioinspired enzymes. These enzymes can be obtained with improved char-
acteristics for application in agriculture, including the production of plants with improved
characteristics to tolerate different stresses. In addition, these tools can be useful in enzyme
production for more sustainable applications in industrial processes and bioremediation
methods [52–54].

2. PR Proteins with Enzymatic Action and the Role in Plant Defense Activation
2.1. PR-2 and PR-3 Families: β-1,3 Glucanases and Chitinases

β-1,3 glucanases belong to PR-2 family, classified as endonuclease enzymes (E.C.3.2.1.39).
They are multifunctional enzymes present in many living beings, including bacteria, fungi and
some invertebrate animals and plants. Over the years, four β-glucanases subfamilies have
been reported (A, B, C and D). Among these subfamilies, ten β-1,3-glucanases were classi-
fied, based on amino acid sequences shared considering similarities and uniqueness [50].
The β-1,3 glucanase enzyme is one of three β-glucans found in plants (in addition to β-1,4
glucanases and β-1,3-1,4 glucanases) [55].

Despite being distributed differently among plant organs, glucanases (β-1,3) may play
an important role in the physiological systems of plants, including plant growth, seed
germination re-production, and fruit ripening [56–58]. β-glucans (cellulose, callose, xy-
loglucan, vmixed-linked glucan—MLG) are cell wall structures, predominant in almost all
vegetables. These structures can be degraded by specific enzymes such as β-glucanases [59].
Due to their great potential in plant defense participation, β-1,3 glucanases have been ex-
tensively studied, isolated and sequenced [10,47,60,61]. Naturally, β-1,3 glucanase gene
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expression levels are relatively low, but when a plant–pathogen interaction or elicitors are
used, high levels of β-1,3 glucanase can be detected; enzyme accumulation occurs rapidly
and consequently hydrolytic activity increases [10,47].

In a fungal invasion, for example, specifically in fungal cell wall degradation through
the action of β-1,3 glucanases (Figure 1), oligomers are released, namely β1,3/1,6-D-glucan.
These released oligomers can be considered elicitor oligosaccharides. The release of these
elicitors induces a plant defense response, demonstrating direct antimicrobial activity [10,47].
Using DNA recombinant technology, a novel β-1,3-glucanase (Gns6) was characterized by
functionality. β-1,3-glucanase Gns6 belongs to subfamily A. The gene expression of Gns6 was
evaluated at an early stage of rice blast infection, and the involvement of β-1,3-glucanase
Gns6 in early plant defense was proved [50]. In order to evaluate the effect of β-1,3-
glucanase on the construction of the fungal cell wall, the phytopathogenic fungus was
submitted to Gns6 in an antifungal activity bioassay. The results revealed that the enzyme
Gns6 exhibited potent antifungal activity against Maganaporthe orzyae, which causes blast
disease in rice [50].

Plant β-1,3 glucanases can act in synergism with chitinases, catalyzing the cell wall
degradation of microorganisms through the process of hydrolysis of β-1,3 glucans and
chitin, respectively (Figure 1). These enzymes are the most studied among the PRs. Further-
more, these enzymes, together with other hydrolases, also participate in the degradation
of cell membrane constituents, mainly fungi [59]. Chitinases are enzymes (E.C. 3.2.1.14)
belonging to groups 3, 4, 8, and 11 of the PRs.

Chitinases can also act similarly to chitosanases (induced in plants as a response
to pathogenic interaction) and are capable of degrading chitosan, which is present in
structural components of the cell wall of some species of fungi, including those of the order
Mucorales. Chitinases have efficient action in the degradation of chitin, the second-most
abundant structural polysaccharide in nature, found in insect exoskeletons; they are also
vital components of the fungal cell wall. Additionally, chitinases can be observed in some
plant species in response to the action of phytopathogenic viruses [62].

