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Abstract

Following the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
its rapid spread throughout the world, new viral variants of concern (VOC) have emerged. There
is a critical need to understand the impact of the emerging variants on host response and
disease dynamics to facilitate the development of vaccines and therapeutics. Syrian golden
hamsters are the leading small animal model that recapitulates key aspects of severe
coronavirus disease 2019 (COVID-19). In this study, we show that intranasal inoculation of
SARS-CoV-2 into hamsters with the ancestral virus (nCoV-WA1-2020) or VOC first identified in
the United Kingdom (B.1.1.7) and South Africa (B.1.351) led to similar gross and histopathologic
pulmonary lesions. Although differences in viral genomic copy numbers were noted in the lungs
and oral swabs of challenged animals, infectious titers in the lungs were comparable. Antibody
neutralization capacities varied, dependent on the original challenge virus and cross-variant
protective capacity. Transcriptional profiling indicated significant induction of antiviral
pathways in response to all three challenges with a more robust inflammatory signature in
response to B.1.1.7. Furthermore, no additional mutations in the spike protein were detected
at peak disease. In conclusion, the emerging VOC showed distinct humoral responses and

transcriptional profiles in the hamster model compared to the ancestral virus.
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COVID-19, Severe acute respiratory syndrome coronavirus-2, variants of concern, pathogenesis,

interstitial pneumonia, animal model
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Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged as a novel, highly
infectious respiratory CoV and the causative agent of CoV disease 2019 (COVID-19)?. First
described in the city of Wuhan in Hubei province of China, SARS-CoV-2 is a member of the
Coronavirdae family, which possess large, non-segmented RNA genomes?. High levels of
transmission, especially in regions with low vaccination rates, facilitate the emergence of
mutations that improve viral fitness. SARS-CoV-2 variants of concern (VOC) are defined as
variants that have one or more mutations that confer worrisome epidemiologic, immunologic,
or pathogenic properties?. Several SARS-CoV-2 VOC have emerged such as B.1.1.7 first reported
in the United Kingdom (UK), which is associated with increased transmission compared to the
ancestral virus reported from Washington, USA in early 20203. This variant acquired over 20
mutations including N501Y within the spike (S) protein that increased binding affinity to the
angiotensin converting enzyme 2 (ACE2) receptor®®. In addition, the S protein of the B.1.1.7
variant has a deletion of amino acids 69 and 70 which has been shown to increase viral escape
in immunocompromised individuals®’. VOC B.1.351 was originally reported in South Africa (SA)
and harbors similar mutations in S compared to B.1.1.7 as well as the K417N and E484K
substitutions that may decrease the efficacy of existing vaccines®!2. Other variants more
recently reported in the United States (B.1.427, B1.429) also harbor mutations in S (e.g., N501Y)

that have been associated with reductions in neutralizing antibody titers®3.

There is an urgent need to understand the effect of new mutations within VOC on the host
immune response to facilitate the development of vaccines and therapeutics. In this study, we
compared pathologic features of and immune responses to the original virus (ancestral), and
the later B.1.1.7 and B.1.351 variants in the well-established Syrian golden hamster model of
severe COVID-19%4, Specifically, we longitudinally assessed viral replication, histopathological
changes, development of humoral immunity and humoral cross-reactivity amongst VOC.
Additionally, we employed RNA-seq and digital cell quantification of lung homogenates to
determine differences in transcriptomic signatures and to infer changes in immune cell subsets.

We identified similar histopathological changes, levels of infectious virus, and antibody titers
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amongs all infections. However, transcriptional responses and the capacity to cross-neutralize
SARS-CoV-2 was VOC-dependent. Collectively, these data demonstrate that mutations within

SARS-CoV-2 modulate host defense pathways.

Results

Gross lung pathology

Syrian golden hamsters were separated into three cohorts (n=15 per cohort) and challenged
intranasally (IN) with 10° TCIDso of one of three different SARS-CoV-2 variants: ancestral (nCoV-
WA1-2020), B.1.1.7, and B.135. Five uninfected animals served as negative controls. Scheduled
necropsies were performed at 4, 14, and 28 days post-challenge (DPC) for all groups to capture
peak disease and convalescence (Fig. S1A). Peak weight loss was achieved amongst all three
groups 7 DPC, however, no significant difference in body weight changes occurred over the first
10 DPC for any of the infections (Fig. S1B). Gross pulmonary lesions were observed in all
infected hamsters at 4 DPC (Fig. S1D). Lungs harvested 4 DPC showed multifocal to locally
extensive areas of red to purple coloration (consistent with consolidation) disseminated
throughout all lung lobes. Additionally, lungs generally failed to collapse indicating interstitial
disease. Lung samples harvested 14 and 28 DPC had either no gross lesions or limited, small,
multifocal areas of consolidation and/or congestion. Analysis of histopathology samples

demonstrated evidence of interstitial pneumonia on 4 and 14 DPC in all groups (Fig. S1C).

