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Abstract 21 

Following the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 22 

its rapid spread throughout the world, new viral variants of concern (VOC) have emerged. There 23 

is a critical need to understand the impact of the emerging variants on host response and 24 

disease dynamics to facilitate the development of vaccines and therapeutics. Syrian golden 25 

hamsters are the leading small animal model that recapitulates key aspects of severe 26 

coronavirus disease 2019 (COVID-19). In this study, we show that intranasal inoculation of 27 

SARS-CoV-2 into hamsters with the ancestral virus (nCoV-WA1-2020) or VOC first identified in 28 

the United Kingdom (B.1.1.7) and South Africa (B.1.351) led to similar gross and histopathologic 29 

pulmonary lesions. Although differences in viral genomic copy numbers were noted in the lungs 30 

and oral swabs of challenged animals, infectious titers in the lungs were comparable. Antibody 31 

neutralization capacities varied, dependent on the original challenge virus and cross-variant 32 

protective capacity. Transcriptional profiling indicated significant induction of antiviral 33 

pathways in response to all three challenges with a more robust inflammatory signature in 34 

response to B.1.1.7. Furthermore, no additional mutations in the spike protein were detected 35 

at peak disease. In conclusion, the emerging VOC showed distinct humoral responses and 36 

transcriptional profiles in the hamster model compared to the ancestral virus.  37 

 38 

 39 
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Introduction 43 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged as a novel, highly 44 

infectious respiratory CoV and the causative agent of CoV disease 2019 (COVID-19)1. First 45 

described in the city of Wuhan in Hubei province of China, SARS-CoV-2 is a member of the 46 

Coronavirdae family, which possess large, non-segmented RNA genomes1. High levels of 47 

transmission, especially in regions with low vaccination rates, facilitate the emergence of 48 

mutations that improve viral fitness. SARS-CoV-2 variants of concern (VOC) are defined as 49 

variants that have one or more mutations that confer worrisome epidemiologic, immunologic, 50 

or pathogenic properties2. Several SARS-CoV-2 VOC have emerged such as B.1.1.7 first reported 51 

in the United Kingdom (UK), which is associated with increased transmission compared to the 52 

ancestral virus reported from Washington, USA in early 20203. This variant  acquired over 20 53 

mutations including N501Y within the spike (S) protein that increased binding affinity to the 54 

angiotensin converting enzyme 2 (ACE2) receptor4,5. In addition, the S protein of the B.1.1.7 55 

variant has a deletion of amino acids 69 and 70 which has been shown to increase viral escape 56 

in immunocompromised individuals6,7. VOC B.1.351 was originally reported in South Africa (SA) 57 

and harbors similar mutations in S compared to B.1.1.7 as well as the K417N and E484K 58 

substitutions that may decrease the efficacy of existing vaccines8-12. Other variants more 59 

recently reported in the United States (B.1.427, B1.429) also harbor mutations in S (e.g., N501Y) 60 

that have been associated with reductions in neutralizing antibody titers13.  61 

 62 

There is an urgent need to understand the effect of new mutations within VOC on the host 63 

immune response to facilitate the development of vaccines and therapeutics. In this study, we 64 

compared pathologic features of and immune responses to the original virus (ancestral), and 65 

the later B.1.1.7 and B.1.351 variants in the well-established Syrian golden hamster model of 66 

severe COVID-1914. Specifically, we longitudinally assessed viral replication, histopathological 67 

changes, development of humoral immunity and humoral cross-reactivity amongst VOC. 68 

Additionally, we employed RNA-seq and digital cell quantification of lung homogenates to 69 

determine differences in transcriptomic signatures and to infer changes in immune cell subsets. 70 

We identified similar histopathological changes, levels of infectious virus, and antibody titers 71 
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amongs all infections. However, transcriptional responses and the capacity to cross-neutralize 72 

SARS-CoV-2 was VOC-dependent. Collectively, these data demonstrate that mutations within 73 

SARS-CoV-2 modulate host defense pathways.   74 

 75 

Results  76 

Gross lung pathology 77 

Syrian golden hamsters were separated into three cohorts (n=15 per cohort) and challenged 78 

intranasally (IN) with 105 TCID50 of one of three different SARS-CoV-2 variants: ancestral (nCoV-79 

WA1-2020), B.1.1.7, and B.135. Five uninfected animals served as negative controls. Scheduled 80 

necropsies were performed at 4, 14, and 28 days post-challenge (DPC) for all groups to capture 81 

peak disease and convalescence (Fig. S1A). Peak weight loss was achieved amongst all three 82 

groups 7 DPC, however, no significant difference in body weight changes occurred over the first 83 

10 DPC for any of the infections (Fig. S1B). Gross pulmonary lesions were observed in all 84 

infected hamsters at 4 DPC (Fig. S1D). Lungs harvested 4 DPC showed multifocal to locally 85 

extensive areas of red to purple coloration (consistent with consolidation) disseminated 86 

throughout all lung lobes. Additionally, lungs generally failed to collapse indicating interstitial 87 

disease. Lung samples harvested 14 and 28 DPC had either no gross lesions or limited, small, 88 

multifocal areas of consolidation and/or congestion. Analysis of histopathology samples 89 

demonstrated evidence of interstitial pneumonia on 4 and 14 DPC in all groups (Fig. S1C). 90 