Some chitinases identified so far have demonstrated lysozyme activity, which may
also act in bacterial cell wall degradation. This may be antibacterial action, demonstrated
by the ability to hydrolyze the β-1,4 bonds that are between N-acetylmuramic acid and
N-acetylglucosamine in peptidoglycan-like heterosaccharides present in the cell wall of
prokaryotes [63]. As mentioned, during pathogen–plant interactions, elicitor molecules
are recognized, and just like β-1,3-glucanase, the chitinases can hydrolyze these elicitors,
transforming them into eliciting oligosaccharides (Figure 1). So, the elicitors produced
from chitin and β-1,3-glucanase activity can activate a signaling network, where defense
genes are activated to produce other PR proteins that accumulate and act in pathogen cell
degradation [10,47–49].

Functional analysis has revealed that transgenic plants of Arabidopsis, overexpressing
the endochitinase gene, proved to be resistant to Xanthomonas campestris pv. campestris (Xcc)
when compared to wild-type plants. This endochitinase was identified in cabbage plants
and showed up-regulation 24 h after infection Xcc. Gene expression analysis showed high
levels of the endochitinase gene when compared to the uninoculated cabbage plant [21].
The analysis of Cucumis sativus L. showed the induction of genes encoding chitinase in
plant roots during infection by Fusarium oxysporum f. sp. cucumerinum (Foc) [64].

An in vitro assay with purified chitinases Chi2 and Chi14 showed that proteins limited
Foc growth. In addition, the gene silencing of Chi14, using the technique of virus-induced
gene silencing (VIGS), increased the plant’s sensitivity to fungus. Chi2 gene silencing
drastically compromised the activation of the jasmonic acid pathway gene, which is a
phytohormone important in plant defense signaling. These results corroborate the hypoth-
esis that chitinase (Chi2) may play a key role in plant resistance [64]. The overexpression
of type II chitinase (LcCHI2) in Leymus chinensis conferred increased hydrolytic activity
in transgenic tobacco and corn plants, which have been shown to be more resistant to
pathogens and salt stress [65].
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Twenty-six chitinase genes were identified in Morus notablis plants [66]. The differential
expression of one of these enzymes, MnChi18, leads to an increased defense against Botrytis
cinera. The plant models overexpressing MnChi18 were protected from damage and were
shown to be involved in B. cinera resistance [66]. Finally, another study showed that the
chitinase gene can positively regulate the hypersensitive and defense responses of Capsicum
annuum L. to infection caused by Colletotrichum acutatum [67].

In summary, both β-1,3-glucanase and chitinase have been shown to play a signif-
icant role in plant defense against microbial agents. It is known that β-1,3-glucanases
accumulate during pathogen attack and can act in the hydrolysis of the pathogen cell
wall. As mentioned above, the substrate for this enzyme, β-1,3-glucans, can be found
in several microorganisms [50]. Faced with the action of β-1,3-glucanases and chitinase
enzymes, oligomers are released, which are β1,3/1,6-D-glucano and chitin, respectively.
These released oligomers can be called elicitor oligosaccharides. Elicitor release induces a
plant defense response. The activity of both enzymes can cause the depolymerization of
structural saccharides present in the pathogen wall, degrading it [68].

2.2. PR-9 Family: Peroxidases

Together, plant peroxidases, β-1,3-glucanases and chitinases act in the early plant
infection stages [69]. Once the plant has detected pathogen elicitors or abiotic stress, a
series of events, such as oxidative burst, takes place in an attempt to protect the plant from
damage induced by ROS. Plant ROS production leads to oxidative burst (Figure 1). This
action plays an important role in direct defense by promoting lignification and pathogen
intoxication due to ROS accumulation [69–71].