Histopathology and immunohistochemistry of hamster lungs

Pulmonary pathology consistent with previously described coronavirus respiratory disease was
observed at 4 DPC in lung samples from hamsters infected with each virus (Fig. 1)*°. Five
uninfected animals served as negative controls (Fig. 1A, E, 1). Foci of interstitial pneumonia and
bronchiolitis were observed throughout all evaluated lung lobes of infected hamsters. Minimal
to mild bronchiolitis characterized by individual epithelial cell necrosis, epithelial cell basophilia
and hyperplasia and rare syncytial cell formation was observed throughout all variants (Fig. 1 B-

D). Interstitial pneumonia varying in percent of lung involvement and moderate to severe
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severity was observed within each animal regardless of the variant. Interstitial pneumonia at 4
DPC was defined by expansion of alveolar septa by edema fluid, leukocyte infiltration and fibrin,
with leukocyte spillover into adjacent alveolar spaces and in severe cases, complete loss of
pulmonary architecture (Fig. 1 F-H). Tracheitis characterized by neutrophilic influx and epithelial
cell necrosis was observed in all evaluated sections of trachea in each animal at 4 DPC.
Immunohistochemical analysis showed immunoreactivity to an antibody specific to SARS-CoV-2
within bronchiolar epithelia, type | and type Il pneumocytes and macrophages in lungs of all

hamsters regardless of the viral variant (Fig. 1 J-L).

At 14 and 28 DPC pulmonary pathology was similar in lungs of hamsters infected with all viruses
(Fig. S1C, D). Foci of persistent type Il pneumocyte hyperplasia with occasional apical cilia
formation (alveolar bronchiolization) adjacent to terminal bronchioles was observed
throughout all lung lobes. Frequently, foci of alveolar bronchiolization entrapped low to
moderate numbers of foamy macrophages. Antigen was not detected by immunohistochemical

evaluation for any viral variant at either 14 or 28 DPC.

Viral burden

Total viral RNA copy numbers and infectious viral titers were quantified in lungs of challenged
animals at the three time points mentioned above (Fig. 2A-C). There was no difference in viral
RNA copy numbers amongst challenged groups at 4 DPC (Fig. 2A). However, there was
significantly more viral RNA at 14 DPC in the B.1.1.7-challenged group compared to the
ancestral and B.1.351 groups. At 28 DPC there were significantly more viral RNA copies in the
lungs of ancestral-challenged hamsters than the B.1.1.7 group (Fig. 2A). We also assessed sub-
genomic viral RNA (sgRNA) as a surrogate of active viral replication®!’. Levels of lung sgRNA
peaked at 4 DPC and were comparable among the three variants (Fig. 2B). In contrast, we
observed a significant difference in sgRNA among the groups at 14 DPC. Specifically, B.1.1.7-
infected hamsters exhibited the highest residual sgRNA present compared to the ancestral and
B.1.351 groups (Fig. 2B). The B.1.351 group also had significantly higher sgRNA levels compared
to the ancestral group (Fig. 2B). However, infectious viral titers were only detected 4 DPC in

lungs in all hamsters (Fig. 2C).
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Oral viral shedding and viremia were evaluated at the time of necropsy. Infection with the
B.1.1.7 VOC resulted in significantly more oral viral shedding than the B.1.351 variant at 4 and
14 DPC (Fig. 2D). Viremia peaked at 4 DPC and was comparable amongst all infections (Fig. 2E).
Profiling the viral genomes recovered from the lungs of infected hamsters at 4 DPC revealed no
changes in the viral sequences in ancestral and B.1.1.7-infected animals compared to the
reference genomes (Table 1). However, we identified three mutations in all B.1.351-infected
animals, including two nonsynonymous mutations in 5" UTR (T201C) and nsp3 (G172C), and one
synonymous mutation in nsp3 (G5942G). A single B.1.351-infected animal presented with an

additional mutation (L3892F) in nsp3 (Table 1). No mutations in S were detected.

Humoral immune responses post-challenge

We utilized standard ELISA methods to determine the SARS-CoV-2 S-specific IgG responses, and
S receptor-binding domain (RBD)-specific IgG responses. There was no difference in the S-
specific 1gG titers at either 14 or 28 DPC amongst the groups (Fig. 3A). Similarly, no difference
was determined in the RBD-specific IgG titers at 14 DPC (Fig. 3B). However, at 28 DPC the RBD-
specific IgG titer was significantly higher in animals challenged with B.1.351 compared to
B.1.1.7 (Fig. 3B).

