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Diabetes is the leading cause of ESRD because diabetic nephropathy develops in 30 to 40% of patients. Diabetic nephropathy
does not develop in the absence of hyperglycemia, even in the presence of a genetic predisposition. Multigenetic predispo-
sition contributes in the development of diabetic nephropathy, thus supporting that many factors are involved in the
pathogenesis of the disease. Hyperglycemia induces renal damage directly or through hemodynamic modifications. It induces
activation of protein kinase C, increased production of advanced glycosylation end products, and diacylglycerol synthesis. In
addition, it is responsible for hemodynamic alterations such as glomerular hyperfiltration, shear stress, and microalbuminuria.
These alterations contribute to an abnormal stimulation of resident renal cells that produce more TGF-�1. This growth factor
upregulates GLUT-1, which induces an increased intracellular glucose transport and D-glucose uptake. TGF-�1 causes
augmented extracellular matrix protein deposition (collagen types I, IV, V, and VI; fibronectin, and laminin) at the glomerular
level, thus inducing mesangial expansion and glomerular basement membrane thickening. However, low enzymatic degra-
dation of extracellular matrix contributes to an excessive accumulation. Because hyperglycemia is the principal factor
responsible for structural alterations at the renal level, glycemic control remains the main target of the therapy, whereas
pancreas transplantation is the best approach for reducing the renal lesions.
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D iabetic nephropathy is a clinical syndrome character-
ized by the occurrence of persistent microalbumin-
uria in concomitance with insulin- or non–insulin-

dependent diabetes. This nephropathy has a long natural
history in type 1 diabetes. Initially, the patient shows hyperfil-
tration, represented by high values of GFR, approximately dou-
bling of the normal value, and occasional occurrence of mi-
croalbuminuria. The duration of these abnormal laboratory
data is approximately 5 yr. Later, during a course of approxi-
mately 20 yr, the patient shows a gradual decline of the GFR
and persistence of microalbuminuria that comes before mild
and subsequently moderate proteinuria. The final step of the
natural history of the disease is characterized by severe pro-
teinuria with or without nephrotic syndrome and chronic renal
insufficiency that declines to ESRD. The gradual impairment of
the above laboratory findings is caused by structural alterations
at the renal level, which at the beginning consist of a gradual
and progressive accumulation of extracellular matrix (ECM) in
the mesangium and glomerular basement membrane. Later, the
formation of mesangial nodules represents the characteristic
lesions of the Kimmelsteil-Wilson nephropathy with additional
extensive tubulointerstitial lesions.

Genetics
Several factors, such as hyperglycemia, hyperlipidemia, hy-

pertension, and proteinuria, contribute to the progression of
renal damage in diabetic nephropathy. However, they are sup-

ported by a specific genetic background because only 30% of
patients with type 1 and 25 to 40% of patients with type 2
diabetes develop diabetic nephropathy irrespective of glycemic
control (1). In addition, the disease often involves siblings and
even more so some ethnic groups.

A simple Mendelian inheritance model does not occur in
diabetic nephropathy, making the approach to genetic studies
very difficult. In addition, collection of DNA samples from
extended pedigrees, with a lower life expectancy and old age
characterizing the diseases, are often lacking. The heteroge-
neous clinical picture of diabetic nephropathy causes some
difficulties in the identification of patients who are at high risk
for disease.