 91 

Histopathology and immunohistochemistry of hamster lungs 92 

Pulmonary pathology consistent with previously described coronavirus respiratory disease was 93 

observed at 4 DPC in lung samples from hamsters infected with each virus (Fig. 1)15. Five 94 

uninfected animals served as negative controls (Fig. 1A, E, I). Foci of interstitial pneumonia and 95 

bronchiolitis were observed throughout all evaluated lung lobes of infected hamsters. Minimal 96 

to mild bronchiolitis characterized by individual epithelial cell necrosis, epithelial cell basophilia 97 

and hyperplasia and rare syncytial cell formation was observed throughout all variants (Fig. 1 B-98 

D). Interstitial pneumonia varying in percent of lung involvement and moderate to severe 99 
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severity was observed within each animal regardless of the variant. Interstitial pneumonia at 4 100 

DPC was defined by expansion of alveolar septa by edema fluid, leukocyte infiltration and fibrin, 101 

with leukocyte spillover into adjacent alveolar spaces and in severe cases, complete loss of 102 

pulmonary architecture (Fig. 1 F-H). Tracheitis characterized by neutrophilic influx and epithelial 103 

cell necrosis was observed in all evaluated sections of trachea in each animal at 4 DPC. 104 

Immunohistochemical analysis showed immunoreactivity to an antibody specific to SARS-CoV-2 105 

within bronchiolar epithelia, type I and type II pneumocytes and macrophages in lungs of all 106 

hamsters regardless of the viral variant (Fig. 1 J-L).  107 

At 14 and 28 DPC pulmonary pathology was similar in lungs of hamsters infected with all viruses 108 

(Fig. S1C, D). Foci of persistent type II pneumocyte hyperplasia with occasional apical cilia 109 

formation (alveolar bronchiolization) adjacent to terminal bronchioles was observed 110 

throughout all lung lobes. Frequently, foci of alveolar bronchiolization entrapped low to 111 

moderate numbers of foamy macrophages. Antigen was not detected by immunohistochemical 112 

evaluation for any viral variant at either 14 or 28 DPC.   113 

 114 

Viral burden  115 

Total viral RNA copy numbers and infectious viral titers were quantified in lungs of challenged 116 

animals at the three time points mentioned above (Fig. 2A-C). There was no difference in viral 117 

RNA copy numbers amongst challenged groups at 4 DPC (Fig. 2A). However, there was 118 

significantly more viral RNA at 14 DPC in the B.1.1.7-challenged group compared to the 119 

ancestral and B.1.351 groups. At 28 DPC there were significantly more viral RNA copies in the 120 

lungs of ancestral-challenged hamsters than the B.1.1.7 group (Fig. 2A). We also assessed sub-121 

genomic viral RNA (sgRNA) as a surrogate of active viral replication16,17. Levels of lung sgRNA 122 

peaked at 4 DPC and were comparable among the three variants (Fig. 2B). In contrast, we 123 

observed a significant difference in sgRNA among the groups at 14 DPC. Specifically, B.1.1.7-124 

infected hamsters exhibited the highest residual sgRNA present compared to the ancestral and 125 

B.1.351 groups (Fig. 2B). The B.1.351 group also had significantly higher sgRNA levels compared 126 

to the ancestral group (Fig. 2B). However, infectious viral titers were only detected 4 DPC in 127 

lungs in all hamsters (Fig. 2C).  128 
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Oral viral shedding and viremia were evaluated at the time of necropsy. Infection with the 129 

B.1.1.7 VOC resulted in significantly more oral viral shedding than the B.1.351 variant at 4 and 130 

14 DPC (Fig. 2D). Viremia peaked at 4 DPC and was comparable amongst all infections (Fig. 2E).    131 

Profiling the viral genomes recovered from the lungs of infected hamsters at 4 DPC revealed no 132 

changes in the viral sequences in ancestral and B.1.1.7-infected animals compared to the 133 

reference genomes (Table 1). However, we identified three mutations in all B.1.351-infected 134 

animals, including two nonsynonymous mutations in 5’ UTR (T201C) and nsp3 (G172C), and one 135 

synonymous mutation in nsp3 (G5942G). A single B.1.351-infected animal presented with an 136 

additional mutation (L3892F) in nsp3 (Table 1). No mutations in S were detected. 137 

 138 

Humoral immune responses post-challenge  139 

We utilized standard ELISA methods to determine the SARS-CoV-2 S-specific IgG responses, and 140 

S receptor-binding domain (RBD)-specific IgG responses. There was no difference in the S-141 

specific IgG titers at either 14 or 28 DPC amongst the groups (Fig. 3A). Similarly, no difference 142 

was determined in the RBD-specific IgG titers at 14 DPC (Fig. 3B). However, at 28 DPC the RBD-143 

specific IgG titer was significantly higher in animals challenged with B.1.351 compared to 144 

B.1.1.7 (Fig. 3B).  145 

Next, we assessed the functionality of the humoral response by neutralization assay, not only 146 

against the homologous challenge virus, but also against the other two variants to determine 147 

cross-reactivity generated from the primary infection. Hamsters challenged with the ancestral 148 

virus exhibited comparable neutralizing titers against the homologous challenge variant 149 