Next, we assessed the functionality of the humoral response by neutralization assay, not only
against the homologous challenge virus, but also against the other two variants to determine
cross-reactivity generated from the primary infection. Hamsters challenged with the ancestral
virus exhibited comparable neutralizing titers against the homologous challenge variant
(ancestral) and the B.1.1.7 variant at 14 and 28 DPC but lower titers against the B.1.351 variant
at both timepoints assessed (Fig. 3C). In contrast, hamsters challenged with the B.1.1.7 or the
B.1.351 variant each exhibited significantly higher neutralizing titers against their homologous
challenge virus at 14 DPC compared to variants to which they were not exposed (Fig.3D, E). This
difference persisted for the B.1.351-infected animals at 28 DPC when comparing anti-B.135.1
and anti-B.1.1.7 titers (Fig. 3E). Moreover, the overall neutralization titers against the B.1.351
variant were 1-2 logs lower than the other two variants regaradless of homolgous or

heterologous assessment.
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COVs elicit unique transcriptional responses in the lungs

To elucidate differences in the host responses to VOC, we profiled the transcriptional responses
in lung tissues obtained at peak viral loads (4 DPC) (Fig. 4, S2). Principal component analysis
(PCA) revealed distinct separation between uninfected and uninfected animals (Fig. S2A), with
the B.1.1.7 variant infection resulting in the most distinct transcriptional profile and the largest
number of differentially expressed genes (DEGs) (n=1,277) while infection with B.1.351 resulted
in the smallest number of DEGs (n=395) (Fig. 4A-C). Most DEGs were upregulated following
infection with all three viruses (Fig. 4A-C). A core of 291 DEGs was shared by all variants and an
additional ~270 DEGs were shared only between B.1.1.7- and ancestral-infected hamsters (Fig.
4D).

We performed functional enrichment of DEGs in order to determine their biological relevance.
DEGs induced by all three viral infections enriched to Gene Ontology (GO) terms associated
with antiviral immunity (e.g., “response to virus”), immune cell recruitment (e.g., “leukocyte
chemotaxis”) and mobilization of adaptive immunity (e.g., “lymphocyte activation”, “B cell-
mediated immunity”) (Fig. 4E). DEGs enriching to “response to virus” and common to all three
infections play roles in type | interferon (IFN) signaling (e.g., IRF7, IRF9, STAT1/2), nucleic acid
detection (e.g., DDX60, DHX58) and the antiviral response (e.g., ISG15, MX1, RSAD2, SAMHD1)
(Fig. S2B). These DEGs were upregulated following infection with all three variants, particularly
B.1.1.7. DEGs enriching to this GO term and upregulated following infection by the ancestral
and B.1.1.7 variants only were part of T cell activation pathways (e.g., IFNG, IL12RB1, TBX21,
XCL1) (Fig. S2B).

Other DEGs that were upregulated following infection with all three variants enriched to GO
term “blood vessel development”. These genes are involved in angiogenesis (e.g., ANGPTL2,
ANGPTL4, ADM2, HOX1), apoptosis (e.g., BAK1, FASLG), tissue remodeling (e.g., CHI3L1,
MMP19), and leukocyte chemotaxis (e.g., CCL11, CCL2, CXCL10, CXCL17) (Fig. S2C). Regulators
of angiogenesis, like SOX4 and KDR, and genes involved in tissue remodeling (e.g., ADAM12,
SHH) were downregulated only in infections with the B.1.1.7 and ancestral virus (Fig. S2C).

Shared DEGs that enriched to GO term “lymphocyte activation” included genes important for B
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cell maturation (e.g., AIRE, CD27, CD38, ICOS, TNFSF13B) as well as negative regulation of T cell
responses (e.g., CD274, CTLA4, FOXP3, IDO1, PDCDC1, PDCD1LG?2) (Fig. S2E). DEGs shared
between B.1.1.7- and ancestral-infected hamsters were important for T cell activation (e.g.,
PRKCQ, TNFSF9), cytotoxic responses (e.g., KLRK1, PRF1) myeloid cell activation (e.g., IFNG,
SLAMF1, CD177, CXCL6) and IL-6 production (e.g., TLR1, IL-6, IL18RAP, C3AR1, C1QA) (Fig. 4E,
S2D).

We next analyzed DEGs unique to each infection to understand infection-specific
transcriptional responses (Fig. 5). The largest group of unique DEGs was detected following
B.1.1.7 infection (n=648). These unique DEGs enriched to GO terms reflecting tissue remodeling
(e.g., “response to growth factor”, “tissue morphogenesis”) (Fig. 5A). Most DEGs in these GO
terms are downregulated and associated with angiogenesis (e.g., ENG, JCAD, PDFGB, VEGFD)
and lung development (e.g., FZD1, SOX17, TMEM100, VANGLZ2), while a smaller upregulated
portion was associated with cell death (e.g., APAF1, CASP3), and protein degradation (e.g.,
CASP3, DAB2, SFRP1). Other DEG enriched to GO terms associated with host defense (e.g.,
“adaptive immune response”) and cell recruitment (e.g., “chemotaxis”) were identified. Most of
these DEGs were upregulated and are important for antigen presentation (e.g., CD74, HLA-DRA,
B2M) and natural killer (NK) cell-mediated immunity (e.g., CD84, IL12A) (Fig. 5B-D). Notable
DEGs unique to infection with B.1.351 play a role in cell morphogenesis (e.g., ACTA2, ACTC1,
FGF1), myeloid cell differentiation (e.g., CAV3, PDE1B, TFRC), and response to injury (e.g.
COL4A3, MPL, TSPAN) (Fig. 5E). Downregulated DEGs unique to infection with the ancestral
strain encoded components of cellular respiration (e.g., MT-C03, MT-ND1) and mediators of cell

adhesion (e.g., IKF268B, VIT) (Fig. 5F).