The genetic background was stated many years ago by Klein
et al. (2) in the Wisconsin epidemiologic study in which they
demonstrated that metabolic control did not differ in patients
with diabetes, both with and without nephropathy, and a high
number of patients with diabetes did not develop the nephrop-
athy, despite long-term, severe, chronic hyperglycemia. Famil-
ial clustering of the disease has been shown by Seaquist et al.
(3), who reported that siblings of patients with type 1 diabetes
and nephropathy have a four-fold increased risk for developing
diabetic nephropathy. The ethnic background plays an impor-
tant role because some races are more susceptible to diabetic
nephropathy than others. In fact, the rate of developing ESRD
is five times higher in relatives of black patients with type 2
diabetes in renal replacement therapy (RRT) (4). The small tribe
of Pima Indians shows a high prevalence of diabetic nephrop-
athy clusters in families with type 2 diabetes. In fact, 14% of
descendants of parents with type 2 diabetes without nephrop-
athy develop diabetic nephropathy; this percentage is higher in
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descendants of parents of whom one has proteinuria and in-
creases in descendants of parents of whom both have diabetes
and proteinuria (5). In conclusion, cumulative incidence of
disease increases in the presence of parents with diabetic ne-
phropathy. However, the occurrence of the disease is more
frequent in some ethnic groups such as Pima Indians and
blacks than in whites. This racial difference may be caused by
specific clustering of different loci, which induces genetic sus-
ceptibility to the disease.

Diabetic nephropathy is a complex genetic disease in which
more genes may be involved in developing the nephropathy.
The strategy to search for genes is represented by two different
approaches, namely, case–control association studies and fam-
ily studies. Candidate gene studies that are based on associa-
tion have rarely been successful. In fact, very contradictory
demonstrations as reported by Lindner et al. (6) in a review on
genetic aspects of the diabetic nephropathy have been reported
in the literature. However, the familial study approach is not
easy because there is no simple Mendelian inheritance model as
most affected parents of the patients are dead because there is
a low life expectancy. For this reason, many family studies are
based on analyzing sibling pairs. The National Institutes of
Health established the ongoing Family Investigation of Ne-
phropathy and Diabetes Study Consortium to further the link-
age analysis studies that led to the mapping of several suscep-
tibility loci for diabetic nephropathy on specific regions of
chromosome 3q for type 1 diabetes and on chromosome 20 and
12 for white sibling pairs with type 2 diabetes (7,8). In the
Cleveland area, nephrologists collected DNA samples from
multiplex diabetic families in the white and black populations
(9). Then, they performed a linkage analysis of candidate genes
and organized a sibling pair study design in which 212 sibling
pairs who were concordant or discordant for microalbumin-
uria, overt proteinuria, and nephrotic-range proteinuria were
included. Regions examined were located on human chromo-
some 10p; 10q; and at NPHS1 (nephrin), CD2AP, Wilms tumor,
and NPHS2 (podocin) loci. Allele frequencies and the identity
of descendent sharing were estimated separately for blacks and
whites. Single-point and multipoint linkage analyses indicated
that marker D10S1654 on chromosome 10p was potentially
linked to diabetic nephropathy. It is interesting that the major-
ity of the linkage evidence derived from the white sibling pairs.
The investigators are now adding sibling pairs and increasing
marker density on chromosome 10. Linkage with candidate
regions for nephrin, CD2AP, Wilms tumor, and podocin were
excluded. Therefore, a diabetic nephropathy susceptibility lo-
cus is present on chromosome 10. There are very few genetic
studies in diabetic nephropathy in large multiplex pedigrees.
Vardarli et al. (10) carried out linkage analysis in 18 large
Turkish families (368 individuals were examined) with recur-
rence of type 2 diabetes and diabetic nephropathy. A logarithm
of odds score of 6.1 was observed in the region of chromosome
18q22.3 to 23. This linkage was confirmed in an analysis of 101
affected sibling pairs of Pima Indians. The candidate gene in
this region of chromosome 10 is ZNF 236 (Kruppel-like zinc-
finger gene 236), which is glucose dependent expressed in
human mesangial cells.