Currently, the peroxidases are classified into two groups, the first of which is nonheme
peroxidase, which is found in prokaryotes and eukaryotes (including halo-peroxidases,
NADH peroxidases, thiol peroxidases, and alkylhydro-peroxidase). The second group,
heme-peroxidases, is composed of two superfamilies: (1) the peroxidase-cyclooxygenase
superfamily (PCOXS) and (2) the peroxidase-catalase superfamily (PCATS). The PCOXS
representatives are known as the animal-peroxidase superfamily, while the PCATS are
commonly called the nonanimal heme peroxidases [72,73]. Nowadays, three classes are
found in the nonanimal peroxidases: class I (ascorbate peroxidase, yeast cytochrome
and bacterial catalase peroxidases), class II (heme peroxidase, includes lignin peroxidase,
manganese peroxidase and versatile peroxidase) and class III (found in plants). The class III
peroxidases correspond to about 70% of plant-derived peroxidases [73]. Plant peroxidases
(POX, EC 1.11.1.7) are antioxidant enzymes, belonging to group 9 of the PRs (PR-9) [40].

Plant peroxidases have an important role in plant physiology (Figure 1), including
lignification and wound healing; these enzymes can also participate in the regulation of cell
elongation [74]. Peroxidases play a plant defense role against pathogens. Besides partici-
pating in cell signaling after infection, peroxidases can polymerize macromolecules which,
after being deposited on the extracellular surface, can promote cell wall strengthening and
thus make pathogen invasion more difficult. Peroxidases can also induce the oxidative
degradation of phenolic compounds in the cell rupture region caused by pathogens in the
first infection stages [74]. Along with two other oxidizing enzyme families (unrelated),
the laccases (LACs) and the polyphenol oxidases (PPOs) family, the PRXs make up the
phenoloxidases. PRXs can oxidize substrates, including some phenols, through the reduc-
tion of H2O2 or organic peroxides [74–76]. Some phenols can generate oxygen radicals,
which can be extremely reactive and harmful to the plant. PRXs and other phenoloxidases
play a protective role, leading to the oxidative degradation of some phenol forms at the
site of infection [76]. Thus, the use of plant peroxidases arouses great industrial interest as
potential biodegradable agents. PRX from plants can degrade residual phenols in water,
from industrial wastewater [77–79].

Diverse isoforms of the peroxidase family are found throughout the plant and are
capable of oxidizing numerous molecules. POXs are involved in many biological activities
(Figure 1), such as cellular detoxification and the elimination of ROS (including 1 O2,
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singlet oxygen; O2
•−, superoxide anion; H2O2, hydrogen peroxide; and OH•, hydroxyl

radical). Peroxidases are important enzymes for maintaining the redox homeostasis of
plant cells [29].

In addition, in the first moment of plant stress, ROS are produced to protect the plant
from oxidative stress, since the oxidative burst can be lethal to the plant. The balance
between antioxidant (AOX) and ROS production is necessary for plant normality. Plant
detoxification is also needed, and this can be through peroxidase and other enzymes, such
as catalase, superoxide dismutase, etc. [80]. An imbalance between AOX and ROS, either
due to AOX depletion or ROS excess, can prolong oxidative stress, which can compromise
the production of lipids, amino acids, proteins, nucleotide acid and pigments [81]. The
remaining oxidative stress also causes cellular damage, leading to membrane injury, or-
ganelle function losses, reduced metabolic efficiency, reduced carbon fixation, electrolyte
leakage, and chromatid breaks and mutation. All this damage can lead to growth reduction,
yield loss and cell death. Peroxidase action is essential for maintaining cellular balance [81].

Both peroxidase and NADPH oxidase, present in the plant cell wall, play an important
role in the apoplastic oxidative burst after microbial attack against plants. In Arabidopsis,
after interaction with the fungus Alternaria brassicola, cell wall peroxidases (named PRX33
and PRX34) and NADPH oxidase mediated the oxidative burst in the plant. These enzymes
are considered to be the main catalyst of the oxidative burst process [82]. A characterization
study also demonstrated that the Arabidopsis mutant prx34 can reduce ROS and callose ac-
cumulation after Flg22-elicitor treatment. These results corroborate other findings, showing
that the PRX34 enzyme could be an important component for plant disease resistance [83].