Digital cell quantification in hamster lungs

Since Syrian golden hamsters lack adequate reagents for immunophenotyping, we performed
digital cell quantification (DCQ) to predict changes in immune cell populations using the IRIS
immune cell database!®. Changes in gene expression were predicted to be associated with
increased frequencies of activated NK cells, activated dendritic cells (DCs), and neutrophils after

ancestral and B.1.1.7 infection (Fig. S3A). In contrast, B.1.351 infection was associated with a
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decrease in NK cells and monocytes (Fig. S3B). Reduced frequencies of B cells were predicted
for all infections, while increases in Thl and Th2 CD4+ T cells were only predicted after B.1.1.7

infection (Fig. S3B).

Discussion

Over the last several months a number of SARS-CoV-2 VOC have emerged. These VOC are
associated with increased transmissibility and enhanced viral fitness due to mutations in S.
Several studies have shown that the N501Y mutation harborded in both the B.1.1.7 and the
B.1.351 variants utilized here increases ACE2 binding and enhances transmission
capabilities*>19, The K417N and E484K mutations introduced into the S of the B.1.351 enhances
the ability to evade pre-existing humoral responses®”:10.20-22 A comparative study of viral
pathogenesis of VOC has recently been conducted in the hamster model?3. The study measured
the viral burden, histopathology, and select cytokine gene expression induced by VOC
compared to the prototypic Wuhan-Hu-1 isolate and an isolate harboring the secondary D614G
mutation in S. The study showed no significant differences in viral burden and histopathologic
findings in the hamster lungs at 4 DPC, but enhanced expression of cytokine genes was
described in hamsters infected with the B.1.1.7 variant.?> However, longitudinal analysis of the
host response to VOC and the degree of cross-protection is lacking. Therefore, in this study, we
sought to evaluate the longitudinal impact of these VOC on the host immune and
transcriptional responses.

Syrian golden hamsters were chosen for this study as they are highly susceptible to infection
and were found to have high viral replication in the lungs. Hamsters were infected IN with the
ancestral, B.1.1.7 or B.1.351 variants. Challenged hamsters displayed moderate weight loss
lethargy, rapid breathing, and ruffled fur, but were able to clinically recover by 14 DPC as
previously described!*?42>, As recently reported, no discernable differences in gross pathology
or lung viral burden were noted among all three groups?®. However, B.1.1.7 sgRNA persisted
longer in the hamster lungs. Analysis of the viral genomes recovered post-infection showed no
changes in the ancestral- and B.1.1.7-infected hamsters; however, we detected three mutations

in all B.1.351-infected animals. The two nonsynonymous mutations occurred in nsp3 and
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245  ORF3a, both of which have been implicated in evasion of type | IFN?”28, A second mutation in
246  nsp3 was also identified in a single B.1.351-infected animal. The implication of these mutations
247  remains to be elucidated.

248  Analysis of the humoral response revealed that the overall IgG response of the infected

249  hamsters did not result in robust differences amongst the variants; however, the neutralization
250 cross-protection depended on the variant the hamster was initially exposed to. Specifically,
251  infection with B.1.1.7 results in the widest breath of neutralization activity despite comparable
252  binding antibody titers. This phenomenon was most noticeable at 14 DPC, and was still evident
253 28 DPC when the humoral response is more mature. Moreover, the overall neutralization

254  activity, regardless of initial challenge virus, against B.1.351 is much lower than the other two
255  variants, suggesting that B.1.351 may have indeed an enhanced ability to evade humoral

256  immune responses. The overall IgG response of the infected hamsters did not result in robust
257  differences amongst the variants; however, the neutralization cross-protection depended on
258  the variant the hamster was initially exposed to. Our data demonstrates that early in the

259  humoral response (14 DPC) antibodies induced by B.1.1.7 infection show an increased

260  crossrreacitvity compared to the other variants tested. By 28 DPC, when the humoral response
261 is more mature, this differences is less prominent, but the trend remains the same. This

262  observation suggests that the timing of the antibody response could affect the crossreactivity
263  potential. Notably, the neutralization capacity of crossreactive antibodies and homologous

264  antibodies against B.1.351 is much lower than that of the other two variants tested. This

265  observation is reflective of previous studies that attribute increased antibody evasion to this
266  VO(C348101221.22 demonstrating that the hamster model reflects the differences in humoral
267  responses and effectivity of prior immunity seen in clinical cases®.