Pathogenesis
Resident and nonresident renal cells are stimulated by hy-

perglycemia in producing humoral mediators, cytokines, and
growth factors that are responsible for structural alterations
such as increased deposition of ECM and functional alterations
such as increased permeability of glomerular basement mem-
brane or shear stress. These alterations contribute to diabetic
nephropathy. Glucose influx in the renal cells is modulated by
GLUT-1, which is a surface receptor of resident renal cells.
Heilig et al. (11) demonstrated that in vitro, high glucose con-
centrations (23 to 30 nM) induced overexpression of GLUT-1
mRNA and overproduction of GLUT-1 protein in mesangial
cells. In addition, glucose transport increased in cells. GLUT-1
is modulated in its expression by TGF-�1. In fact, Inoki et al.
(12) demonstrated that this growth factor modulation was dose
and time dependent. When an anti–TGF-�1 monoclonal anti-
body was added in vitro, GLUT-1 mRNA expression and
d-glucose uptake was reduced. In conclusion, endogenous
TGF-�1, produced by mesangial cells cultured under high-
glucose conditions, is able to enhance glucose transport to
stimulate glucose uptake by inducing the overexpression of
mRNA and protein GLUT-1. Thus, it accelerates glucose-in-
duced metabolic abnormalities in mesangial cells.

Another growth factor, PDGF-�, is involved in structural
alterations at the glomerular level. Di Paolo et al. (13) demon-
strated in vitro downregulation of TGF-�1 in human mesangial
cells in the presence of high glucose concentration and anti-
PDGF BB neutralizing antibody. They evidenced that a high
glucose concentration induced an early and a persistent in-
crease of PDGF B-chain gene expression, whereas PDGF-�
receptor mRNA increased by twofold after 6 h, thereafter de-
clining after 24 h. In contrast, TGF-�1 mRNA increased after 24
and 48 h of incubation in high glucose. Therefore, they con-
cluded that high glucose induces an early activation of a PDGF
loop that in turn causes an increase of TGF-�1 gene expression,
thus modulating both human mesangial cell proliferation and
mesangial matrix production.

Connolly et al. (14) demonstrated that another growth factor,
connective tissue growth factor, plays an important role in
glomerular alteration in diabetic sclerosis because this mediator
induces transient actin cytoskeleton disassembly in mesangial
cells, high production of fibronectin, collagen types I and IV,
and mesangial cell hypertrophy. Thus, connective tissue
growth factor may be considered another therapeutic target in
diabetic nephropathy. Finally, angiotensin II is an additional
growth factor that stimulates resident renal cells to produce
TGF-�1. Activation of the renal renin-angiotensin system and
its involvement in the pathogenesis of diabetic nephropathy
has been shown. In addition, angiotensin II is generated in
hypertension, a disorder that frequently accompanies diabetes
and accelerates progression of diabetic nephropathy. In vitro
studies have shown that angiotensin II increases ECM accumu-
lation by mesangial cells, primarily via stimulation of TGF-�
expression (15,16).

Hyperglycemia is an important risk factor for the develop-
ment of diabetic nephropathy. It induces an abnormal activa-
tion of protein kinase C (PKC), which is involved in the devel-
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opment of diabetic nephropathy. Upregulation of PKC was
observed in kidneys of rats with diabetic nephropathy (17). It
was associated with TGF-�1, fibronectin, and collagen type IV
upregulation. When streptozotocin-induced diabetic rats re-
ceived a PKC inhibitor, LY 333531, there was a downregulation
of the above growth factor and ECM proteins. The same inhib-
itor reduced hyperfiltration and albuminuria in rats and in
mice with diabetic nephropathy (18). The identification of the
susceptibility genes in diabetic nephropathy has become the fo-
cus of intensive research efforts. Among candidate genes, the
PKC-�1, which encodes both �I and �II isoforms, has been
chosen because an abnormal activation of PKC in diabetic
patients with nephropathy has been evidenced (19,20).