(ancestral) and the B.1.1.7 variant at 14 and 28 DPC but lower titers against the B.1.351 variant 150 

at both timepoints assessed (Fig. 3C). In contrast, hamsters challenged with the B.1.1.7 or the 151 

B.1.351 variant each exhibited significantly higher neutralizing titers against their homologous 152 

challenge virus at 14 DPC compared to variants to which they were not exposed (Fig.3D, E). This 153 

difference persisted for the B.1.351-infected animals at 28 DPC when comparing anti-B.135.1 154 

and anti-B.1.1.7 titers (Fig. 3E). Moreover, the overall neutralization titers against the B.1.351 155 

variant were 1-2 logs lower than the other two variants regaradless of homolgous or 156 

heterologous assessment. 157 
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 158 

COVs elicit unique transcriptional responses in the lungs 159 

To elucidate differences in the host responses to VOC, we profiled the transcriptional responses 160 

in lung tissues obtained at peak viral loads (4 DPC) (Fig. 4, S2). Principal component analysis 161 

(PCA) revealed distinct separation between uninfected and uninfected animals (Fig. S2A), with 162 

the B.1.1.7 variant infection resulting in the most distinct transcriptional profile and the largest 163 

number of differentially expressed genes (DEGs) (n=1,277) while infection with B.1.351 resulted 164 

in the smallest number of DEGs  (n=395) (Fig. 4A-C). Most DEGs were upregulated following 165 

infection with all three viruses (Fig. 4A-C). A core of 291 DEGs was shared by all variants and an 166 

additional ~270 DEGs were shared only between B.1.1.7- and ancestral-infected hamsters (Fig. 167 

4D). 168 

We performed functional enrichment of DEGs in order to determine their biological relevance. 169 

DEGs induced by all three viral infections enriched to Gene Ontology (GO) terms associated 170 

with antiviral immunity (e.g., “response to virus”), immune cell recruitment (e.g., “leukocyte 171 

chemotaxis”) and mobilization of adaptive immunity (e.g., “lymphocyte activation”, “B cell-172 

mediated immunity”) (Fig. 4E). DEGs enriching to “response to virus” and common to all three 173 

infections play roles in type I interferon (IFN) signaling (e.g., IRF7, IRF9, STAT1/2), nucleic acid 174 

detection (e.g., DDX60, DHX58) and the antiviral response (e.g., ISG15, MX1, RSAD2, SAMHD1) 175 

(Fig. S2B). These DEGs were upregulated following infection with all three variants, particularly 176 

B.1.1.7. DEGs enriching to this GO term and upregulated following infection by the ancestral 177 

and B.1.1.7 variants only were part of T cell activation pathways (e.g., IFNG, IL12RB1, TBX21, 178 

XCL1) (Fig. S2B). 179 

Other DEGs that were upregulated following infection with all three variants enriched to GO 180 

term “blood vessel development”. These genes are involved in angiogenesis (e.g., ANGPTL2, 181 

ANGPTL4, ADM2, HOX1), apoptosis (e.g., BAK1, FASLG), tissue remodeling (e.g., CHI3L1, 182 

MMP19), and leukocyte chemotaxis (e.g., CCL11, CCL2, CXCL10, CXCL17) (Fig. S2C). Regulators 183 

of angiogenesis, like SOX4 and KDR, and genes involved in tissue remodeling (e.g., ADAM12, 184 

SHH) were downregulated only in infections with the B.1.1.7 and ancestral virus (Fig. S2C). 185 

Shared DEGs that enriched to GO term “lymphocyte activation” included genes important for B 186 
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cell maturation (e.g., AIRE, CD27, CD38, ICOS, TNFSF13B) as well as negative regulation of T cell 187 

responses (e.g., CD274, CTLA4, FOXP3, IDO1, PDCDC1, PDCD1LG2) (Fig. S2E). DEGs shared 188 

between B.1.1.7- and ancestral-infected hamsters were important for T cell activation (e.g., 189 

PRKCQ, TNFSF9), cytotoxic responses (e.g., KLRK1, PRF1) myeloid cell activation (e.g., IFNG, 190 

SLAMF1, CD177, CXCL6) and IL-6 production (e.g., TLR1, IL-6, IL18RAP, C3AR1, C1QA) (Fig. 4E, 191 

S2D).   192 

 We next analyzed DEGs unique to each infection to understand infection-specific 193 

transcriptional responses (Fig. 5). The largest group of unique DEGs was detected following 194 

B.1.1.7 infection (n=648). These unique DEGs enriched to GO terms reflecting tissue remodeling 195 

(e.g., “response to growth factor”, “tissue morphogenesis”) (Fig. 5A). Most DEGs in these GO 196 

terms are downregulated and associated with angiogenesis (e.g., ENG, JCAD, PDFGB, VEGFD) 197 

and lung development (e.g., FZD1, SOX17, TMEM100, VANGL2), while a smaller upregulated 198 

portion was associated with cell death (e.g., APAF1, CASP3), and protein degradation (e.g., 199 

CASP3, DAB2, SFRP1). Other DEG enriched to GO terms associated with host defense (e.g., 200 

“adaptive immune response”) and cell recruitment (e.g., “chemotaxis”) were identified. Most of 201 

these DEGs were upregulated and are important for antigen presentation (e.g., CD74, HLA-DRA, 202 