268  Asignificant challenge when using the hamster model is the lack of reagents to analyze cellular
269  immune responses3?3%, Therefore, we employed transcriptomic analysis to elucidate

270 differences in the host responses to VOC compared to the ancestral variant in the lungs of

271  hamster 4 DPC, as has been done for other studies 373°. Our transcriptional analysis of lung
272  tissues at peak infection identified distinct, but also overlapping transcriptional signatures for

273  each variant. All infections exhibited gene expression patterns associated with innate antiviral
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responses, notably type | IFN signaling, mobilization of lymphocytes, and apoptosis®®*3, The
type | IFN response is critical for rapid control of viral infection**. However, dysregulated innate
immune and type | IFN responses can result in tissue damage and oxidative stress as noted in
other viral infections, including influenza virus and Ebola virus in addition to severe COVID-
1940414546 Qur data differs from those reported in studies where a suppressed IFN response in
the peripheral blood, the bronchoalveolar lavage, and lungs obtained at autopsy from
individuals with severe COVID-19%7-52, A potential explanation for this difference is the fact that
we profiled the lungs during the peak of viral replication and virus-induced pathology (4 DPC)
while clincal cases rarely present viral antigen at the time of death, rather immune
dysregulation and coagulation abnormalities are the casue of death>3°. Additionally, the Syrian
golden hamster model does not mimic severe COVID-19 intersitial pneumonia in that clinical
symptomology is less severe and none of the animals in this model succumb to disease.
Interestingly, transcriptional inflammatory indicators were particularly heightened following
infection with B.1.1.7 and least severe following infection with B.1.351. Expression of several
inflammatory and complement genes were only upregulated following infection with B.1.1.7
and ancestral variants, while NFxB1 was upregulated only following infection with B.1.1.7°%°7,
In vitro and in vivo NFkB-driven inflammatory responses have been previously associated with
severe COVID-19%8°05859 " Additionally, NK cell activation was evident by higher expression of
cytolytic molecules (e.g., PRF1). This inflammatory damage facilitates immune cell influx,
including inflammatory cells like neutrophils, which we predicted to increase in all infections®,
Moreover, significant increases in IL-2-stimulated NK cells was also predicted following
infection with the ancestral and B.1.1.7 variants. Expression of canonical T cell regulatory and
exhaustion markers like CTLA4, CD274 (PD-L1), and FOXP3 suggests compensatory mechanisms
to reduce tissue damage.

Transcriptional changes were also predicted to result in significant B cell loss in the lungs
following infection with all three viruses. Previous studies indicate that B cell lymphopenia does
not preclude robust antibody responses®®2, This re-distribution could indicate B cell migration
to lymphoid tissue for priming. Indeed, significant neutralizing and binding antibody titers were

detected following all three infection, albeit lower following infection with B.1.135.
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Furthermore, we detected a large number of DEGs related to tissue morphogenesis and
angiogenesis in all infections®3%4, Microvascular injury can further exacerbate inflammation-
driven lung fibrosis®®. Additionally, genes that play a role in tissue repair were downregulated
following infection with the B.1.351 and ancestral variants.

In this study we describe the pathogenesis of the SARS-CoV-2 variants and the development of
crossreactive neutralizing antibodies. To our knowledge this is the first study performing a
comparative and longitudinal analysis of the antibody response after SARS-CoV-2 VOC infection.
Our data show that infection with the B.1.1.7 VOC results in a broader antibody response
compared to infection with B.1.35 VOC. This broader response could be in part mediated by the
more robust transcriptional response elicited by this variant that includes a larger induction of
antiviral and inflammatory pathways. Future experiments should assess transcriptional changes
beyond 4 DPC to determine the kinetics of the host response at this critical site. Moreover,
additional studies should investigate the mechanisms by which the mutations detected in the

B.1.35 VOC lead to reduced neutralization potential.

Methods

Ethics statement

All infectious work with SARS-CoV-2 was performed in the containment laboratories at the
Rocky Mountain Laboratories (RML), Division of Intramural Research, National Institute of
Allergy and Infectious Diseases, National Institutes of Health. RML is an institution accredited by
the Association for Assessment and Accreditation of Laboratory Animal Care International
(AAALAC). All procedures followed standard operating procedures (SOPs) approved by the RML
Institutional Biosafety Committee (IBC)®¢. Animal work was performed in strict accordance with
the recommendations described in the Guide for the Care and Use of Laboratory Animals of the
National Institute of Health, the Office of Animal Welfare and the Animal Welfare Act, United
States Department of Agriculture. The studies were approved by the RML Animal Care and Use

Committee (ACUC). Procedures were conducted in animals anesthetized by trained personnel
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331 under the supervision of veterinary staff. All efforts were made to ameliorate animal welfare

332  and minimize animal suffering; food and water were available ad libitum.