Krolenski’s group tested nine single-nucleotide polymor-
phisms (SNP) of PKC-�1 for association with diabetic nephrop-
athy in type 1 diabetes. Both case–control and family-study
designs were carried out. Allele and genotype distribution of
two SNP in the promoter (�1504 C/T and �546 CG) differed
significantly between patients and control subjects. These SNP
were identified as a common risk haplotype for diabetic pa-
tients with duration of the diabetic state �24 yr. The risk for
diabetic nephropathy was higher among carriers of the T allele
of the �1540 C/T SNP and among carriers of the G allele of the
�546 C/G SNP. This positive case–control study was con-
firmed by using the family-based transmission disequilibrium
test. In fact, the T-G haplotype, with both risk alleles, was
transmitted more frequently than expected from heterozygous
parents to offspring, who developed diabetic nephropathy dur-
ing the first 24 yr of diabetes. Therefore, DNA sequence differ-
ences in the promoter of PKC-�1 gene contribute to diseases
susceptibility in type 1 diabetes (21).

Hyperglycemia is responsible for the presence of high levels
of advanced glycosylation end products in patients with dia-
betes. These glucose metabolites stimulate intrinsic glomerular
cells to produce TGF-�1, which contributes to glomerular scle-
rosis and tubulointerstitial damage by means of an abnormal
ECM production. Forbes et al. (22) demonstrated that the ad-
ministration of ALT 711, an advanced glycosylation end prod-
uct inhibitor, in diabetic rats readily reduced the glomerulo-
sclerosis index, the tubulointerstitial area, and albuminuria.

Hemodynamic dysfunctions in patients with diabetes are
represented by blood arterial hypertension, glomerular hyper-
tension, and hyperfiltration. Gnudi et al. (23) demonstrated that
application of mechanical stretch to mimic a hemodynamic
insult induces in vitro GLUT-1 overexpression and TGF-�1
production in rat mesangial cells. The presence of a monoclonal
anti–TGF-�1 antibody in vitro reduced the GLUT-1 expression
and the intracellular glucose transport. Mechanical stretch is
also responsible for increased glomerular permeability to pro-
tein in patients with diabetes. Vascular permeability factor
(VPF) is one of the most powerful promoters of this abnormal-
ity. Gruden et al. (24) studied the effect of stretch on VPF
production by human mesangial cells and the intracellular
signaling pathways involved. They demonstrated that the ap-
plication of mechanical stretch for 6 h induced a 2.4-fold in-
crease over control in the VPFmRNA level. Stretch-induced
VPF secretion was partially prevented both by PKC inhibitor

H7 and by pretreatment with phorbol ester. The combination of
both PKC and protein tyrosine kinase (PTK) inhibition com-
pletely abolished the VPF response to mechanical stretch (24)
and TGF�-1 and fibronectin production by human mesangial
cells (25). In conclusion, shear stress is responsible for increased
production of growth factors and ECM proteins, which contrib-
utes to mesangial cell proliferation and ECM deposition at the
glomerular level.

Therapeutic Strategies
The general approach in the therapy of diabetes is repre-

sented by glycemic control, reduction of blood hypertension,
lipid control, and abolishing smoking. Because hyperglycemia
is the principal factor responsible for the structural alterations
at the renal level, glycemic control remains the main target for
therapy in patients with potential development of diabetic ne-
phropathy. Intensive blood glucose control is the best approach
in reducing the risk for microvascular complications. In addi-
tion, early treatment of blood glucose in young people with
diabetes has a dramatic effect on the survival because there is
an increased life expectancy (26,27). Two reports demonstrated
that intensive blood glucose control with sulfonylureas or in-
sulin reduced retinopathy, neuropathy, and cardiovascular dis-
eases and mainly diabetic nephropathy (50%) (28,29). Gaede et
al. (30) reported in a multifactorial intervention study a reduced
risk for cardiovascular and microvascular events by approxi-
mately 50%.

Pancreas transplantation remains the best approach for the
response of renal lesions in diabetic nephropathy. Fioretto et al.
(31) demonstrated in a serial renal biopsy study that glomerular
basement membrane thickness, mesangial volume, and mesan-
gial matrix reduced gradually after 5 to 10 yr from the time of
pancreas transplantation.
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