B2M) and natural killer (NK) cell-mediated immunity (e.g., CD84, IL12A) (Fig. 5B-D). Notable 203 

DEGs unique to infection with B.1.351 play a role in cell morphogenesis (e.g., ACTA2, ACTC1, 204 

FGF1), myeloid cell differentiation (e.g., CAV3, PDE1B, TFRC), and response to injury (e.g. 205 

COL4A3, MPL, TSPAN) (Fig. 5E). Downregulated DEGs unique to infection with the ancestral 206 

strain encoded components of cellular respiration (e.g., MT-C03, MT-ND1) and mediators of cell 207 

adhesion (e.g., IKF26B, VIT) (Fig. 5F).  208 

 209 

Digital cell quantification in hamster lungs 210 

Since Syrian golden hamsters lack adequate reagents for immunophenotyping, we performed 211 

digital cell quantification (DCQ) to predict changes in immune cell populations using the IRIS 212 

immune cell database18. Changes in gene expression were predicted to be associated with 213 

increased frequencies of activated NK cells, activated dendritic cells (DCs), and neutrophils after 214 

ancestral and B.1.1.7 infection (Fig. S3A). In contrast, B.1.351 infection was associated with a 215 
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decrease in NK cells and monocytes (Fig. S3B). Reduced frequencies of B cells were predicted 216 

for all infections, while increases in Th1 and Th2 CD4+ T cells were only predicted after B.1.1.7 217 

infection (Fig. S3B). 218 

 219 

Discussion 220 

Over the last several months a number of SARS-CoV-2 VOC have emerged. These VOC are 221 

associated with increased transmissibility and enhanced viral fitness due to mutations in S. 222 

Several studies have shown that the N501Y mutation harborded in both the B.1.1.7 and the 223 

B.1.351 variants utilized here increases ACE2 binding and enhances transmission 224 

capabilities4,5,19. The K417N and E484K mutations introduced into the S of the B.1.351 enhances 225 

the ability to evade pre-existing humoral responses3,7,10,20-22.  A comparative study of viral 226 

pathogenesis of VOC has recently been conducted in the hamster model23. The study measured 227 

the viral burden, histopathology, and select cytokine gene expression induced by VOC 228 

compared to the prototypic Wuhan-Hu-1 isolate and an isolate harboring the secondary D614G 229 

mutation in S. The study showed no significant differences in viral burden and histopathologic 230 

findings in the hamster lungs at 4 DPC, but enhanced expression of cytokine genes was 231 

described in hamsters infected with the B.1.1.7 variant.23  However, longitudinal analysis of the 232 

host response to VOC and the degree of cross-protection is lacking. Therefore, in this study, we 233 

sought to evaluate the longitudinal impact of these VOC on the host immune and 234 

transcriptional responses. 235 

Syrian golden hamsters were chosen for this study as they are highly susceptible to infection 236 

and were found to have high viral replication in the lungs. Hamsters were infected IN with the 237 

ancestral, B.1.1.7 or B.1.351 variants. Challenged hamsters displayed moderate weight loss 238 

lethargy, rapid breathing, and ruffled fur, but were able to clinically recover by 14 DPC as 239 

previously described14,24,25. As recently reported, no discernable differences in gross pathology 240 

or lung viral burden were noted among all three groups26. However, B.1.1.7 sgRNA persisted 241 

longer in the hamster lungs. Analysis of the viral genomes recovered post-infection showed no 242 

changes in the ancestral- and B.1.1.7-infected hamsters; however, we detected three mutations 243 

in all B.1.351-infected animals. The two nonsynonymous mutations occurred in nsp3 and 244 
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ORF3a, both of which have been implicated in evasion of type I IFN27,28. A second mutation in 245 

nsp3 was also identified in a single B.1.351-infected animal. The implication of these mutations 246 

remains to be elucidated.  247 

Analysis of the humoral response revealed that the overall IgG response of the infected 248 

hamsters did not result in robust differences amongst the variants; however, the neutralization 249 

cross-protection depended on the variant the hamster was initially exposed to. Specifically, 250 

infection with B.1.1.7 results in the widest breath of neutralization activity despite comparable 251 

binding antibody titers. This phenomenon was most noticeable at 14 DPC, and was still evident 252 

28 DPC when the humoral response is more mature. Moreover, the overall neutralization 253 

activity, regardless of initial challenge virus, against B.1.351 is much lower than the other two 254 

variants, suggesting that B.1.351 may have indeed an enhanced ability to evade humoral 255 

immune responses. The overall IgG response of the infected hamsters did not result in robust 256 

differences amongst the variants; however, the neutralization cross-protection depended on 257 

the variant the hamster was initially exposed to. Our data demonstrates that early in the 258 

humoral response (14 DPC) antibodies induced by B.1.1.7 infection show an increased 259 

crossrreacitvity compared to the other variants tested. By 28 DPC, when the humoral response 260 

is more mature, this differences is less prominent, but the trend remains the same. This 261 

observation suggests that the timing of the antibody response could affect the crossreactivity 262 

potential. Notably, the neutralization capacity of crossreactive antibodies and homologous 263 

antibodies against B.1.351 is much lower than that of the other two variants tested. This 264 

observation is reflective of previous studies that attribute increased antibody evasion to this 265 