333

334  Cells and Viruses

335  VerokE6 cells were grown at 37°C and 5% CO; in Dulbecco’s modified Eagle’s medium (DMEM)
336  (Sigma-Aldrich, St. Louis, MO) containing 10% fetal bovine serum (FBS) (Wisent Inc., St. Bruno,
337 Canada), 2 mM L-glutamine (Thermo Fisher Scientific, Waltham, MA), 50 U/mL penicillin

338  (Thermo Fisher Scientific), and 50 pg/mL streptomycin (Thermo Fisher Scientific). SARS-CoV-2
339  ancestral isolate nCoV-WA1-2020 (MN985325.1)%7, SARS-CoV-2 isolate B.1.351 (hCoV-19/South
340  African/KRISP-K005325/2020), or SARS-CoV-2 isolate B.1.1.7

341 (hCOV_19/England/204820464/2020) were used for the neutralizing antibody assays. The

342  following reagent was obtained through BEI Resources, NIAID, NIH: Severe Acute Respiratory
343  Syndrome-Related Coronavirus 2, Isolate hCoV-19/England/204820464/20200, NR-54000,

344  contributed by Bassam Hallis. SARS-CoV-2 B. 1.351 was obtained with contributions from Dr.
345 Tulio de Oliveira and Dr. Alex Sigal (Nelson R Mandela School of Medicine, UKZN). All viruses
346  were grown and titered on Vero E6 cells, and sequence confirmed.

347

348  Animal study

349  Fifty female Syrian golden hamsters (5-8 weeks of age) were used in this study!4. Five animals
350 were used as uninfected controls; three study cohorts for challenge with the ancestral virus and
351  variants B1.1.7 and B.1.351 consisted of 15 hamsters each. On day 0, hamsters were infected
352  with SARS-CoV-2 as previously described 4. On 4, 14 and 28 DPC, 5 hamsters per group were
353  euthanized for sample collection.

354

355  RNA extraction and RT-qPCR

356 RNA from blood and oral swab samples was extracted using the QlAamp Viral RNA Mini Kit

357 (QIAGEN) according to manufacturer specifications. Lung tissue, a maximum of 30 mg each, was
358 processed and RNA was extracted using the RNeasy Mini Kit (QIAGEN) according to

359  manufacturer specifications. One step RT-qPCR for genomic viral RNA was performed using
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360 specific primer-probe sets and the QuantiFast Probe RT-PCR +ROX Vial Kit (QIAGEN), in the

361 Rotor-Gene Q (QIAGEN) as described previously . Five uL of each RNA extract were run

362 alongside dilutions of SARS-CoV-2 standards with a known concentration of RNA copies.

363

364  Enzyme-linked immunosorbent assay

365  Serum samples from SARS-CoV-2-infected animals were inactivated by gamma-irradiation and
366  used in BSL2 according to IBC-approved SOPs. NUNC Maxisorp Immuno plates were coated with
367 50 pl of 1 pg/mL of recombinant SARS-CoV-2 S (51+S2) antigen at 4°C overnight and then

368 washed three times with PBS containing 0.05% Tween 20 (PBST). The plates were blocked with
369 3% skim milk in PBS for 1 hour at room temperature, followed by three additional washes with
370  PBST. The plates were incubated with 50 pl of serial dilutions of the samples in PBS containing
371 1% skim milk for 1 hour at room temperature. After three washes with PBST, the bound

372 antibodies were labeled using 50 ul of 1:2,500 peroxidase anti-hamster IgG (H+L) (SeraCare Life
373  Sciences) diluted in 1% skim milk in PBST. After incubation for 1 hour at room temperature and
374  three washes with PBST, 50 ul of KPL ABTS peroxidase substrate solution mix (SeraCare Life
375 Sciences) was added to each well, and the mixture was incubated for 30 min at room

376  temperature. The optical density (OD) at 405 nm was measured using a GloMax® explorer

377 (Promega). The OD values were normalized to the baseline samples obtained with naive

378 hamster serum and the cutoff value was set as the mean OD plus standard deviation of the

379  blank.

380

381  Virus neutralization assay

382  The day before this assay, VeroE6 cells were seeded in 96-well plates. Serum samples were

383  heat-inactivated for 30 min at 56°C, and 2-fold serial dilutions were prepared in DMEM with 2%
384  FBS. Next, 100 TCIDso of SARS-CoV-2 were added and the mixture was incubated for 1 hour at
385 37°C and 5% CO.. Finally, media was removed from cells and the mixture was added to VeroE6
386 cells and incubated at 37°C and 5% CO; for 6 days. Then the cytopathic effect (CPE) was

387 documented, and the virus neutralization titer was expressed as the reciprocal value of the

388 highest dilution of the serum which inhibited virus replication (no CPE).
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Histology and immunohistochemistry

Necropsies and tissue sampling were performed according to IBC-approved SOPs. Tissues were
fixed in 10% neutral buffered formalin with two changes, for a minimum of 7 days. Tissues were
placed in cassettes and processed with a Sakura VIP-6 Tissue Tek, on a 12-hour automated
schedule, using a graded series of ethanol, xylene, and ParaPlast Extra. Embedded tissues are
sectioned at 5 um and dried overnight at 42°C prior to staining. Specific anti-CoV
immunoreactivity was detected using Sino Biological Inc. SARS-CoV/SARS-CoV-2 nucleocapsid
antibody (Sino Biological cat#40143-MMO05) at a 1:1000 dilution. The secondary antibody was
the Vector Laboratories ImPress VR anti-mouse IgG polymer (cat# MP-7422). The tissues were
then processed for immunohistochemistry using the Discovery Ultra automated stainer
(Ventana Medical Systems) with a ChromoMap DAB kit (Roche Tissue Diagnostics cat#760—
159). All tissue slides were evaluated by a board-certified veterinary pathologist and a
pathology scored was assigned based on the following observations; 0= no pathology, 1=

minimal, 2= mild, 3= moderate, 4= severe (Fig. S1C).