Another work overexpressed a peroxidase (swpa4) gene, and the stress-related func-
tions of these enzymes in Ipomoea batatas L. were evaluated. The results indicated that
swapa4 gene overexpression can protect the plant from damage [28]. Furthermore, these
results suggested that transgenic sweet potato, overexpressing the PRX genes, can respond
more efficiently to saline stress [28]. An in vivo bioassay evaluation, using transgenic
Arabidopsis, showed that lines overexpressing PRX genes (cotton gene GhPRXIIB) were
capable of tolerating and limiting nematode infection [84].

Some POX enzymes, such as ascorbate peroxidase (APX) and glutathione peroxi-
dase (GPx), can catalyze the conversion of H2O2 to H2O [85,86]. Many APX isoforms
can be found in different subcellular compartments, including chloroplasts, mitochon-
dria, peroxisome and cytosol [87], and can play an important role in oxidative defense
metabolism [88,89]. Transgenic plants overexpressing glutathione peroxidase (named At-
GPXL5) revealed that this enzyme gene can participate in ethylene (ET) biosynthesis and
signaling [90].

After treatment with the ET-precursor (1-aminocyclopropane-1-carboxylic acid—ACC),
transgenic plants show glutathione- and thioredoxin-induced activity and other enzymes
involved in ROS processing, which suggests the involvement of the AtGPXL5 gene with
ethylene signaling and thus also with plant cell defense [90]. Transgenic plants of Citrus
sinensis, overexpressing the CsPrx25 gene and encoding a class III peroxidase, show ROS
homeostasis and increased H2O2 levels and consequently a strong hypersensitivity reac-
tion to Xcc. The results also show that CsPrx25 gene overexpression contributes to the
lignification process of the cell wall, increasing plant resistance [91].

In summary, ROS production increases, such as H2O2, and seems to protect the plant
against environmental stimulus including pathogens, but can cause significant stress, since
ROS accumulation can lead to cellular toxicity. APX and GPx can act in cellular homeostasis
under oxidative stress, protecting the plant [86,92].

2.3. PR-10 Family: Ribonucleases

As mentioned, the ribonucleases (RNase) are a member of group 10 of PRs. They
show approximately 17 kDa and exhibit a hydrophobic core capable of binding a wide
variety of ligands. Ribonuclease PR10 has demonstrated ligand ability for low-molecular-
mass compounds. The PR-10 hydrophobic cavity can bind with small molecules, and this
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hydrophobic cavity can be considered as a general feature of such enzymes [93]. Many
studies have reported the protein–ligand interaction of PR-10 proteins, as reviewed by [93].
These enzymes can bind to steroids, cytokinin, flavonoids and fatty acids, phytoprostanes,
phytomelatonin, gibberellic acid and plant metabolites, with molecules involved in flavor
production and color. Ribonuclease enzymes can interact with phytohormones in the
hormone-mediated signaling process [93,94].

Homologs share this conserved structure, but function is not a universal characteristic
among the members of the group. These enzymes have been identified in different plant
species. However, no unique biological function has been assigned to PR-10 proteins.
Among the functions assigned to PR-10 are plant growth and development, as well as an-
tioxidation, UV protection, and pathogen defense. An unusual protein was found in rubber
trees and presented activity like the PR-10 class. After structural characterization, plant pro-
tection against the Rigidoporus microporus fungus was related to this protein. The structural
analysis demonstrated that these proteins can bind with a deoxycholic acid ligand [95].
Deoxycholic acid is a bile acid (bile acid deoxycholic acid—DCA), which demonstrated
action related to plant defense response. DCA can induce defense in Arabidopsis plants
and reduce bacterial proliferation [96]. It is possible to observe the up-regulation of PR10
enzymes during plant pathogen interaction and/or direct induction after applying external
phytohormones, proving the protective action of PR10 during plant–pathogen interac-
tion [94,97,98]. Additionally, it is possible to observe an increase in PR10 abundance during
interactions caused by viruses and fungi [45,99–102].