VOC3,4,8-10,12,21,22, demonstrating that the hamster model reflects the differences in humoral 266 

responses and effectivity of prior immunity seen in clinical cases29.  267 

A significant challenge when using the hamster model is the lack of reagents to analyze cellular 268 

immune responses30-36. Therefore, we employed transcriptomic analysis to elucidate 269 

differences in the host responses to VOC compared to the ancestral variant in the lungs of 270 

hamster 4 DPC, as has been done for other studies 37-39. Our transcriptional analysis of lung 271 

tissues at peak infection identified distinct, but also overlapping transcriptional signatures for 272 

each variant. All infections exhibited gene expression patterns associated with innate antiviral 273 
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responses, notably type I IFN signaling, mobilization of lymphocytes, and apoptosis40-43. The 274 

type I IFN response is critical for rapid control of viral infection44. However, dysregulated innate 275 

immune and type I IFN responses can result in tissue damage and oxidative stress as noted in 276 

other viral infections, including influenza virus and Ebola virus in addition to severe COVID-277 

1940,41,45,46. Our data differs from those reported in studies where a suppressed IFN response in 278 

the peripheral blood, the bronchoalveolar lavage, and lungs obtained at autopsy from 279 

individuals with severe COVID-1947-52. A potential explanation for this difference is the fact that 280 

we profiled the lungs during the peak of viral replication and virus-induced pathology (4 DPC) 281 

while clincal cases rarely present viral antigen at the time of death, rather immune 282 

dysregulation and coagulation abnormalities are the casue of death53-55. Additionally, the Syrian 283 

golden hamster model does not mimic severe COVID-19 intersitial pneumonia in that clinical 284 

symptomology is less severe and none of the animals in this model succumb to disease.  285 

Interestingly, transcriptional inflammatory indicators were particularly heightened following 286 

infection with B.1.1.7  and least severe following infection with B.1.351. Expression of several 287 

inflammatory and complement genes were only upregulated following infection with B.1.1.7 288 

and ancestral variants, while NFkB1 was upregulated only following infection with B.1.1.756,57. 289 

In vitro and in vivo NFkB-driven inflammatory responses have been previously associated with 290 

severe COVID-1948,50,58,59.  Additionally, NK cell activation was evident by higher expression of 291 

cytolytic molecules (e.g., PRF1). This inflammatory damage facilitates immune cell influx, 292 

including inflammatory cells like neutrophils, which we predicted to increase in all infections48. 293 

Moreover, significant increases in IL-2-stimulated NK cells was also predicted following 294 

infection with the ancestral and B.1.1.7 variants. Expression of canonical T cell regulatory and 295 

exhaustion markers like CTLA4, CD274 (PD-L1), and FOXP3 suggests compensatory mechanisms 296 

to reduce tissue damage.   297 

Transcriptional changes were also predicted to result in significant B cell loss in the lungs 298 

following infection with all three viruses. Previous studies indicate that B cell lymphopenia does 299 

not preclude robust antibody responses60-62. This re-distribution could indicate B cell migration 300 

to lymphoid tissue for priming. Indeed, significant neutralizing and binding antibody titers were 301 

detected following all three infection, albeit lower following infection with B.1.135.  302 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.11.451964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.11.451964


 12 

Furthermore, we detected a large number of DEGs related to tissue morphogenesis and 303 

angiogenesis in all infections63,64. Microvascular injury can further exacerbate inflammation-304 

driven lung fibrosis65. Additionally, genes that play a role in tissue repair were downregulated 305 

following infection with the B.1.351 and ancestral variants.  306 

In this study we describe the pathogenesis of the SARS-CoV-2 variants and the development of 307 

crossreactive neutralizing antibodies. To our knowledge this is the first study performing a 308 

comparative and longitudinal analysis of the antibody response after SARS-CoV-2 VOC infection. 309 

Our data show that infection with the B.1.1.7 VOC results in a broader antibody response 310 

compared to infection with B.1.35 VOC. This broader response could be in part mediated by the 311 

more robust transcriptional response elicited by this variant that includes a larger induction of 312 

antiviral and inflammatory pathways. Future experiments should assess transcriptional changes 313 

beyond 4 DPC to determine the kinetics of the host response at this critical site. Moreover, 314 

additional studies should investigate the mechanisms by which the mutations detected in the 315 

B.1.35 VOC lead to reduced neutralization potential.  316 

 317 

 318 

Methods 319 

Ethics statement 320 

All infectious work with SARS-CoV-2 was performed in the containment laboratories at the 321 

Rocky Mountain Laboratories (RML), Division of Intramural Research, National Institute of 322 

Allergy and Infectious Diseases, National Institutes of Health. RML is an institution accredited by 323 

the Association for Assessment and Accreditation of Laboratory Animal Care International 324 

(AAALAC). All procedures followed standard operating procedures (SOPs) approved by the RML 325 

Institutional Biosafety Committee (IBC)66. Animal work was performed in strict accordance with 326 

the recommendations described in the Guide for the Care and Use of Laboratory Animals of the 327 

National Institute of Health, the Office of Animal Welfare and the Animal Welfare Act, United 328 

States Department of Agriculture. The studies were approved by the RML Animal Care and Use 329 