cDNA library construction and sequencing

Quality and quantity of RNA lung samples at 4 DPC were determined using an Agilent 2100
Bioanalyzer. cDNA libraries were constructed using the NEB Next Ultra Il Direction RNA Library
Prep Kit (Thermo Fischer). RNA was treated with RNase H and DNase | following depletion of
ribosomal RNA (rRNA). Adapters were ligated to cDNA products and the subsequent ~300 base
pair (bp) amplicons were PCR-amplified and selected by size exclusion. cDNA libraries were
assessed for quality and quantity prior to 150 bp single-end sequencing using the lllumina

NovaSeq platform.

RNA-Seq Bioinformatic analysis
Preliminary data analysis was performed with RNA-Seq workflow module of systemPipeR,
developed by Backman et. al ®°. RNA-Seq reads were demultiplexed, quality-filtered and

trimmed using Trim Galore (average Phred score cut-off of 30, minimum length of 50 bp).
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FastQC was used to generate quality reports. Hisat2 was used to align reads to the reference
genome Mesocricetus auratus (Mesocricetus_auratus.MesAurl.0.dna.toplevel.fa) and the
Mesocricetus_auratus.MesAur1.0.103.gtf file was used for annotation. Raw expression values
(gene-level read counts) were generated using the summarizeOverlaps function and normalized
(read per kilobase of transcript per million mapped reads, rpkm) using the edgeR package.
Statistical analysis with edgeR was used to determine differentially expressed genes (DEGs)
meeting the following criteria: genes with median rpkm of >1, a false discovery rate (FDR)
corrected p-value £ 0.05 and a logxfold change > 1 compared to control tissues.

Functional enrichment of DEGs was performed using Metascape to identify relevant GO
terms’®. Digital cell quantification was performed using ImmQuant with the IRIS database.
Heatmaps, bubbleplots, Venn diagrams and violin plots were generated using R packages

ggplot2 and VennDiagrams. Graphs were generated using GraphPad Prism software (version 8).

SARS-CoV-2 viral genome library construction and sequencing

Enrichment of SARS-CoV-2 was performed using the Qiagen QIASeq SARS-CoV-2 Primer Panel
(V.2). Libraries were constructed from resulting SARS-CoV-2 amplicons using the Qiagen QIASeq
FX DNA Library preparation kit. Briefly, adapters were ligated to cDNA products and the ~300
bp amplicons were minimally PCR-amplified. cDNA libraries were assessed for quality and
quantity prior to 150 bp paired-end sequencing using the lllumina HiSeq platform (> 1 M reads

per sample).

SARS-CoV-2 viral genome assembly and bioinformatic analysis

Reads were demultiplexed and quality-filtered using Trim Galore (average Phred score cut-off
of 30, minimum length 100 bp). FastQC was used to generate quality reports. MaskPrimers.py
from the pRESTO R package was used to remove primers prior to alignment to the SARS-CoV-2
genome using BWA-mem software version 0.7.17. The following reference genomes were used
for Ancestral, B.1.1.7 and B.1.351 variants: WA_MN985325.1, EPI_ISL_683466, and
EPI_ISL_6786156. All genomes had greater than 95% coverage and 10X depth. Single nucleotide

polymorphisms and amino acid changes were identified using CorGAT.
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447

448  Statistical analyses

449  All statistical analysis was performed in Prism 8 (GraphPad). Two-tailed Mann-Whitney test was
450 conducted to compare differences between groups for data in Figs. 2, 3 and S1. Statistical

451  significance was determined using one-way ANOVA with multiple comparisons for the

452  bioinformatic analysis with comparisons made among variant- and control-challenged animals
453  Statistically significant differences are indicated as follows: p<0.0001 (****), p<0.001 (***),

454  p<0.01 (**) and p<0.05 (*).

455

456
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Data Availability

All transcriptomic sequencing data are accessible at BioProject PRINAXXXX upon publication.
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500 Fig. 1. Histopathology and Immunohistochemistry of hamster lungs. (A-H) Representative H&E
501 images of lungs of hamsters infected with 10° TCIDso of ancestral, B.1.1.7, and B.1.351 variants
502 at 4 days post-challenge (DPC). Foci of interstitial pneumonia and bronchiolitis were observed
503 throughout all evaluated lung lobes of infected hamsters. (I-L) Immunohistochemistry (IHC)

504  detected SARS-CoV-2 nucleocapsid staining in the lungs of all infected hamsters.