Besides PR-10′s involvement in the signaling pathways of defense genes, ribonu-
cleolytic activity to cleave invading pathogens has been reported (Figure 1), causing the
pathogen’s RNA cleavage [103]. During pathogen infection, the RNase activity of PR10
proteins can cause a cytotoxic cell impact and inhibit pathogen growth, degrading the
pathogen cell [45,99–102]. This inhibition occurs mainly through ribonuclease penetration
into the pathogen, with PR10 phosphorylation subsequently occurring, and consequently
the destruction of pathogenic cell RNAs [25].

RNase activity can be exhibited by several PR-10 proteins but it is not believed to
be a universal characteristic [104]. RNase activity is required under biotic and abiotic
stress, since these proteins are involved in plant HR signalization, in programmed cell
death control and/or apoptosis process [105,106]. Much evidence has been reported on
the general activity of PR-10 against different phytopathogens such as fungi, bacteria, and
viruses [93,103]. Additionally, one report indicated the protease inhibitory activity of PR-10
in the root-knot nematode Meloidogyne incognita [107].

Concerning the PR-10 activity against pathogens, although not well-explained, these
enzymes are believed to be related to the endogenous cytokinin (CK) concentrations and
CK in negative feedback regulation. These cytokines are involved in plant immunity
modulation, acting directly in the plant defense response to many pathogens [98,103,108].

In addition, PR-10 proteins can interact with plant hormones such as ABA, JA, auxins,
ethylene, and SA, which are involved in hormone-mediated signaling to mitigate damage
suffered by the plant, caused by biotic and abiotic stress [103,109]. In plants infected with
Verticillium dahlia, PR10 genes were found to be up-regulated after an expression profile
investigation in leaves, roots and stems of strawberry plants [97]. Once again, the induction
of some phytohormones, including ABA, SA, JA, and gibberellic acid, was seen in the early
stages of plant–pathogen interaction. In roots, just two hormones were induced, indole
acetic acid (IAA) and JA, but in the late stages of infection [97].

In Valsa mali fungus, VmP1 is a virulence factor and can interact with PR10 (named
MdPR10) in vivo. The MdPR10 gene present in Malus domestica is a VmP1 target, and
when the silencing of the MdPR10 gene occurs, plant susceptibility increases in plants,
while gene overexpression decreases the infection, showing the role of MdPR10 in plant
defense against V. mali [110]. Mahmoud et al. (2020) [31] demonstrated, with exogenous
products to induce the plant’s systemic resistance, that after treatment the plants showed
increased abundance of PR10 as well as another protein, which is also used as a marker
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of systemic acquired resistance (SAR), namely, phenylalanine ammonia lyase (PAL). The
in vivo results demonstrate antiviral activity against the tomato pathogen Tobacco Mosaic
Virus (TMV) [31].

3. Concluding Remarks

During plant–pathogen interaction, a sophisticated signaling network results in gene
induction to produce several molecules for plant defense. Among these molecules, several
protein types are produced, including pathogen-related enzymes, such as glucanases,
chitinases, peroxidases and ribonuclease [25]. These enzymes can be produced in trace
amounts by healthy plants, but they may have increased levels in the face of a pathogen.
These enzymes can act directly or indirectly in plant defense, leading to phytopathogen
death or the induction of other defense response routes [10,47,49,103,111]. The use of these
enzymes has been extensively studied to determine resistance induction strategies in plants.
The main biotechnological advances in plants have been promising and have elucidated
resistance mechanisms. These advances have showed enlightening findings regarding
this enzyme’s integration into the plant defense signaling network. Improvements in
biotechnological techniques ensure the transformation of transgenic plants and promote
the isolation of many genes induced in pathogenesis. These improvements allow the genetic
manipulation of plants to exhibit resistance to a broad spectrum of pathogens. Genetic
engineering techniques can manipulate plant genes and further evaluate the effects singly or
synergistically, against several pathogens, resulting in engineering disease-resistant plants.
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