Committee (ACUC). Procedures were conducted in animals anesthetized by trained personnel 330 
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under the supervision of veterinary staff. All efforts were made to ameliorate animal welfare 331 

and minimize animal suffering; food and water were available ad libitum. 332 

 333 

Cells and Viruses 334 

VeroE6 cells were grown at 37°C and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) 335 

(Sigma-Aldrich, St. Louis, MO) containing 10% fetal bovine serum (FBS) (Wisent Inc., St. Bruno, 336 

Canada), 2 mM L-glutamine (Thermo Fisher Scientific, Waltham, MA), 50 U/mL penicillin 337 

(Thermo Fisher Scientific), and 50 μg/mL streptomycin (Thermo Fisher Scientific). SARS-CoV-2 338 

ancestral isolate nCoV-WA1-2020 (MN985325.1)67, SARS-CoV-2 isolate B.1.351 (hCoV-19/South 339 

African/KRISP-K005325/2020), or SARS-CoV-2 isolate B.1.1.7 340 

(hCOV_19/England/204820464/2020) were used for the neutralizing antibody assays.  The 341 

following reagent was obtained through BEI Resources, NIAID, NIH: Severe Acute Respiratory 342 

Syndrome-Related Coronavirus 2, Isolate hCoV-19/England/204820464/20200, NR-54000, 343 

contributed by Bassam Hallis. SARS-CoV-2 B. 1.351 was obtained with contributions from Dr. 344 

Tulio de Oliveira and Dr. Alex Sigal (Nelson R Mandela School of Medicine, UKZN). All viruses 345 

were grown and titered on Vero E6 cells, and sequence confirmed. 346 

 347 

Animal study 348 

Fifty female Syrian golden hamsters (5-8 weeks of age) were used in this study14. Five animals 349 

were used as uninfected controls; three study cohorts for challenge with the ancestral virus and 350 

variants B1.1.7 and B.1.351 consisted of 15 hamsters each. On day 0, hamsters were infected 351 

with SARS-CoV-2 as previously described 14. On 4, 14 and 28 DPC, 5 hamsters per group were 352 

euthanized for sample collection.  353 

 354 

RNA extraction and RT-qPCR 355 

RNA from blood and oral swab samples was extracted using the QIAamp Viral RNA Mini Kit 356 

(QIAGEN) according to manufacturer specifications. Lung tissue, a maximum of 30 mg each, was 357 

processed and RNA was extracted using the RNeasy Mini Kit (QIAGEN) according to 358 

manufacturer specifications. One step RT-qPCR for genomic viral RNA was performed using 359 
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specific primer-probe sets and the QuantiFast Probe RT-PCR +ROX Vial Kit (QIAGEN), in the 360 

Rotor-Gene Q (QIAGEN) as described previously 68. Five μL of each RNA extract were run 361 

alongside dilutions of SARS-CoV-2 standards with a known concentration of RNA copies.  362 

 363 

Enzyme-linked immunosorbent assay 364 

Serum samples from SARS-CoV-2-infected animals were inactivated by gamma-irradiation and 365 

used in BSL2 according to IBC-approved SOPs. NUNC Maxisorp Immuno plates were coated with 366 

50 μl of 1 μg/mL of recombinant SARS-CoV-2 S (S1+S2) antigen at 4°C overnight and then 367 

washed three times with PBS containing 0.05% Tween 20 (PBST). The plates were blocked with 368 

3% skim milk in PBS for 1 hour at room temperature, followed by three additional washes with 369 

PBST. The plates were incubated with 50 μl of serial dilutions of the samples in PBS containing 370 

1% skim milk for 1 hour at room temperature. After three washes with PBST, the bound 371 

antibodies were labeled using 50 μl of 1:2,500 peroxidase anti-hamster IgG (H+L) (SeraCare Life 372 

Sciences) diluted in 1% skim milk in PBST. After incubation for 1 hour at room temperature and 373 

three washes with PBST, 50 μl of KPL ABTS peroxidase substrate solution mix (SeraCare Life 374 

Sciences) was added to each well, and the mixture was incubated for 30 min at room 375 

temperature. The optical density (OD) at 405 nm was measured using a GloMax® explorer 376 

(Promega). The OD values were normalized to the baseline samples obtained with naïve 377 

hamster serum and the cutoff value was set as the mean OD plus standard deviation of the 378 

blank. 379 

 380 

Virus neutralization assay  381 

The day before this assay, VeroE6 cells were seeded in 96-well plates. Serum samples were 382 

heat-inactivated for 30 min at 56°C, and 2-fold serial dilutions were prepared in DMEM with 2% 383 

FBS. Next, 100 TCID50 of SARS-CoV-2 were added and the mixture was incubated for 1 hour at 384 

37°C and 5% CO2. Finally, media was removed from cells and the mixture was added to VeroE6 385 

cells and incubated at 37°C and 5% CO2 for 6 days. Then the cytopathic effect (CPE) was 386 

documented, and the virus neutralization titer was expressed as the reciprocal value of the 387 

highest dilution of the serum which inhibited virus replication (no CPE). 388 
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 389 