505
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519  Fig. 2. SARS-CoV-2 burden in lungs, oral swabs and blood. (A) Total SARS-CoV-2-specific RNA

520 and (B) total SARS-CoV-2-specific sub-genomic RNA (sgRNA) in the lungs of challenged animals
521 at4, 14, and 28 days post-challenge (DPC). (C) Infectious SARS-CoV-2 titer in the lungs of

522 infected hamsters. Total SARS-CoV-2-specific RNA in the (D) oral swabs and (E) blood of

523 infected hamsters at the time of euthanasia. Geometric mean and standard deviation (SD) are
524  depicted; statistical significance is indicated ***p <0.001, **p < 0.01 and *p < 0.05.
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541  Fig. 3. Humoral immune response in challenged hamsters. Serum samples were collected at 14
542  and 28 DPC and by ELISA. (A) Total SARS-CoV-2 S-specific IgG and (B) RBD-specific I1gG are

543  shown. Cross-variant and homologous neutralization was assessed against (C) ancestral, (D)
544  B.1.1.7, and (E) B.1.351 viruses. Line indicates limit of detection. Geometric mean and SD are
545  depicted; statistical significance is indicated **p < 0.01 and *p < 0.05.
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576

577  Fig. 4. SARS-CoV-2 variants induce distinct transcriptional changes. Volcano plot of global gene
578  expression changes at 4 DPC with SARS-CoV-2 (A) ancestral, (B) B.1.1.7 or (C) B.1.351 variants.
579 Downregulated and upregulated differentially expressed genes (DEGs; average RPKM > 1) are
580 colored blue and red, respectively. Exemplary genes are labeled. (D) Venn diagram of DEGs

581  determined in panels A-C. (E) Functional enrichment of DEGs determined following each

582 infection in panels A-C. Color intensity represents statistical significance as the negative log of
583 the FDR-adjusted p-value [-log(g-value)], with range of colors based on the GO terms with the
584  lowest and highest statistical value for all GO terms present. Blank boxes indicate no statistical
585  significance. Numbers of DEGs enriching to each GO term are noted in each box.

586
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Fig. 5. Transcriptional response unique to B.1.1.7 variant suggests distinct host responses.
(A) Functional enrichment of DEGs unique to B.1.1.7 variant infection at 4 DPC (n=684).
Horizontal bars represent the number of genes enriching to each GO term with color intensity
representing the negative log of the FDR-adjusted p-value [-log(g-value)]. Range of colors based
on the GO terms with the lowest and highest —log(g-value) values. Heatmaps representing
B.1.1.7 variant unique DEGs enriching to GO terms from panel A: (B) “blood vessel
development”, (C) “tissue morphogenesis” and (D) adaptive terms “adaptive immunity”,
“antigen processing and presentation”, and “regulation of leukocyte activation.” Heatmaps of
DEGs unique to (E) Ancestral (n=58) and (F) B.1.351 variants (n=64) at 4 DPC. Columns of all
heatmaps represent the average rpkm of controls and rpkm of a single variant-infected animal.
Range of colors per each heatmap is based on scaled and centered rpkm values of the

represented DEGs. Red represents upregulation; blue, downregulation.

Table 1. Genome comparison of SARS-CoV-2 variants

Variant of concern Amino acid changes (# of animals affected, 4 DPC)
ancestral none detected

B.1.1.7 none detected

B.1.351 5" UTR, T201C (5/5)

nsp3, L3892F (1/5)
nsp3, G5942G (5/5)
ORF3a, G172C (5/5)
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Figure S1. Study outline, body weight changes and pathology of infected hamsters. (A) Schematic study
outline. (B) Body weight changes in hamsters (n=10/group). (C) Evidence of interstitial pneumonia was
recorded in histopathology samples. (D) Representative pictures of hamster lungs with lesions during
disease progression. Gross lung images at day (D) 4, 14 and 28 post-challenge.
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Figure S2. SARS-CoV-2 variants induce distinct transcriptional changes. (A) Principal component analysis of
control (n=5) animals and infected animals 4 DPC with ancestral (n=5), B.1.1.7 (n=4) or B.1.351 (n=4) variants.
Heatmaps representing DEGs enriching to GO terms from Fig. 5E including (B) “response to virus”, (C) “blood
vessel development”, (D) “myeloid leukocyte activation” and (E) lymphocyte activation.” DEGs are either
shared among all variant infections or between ancestral and B.1.1.7 variant infections. Columns of all
heatmaps represent the average rpkm. Range of colors per each heatmap is based on scaled and centered
rpkm values of the represented DEGs. Red represents upregulation; blue, downregulation.
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Figure S3. Digital cell quantification in hamster lungs. Heatmaps representing relative changes in (A)
innate and (B) adaptive immune cell frequencies using ImmQuant with IRIS database. Each column
represents the average relative expression level of the given immune cell. Range of colors per each
heatmap is based on scaled and centered relative expression values. Red represents upregulation;
blue represents downregulation. Statistical significance is indicated **p <0.01 and *p < 0.05.
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