Histology and immunohistochemistry 390 

Necropsies and tissue sampling were performed according to IBC-approved SOPs. Tissues were 391 

fixed in 10% neutral buffered formalin with two changes, for a minimum of 7 days. Tissues were 392 

placed in cassettes and processed with a Sakura VIP-6 Tissue Tek, on a 12-hour automated 393 

schedule, using a graded series of ethanol, xylene, and ParaPlast Extra. Embedded tissues are 394 

sectioned at 5 μm and dried overnight at 42°C prior to staining. Specific anti-CoV 395 

immunoreactivity was detected using Sino Biological Inc. SARS-CoV/SARS-CoV-2 nucleocapsid 396 

antibody (Sino Biological cat#40143-MM05) at a 1:1000 dilution. The secondary antibody was 397 

the Vector Laboratories ImPress VR anti-mouse IgG polymer (cat# MP-7422). The tissues were 398 

then processed for immunohistochemistry using the Discovery Ultra automated stainer 399 

(Ventana Medical Systems) with a ChromoMap DAB kit (Roche Tissue Diagnostics cat#760–400 

159). All tissue slides were evaluated by a board-certified veterinary pathologist and a 401 

pathology scored was assigned based on the following observations; 0= no pathology, 1= 402 

minimal, 2= mild, 3= moderate, 4= severe (Fig. S1C). 403 

 404 

cDNA library construction and sequencing 405 

Quality and quantity of RNA lung samples at 4 DPC were determined using an Agilent 2100 406 

Bioanalyzer. cDNA libraries were constructed using the NEB Next Ultra II Direction RNA Library 407 

Prep Kit (Thermo Fischer). RNA was treated with RNase H and DNase I following depletion of 408 

ribosomal RNA (rRNA). Adapters were ligated to cDNA products and the subsequent ~300 base 409 

pair (bp) amplicons were PCR-amplified and selected by size exclusion. cDNA libraries were 410 

assessed for quality and quantity prior to 150 bp single-end sequencing using the Illumina 411 

NovaSeq platform. 412 

 413 

RNA-Seq Bioinformatic analysis 414 

Preliminary data analysis was performed with RNA-Seq workflow module of systemPipeR, 415 

developed by Backman et. al 69. RNA-Seq reads were demultiplexed, quality-filtered and 416 

trimmed using Trim Galore (average Phred score cut-off of 30, minimum length of 50 bp). 417 
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FastQC was used to generate quality reports. Hisat2 was used to align reads to the reference 418 

genome Mesocricetus auratus (Mesocricetus_auratus.MesAur1.0.dna.toplevel.fa) and the 419 

Mesocricetus_auratus.MesAur1.0.103.gtf file was used for annotation. Raw expression values 420 

(gene-level read counts) were generated using the summarizeOverlaps function and normalized 421 

(read per kilobase of transcript per million mapped reads, rpkm) using the edgeR package. 422 

Statistical analysis with edgeR was used to determine differentially expressed genes (DEGs) 423 

meeting the following criteria: genes with median rpkm of ≥1, a false discovery rate (FDR) 424 

corrected p-value ≤ 0.05 and a log2fold change ≥ 1 compared to control tissues. 425 

Functional enrichment of DEGs was performed using Metascape to identify relevant GO 426 

terms70. Digital cell quantification was performed using ImmQuant with the IRIS database. 427 

Heatmaps, bubbleplots, Venn diagrams and violin plots were generated using R packages 428 

ggplot2 and VennDiagrams. Graphs were generated using GraphPad Prism software (version 8). 429 

 430 

SARS-CoV-2 viral genome library construction and sequencing 431 

Enrichment of SARS-CoV-2 was performed using the Qiagen QIASeq SARS-CoV-2 Primer Panel 432 

(V.2). Libraries were constructed from resulting SARS-CoV-2 amplicons using the Qiagen QIASeq 433 

FX DNA Library preparation kit. Briefly, adapters were ligated to cDNA products and the ~300 434 

bp amplicons were minimally PCR-amplified. cDNA libraries were assessed for quality and 435 

quantity prior to 150 bp paired-end sequencing using the Illumina HiSeq platform (≥ 1 M reads 436 

per sample). 437 

 438 

SARS-CoV-2 viral genome assembly and bioinformatic analysis 439 

Reads were demultiplexed and quality-filtered using Trim Galore (average Phred score cut-off 440 

of 30, minimum length 100 bp). FastQC was used to generate quality reports. MaskPrimers.py 441 

from the pRESTO R package was used to remove primers prior to alignment to the SARS-CoV-2 442 

genome using BWA-mem software version 0.7.17. The following reference genomes were used 443 

for Ancestral, B.1.1.7 and B.1.351 variants: WA_MN985325.1, EPI_ISL_683466, and 444 

EPI_ISL_6786156. All genomes had greater than 95% coverage and 10X depth. Single nucleotide 445 

polymorphisms and amino acid changes were identified using CorGAT. 446 
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 447 

Statistical analyses 448 

All statistical analysis was performed in Prism 8 (GraphPad). Two-tailed Mann-Whitney test was 449 

conducted to compare differences between groups for data in Figs. 2, 3 and S1. Statistical 450 

significance was determined using one-way ANOVA with multiple comparisons for the 451 

bioinformatic analysis with comparisons made among variant- and control-challenged animals 452 

Statistically significant differences are indicated as follows: p<0.0001 (****), p<0.001 (***), 453 

p<0.01 (**) and p<0.05 (*). 454 

 455 

  456 
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Data Availability 457 

All transcriptomic sequencing data are accessible at BioProject PRJNAXXXX upon publication. 458 
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 499 

Fig. 1. Histopathology and Immunohistochemistry of hamster lungs. (A-H) Representative H&E 500 

images of lungs of hamsters infected with 105 TCID50 of ancestral, B.1.1.7, and B.1.351 variants 501 

at 4 days post-challenge (DPC). Foci of interstitial pneumonia and bronchiolitis were observed 502 

throughout all evaluated lung lobes of infected hamsters. (I-L) Immunohistochemistry (IHC) 503 

detected SARS-CoV-2 nucleocapsid staining in the lungs of all infected hamsters.   504 

  505 
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 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

Fig. 2. SARS-CoV-2 burden in lungs, oral swabs and blood. (A) Total SARS-CoV-2-specific RNA 519 

and (B) total SARS-CoV-2-specific sub-genomic RNA (sgRNA) in the lungs of challenged animals 520 

at 4, 14, and 28 days post-challenge (DPC). (C) Infectious SARS-CoV-2 titer in the lungs of 521 

infected hamsters. Total SARS-CoV-2-specific RNA in the (D) oral swabs and (E) blood of 522 

infected hamsters at the time of euthanasia. Geometric mean and standard deviation (SD) are 523 

depicted; statistical significance is indicated ***p < 0.001, **p < 0.01 and *p < 0.05.  524 
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 539 

 540 

Fig. 3. Humoral immune response in challenged hamsters. Serum samples were collected at 14 541 

and 28 DPC and by ELISA. (A) Total SARS-CoV-2 S-specific IgG and (B) RBD-specific IgG are 542 

shown. Cross-variant and homologous neutralization was assessed against (C) ancestral, (D) 543 

B.1.1.7, and (E) B.1.351 viruses. Line indicates limit of detection. Geometric mean and SD are 544 

depicted; statistical significance is indicated **p < 0.01 and *p < 0.05. 545 
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 576 

Fig. 4. SARS-CoV-2 variants induce distinct transcriptional changes. Volcano plot of global gene 577 

expression changes at 4 DPC with SARS-CoV-2 (A) ancestral, (B) B.1.1.7 or (C) B.1.351 variants. 578 

Downregulated and upregulated differentially expressed genes (DEGs; average RPKM ³ 1) are 579 

colored blue and red, respectively. Exemplary genes are labeled. (D) Venn diagram of DEGs 580 

determined in panels A-C. (E) Functional enrichment of DEGs determined following each 581 

infection in panels A-C. Color intensity represents statistical significance as the negative log of 582 

the FDR-adjusted p-value [-log(q-value)], with range of colors based on the GO terms with the 583 

lowest and highest statistical value for all GO terms present. Blank boxes indicate no statistical 584 

significance. Numbers of DEGs enriching to each GO term are noted in each box. 585 

  586 
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Fig. 5. Transcriptional response unique to B.1.1.7 variant suggests distinct host responses. 616 

(A) Functional enrichment of DEGs unique to B.1.1.7 variant infection at 4 DPC (n=684). 617 

Horizontal bars represent the number of genes enriching to each GO term with color intensity 618 

representing the negative log of the FDR-adjusted p-value [-log(q-value)]. Range of colors based 619 

on the GO terms with the lowest and highest –log(q-value) values. Heatmaps representing 620 

B.1.1.7 variant unique DEGs enriching to GO terms from panel A: (B) “blood vessel 621 

development”, (C) “tissue morphogenesis” and (D) adaptive terms “adaptive immunity”, 622 

“antigen processing and presentation”, and “regulation of leukocyte activation.” Heatmaps of 623 

DEGs unique to (E) Ancestral (n=58) and (F) B.1.351 variants (n=64) at 4 DPC. Columns of all 624 

heatmaps represent the average rpkm of controls and rpkm of a single variant-infected animal. 625 

Range of colors per each heatmap is based on scaled and centered rpkm values of the 626 

represented DEGs. Red represents upregulation; blue, downregulation. 627 

 628 

 629 

Table 1. Genome comparison of SARS-CoV-2 variants 630 

Variant of concern Amino acid changes (# of animals affected, 4 DPC) 

ancestral none detected 

B.1.1.7 none detected 

B.1.351 5’ UTR, T201C (5/5) 

nsp3, L3892F (1/5) 

nsp3, G5942G (5/5) 

ORF3a, G172C (5/5) 

 631 

 632 
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Figure S2. SARS-CoV-2 variants induce distinct transcriptional changes. (A) Principal component analysis of 

control (n=5) animals and infected animals 4 DPC with ancestral (n=5), B.1.1.7 (n=4) or B.1.351 (n=4) variants. 

Heatmaps representing DEGs enriching to GO terms from Fig. 5E including (B) “response to virus”, (C) “blood 

vessel development”, (D) “myeloid leukocyte activation” and (E) lymphocyte activation.” DEGs are either 

shared among all variant infections or between ancestral and B.1.1.7 variant infections. Columns of all 

heatmaps represent the average rpkm. Range of colors per each heatmap is based on scaled and centered 

rpkm values of the represented DEGs. Red represents upregulation; blue, downregulation. 
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