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Abstract

Introduction: The purpose of this study is to develop a prediction model utilizing tumor hemoglobin parameters

measured by ultrasound-guided near-infrared optical tomography (US-NIR) in conjunction with standard pathologic

tumor characteristics to predict pathologic response before neoadjuvant chemotherapy (NAC) is given.

Methods: Thirty-four patients’ data were retrospectively analyzed using a multiple logistic regression model to

predict response. These patients were split into 30 groups of training (24 tumors) and testing (12 tumors) for cross

validation. Tumor vascularity was assessed using US-NIR measurements of total hemoglobin (tHb), oxygenated

(oxyHb) and deoxygenated hemoglobin (deoxyHb) concentrations acquired before treatment. Tumor pathologic

variables of tumor type, Nottingham score, mitotic index, the estrogen and progesterone receptors and human

epidermal growth factor receptor 2 acquired before NAC in biopsy specimens were also used in the prediction

model. The patients’ pathologic response was graded based on the Miller-Payne system. The overall performance of

the prediction models was evaluated using receiver operating characteristic (ROC) curves. The quantitative measures

were sensitivity, specificity, positive and negative predictive values (PPV and NPV) and the area under the ROC

curve (AUC).

Results: Utilizing tumor pathologic variables alone, average sensitivity of 56.8%, average specificity of 88.9%,

average PPV of 84.8%, average NPV of 70.9% and average AUC of 84.0% were obtained from the testing data.

Among the hemoglobin predictors with and without tumor pathological variables, the best predictor was tHb

combined with tumor pathological variables, followed by oxyHb with pathological variables. When tHb was

included with tumor pathological variables as an additional predictor, the corresponding measures improved to

79%, 94%, 90%, 86% and 92.4%, respectively. When oxyHb was included with tumor variables as an additional

predictor, these measures improved to 77%, 85%, 83%, 83% and 90.6%, respectively. The addition of tHb or oxyHb

significantly improved the prediction sensitivity, NPV and AUC compared with using tumor pathological variables

alone.

Conclusions: These initial findings indicate that combining widely used tumor pathologic variables with hemoglobin

parameters determined by US-NIR may provide a powerful tool for predicting patient pathologic response to NAC

before the start of treatment.
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Introduction
Preoperative or neoadjuvant chemotherapy (NAC) is in-

creasingly used in the management of locally advanced

breast cancers, as well as in patients with lower tumor

stages, to increase the rate of breast-conserving therapy

and to reduce the extent of surgery [1-3]. Complete

eradication of invasive tumor cells in the primary tumor

bed following neoadjuvant therapy is strongly correlated

with improved disease-free survival and overall survival

[4]. Furthermore, clinical trials in the NAC setting are

increasingly being conducted to study new agents and

novel therapeutic strategies in breast cancer using patho-

logical complete response (pCR), a surrogate marker for

survival, as the primary endpoint [5]. Several pathologic

variables, such as invasive ductal carcinoma, high tumor

grade and high proliferative activity, are associated with

a better response to NAC [6-8]. Classifying breast can-

cers into molecular subtypes has significantly improved

the understanding of preoperative chemotherapy out-

comes and has helped guide the selection of treatment

[9-11]. Recent studies have established that breast can-

cers that are basal-like or “triple-negative” (estrogen re-

ceptor–negative (ER−), progesterone receptor–negative

(PR−) and human epidermal growth factor receptor

2–negative (HER2−)) respond best to cytotoxic therapies

[11,12] and that HER2-positive (HER2+) tumors respond

best to trastuzumab-based regimens [13]. In particular,

in HER2+ breast cancer, the NAC approach has yielded

great successes. The dual HER2 blockade with trastu-

zumab and pertuzumab recently has shown the highest

pCR rates ever reported [3]. The NAC approach has

yielded much higher rates of pCR in patients with triple-

negative breast cancers than for patients with other

breast tumor types. However, more than half of triple-

negative breast cancer patients do not achieve a pCR

and have a very poor prognosis [14]. Current studies are

focused on identifying molecular subtypes of triple-

negative tumors and their clinical relevancy by deter-

mining pCR rates after NAC [15,16]. Recent studies have

also shown that luminal A subtype tumors (ER + and

HER2− and low tumor grade or low-proliferative phe-

notype) exhibit lower sensitivity to standard cytotoxic-

based regimens [17].

Nomograms, which integrate clinical and pathological

variables including tumor receptors and number of che-

motherapy courses using multiple logistic regression

model, have been developed to predict complete pa-

thological response on the basis of preoperative treat-

ment [18-20]. However, reliable individualized prediction

of a pathological complete response after preoperative

chemotherapy based on conventional pathologic tumor

characteristics determined before the start of treatment

is difficult, and the response to chemotherapy varies

among patients [21,22].

In the past decade, optical tomography and optical spec-

troscopy using near-infrared (NIR) diffused light has de-

monstrated great potential in the assessment of the tumor

vasculature response to NAC [23-30]. The NIR technique

utilizes intrinsic hemoglobin contrast, which is directly re-

lated to tumor angiogenesis, a key process required for

tumor growth and metastasis. In our recent paper pub-

lished in Radiology [30], we demonstrated, for the first

time to our knowledge, that the baseline pretreatment

total hemoglobin (tHb), oxygenated hemoglobin (oxyHb)

and deoxygenated hemoglobin (deoxyHb) levels were

significantly higher in the tumors with near-complete or

complete pathologic response than they were in the tu-

mors with modest or no response to NAC. These mea-

surements are directly related to tumor blood volume,

perfusion, metabolism and tumor vasculature characteris-

tics. Our new finding suggests that hypervascular tumors

respond to NAC significantly better than hypovascular

tumors do. In a recent study in which diffuse optical

spectroscopy was used, Ueda et al. reported that the pre-

treatment tumor oxygen saturation = oxyHb/tHb × 100

correlated with pathological complete response for pa-

tients undergoing NAC [31]. To the best of our know-

ledge, our study and theirs are the only published ones in

which prediction of NAC on the basis of pretreatment

hemoglobin measurements has been described. Water has

previously been reported to be sensitive to cell death, and

its reduction may reflect a progressive loss of tumor cellu-

larity and edema for at least 1 week [23,32] or for 4 weeks

[27] after initiation of NAC. Lipid and scatter measuring

tumor tissue structure have not been reported as early pre-

dictors after the initiation of NAC, because more time may

be needed before tumor size changes are detectable [23].

In this article, we introduce a novel prediction model

using a multiple logistic regression model by incorpo-

rating widely used tumor pathologic variables of tumor

type, grade and mitotic index, tumor receptors (triple-

negative, HER2+ versus HER2−, ER− versus ER2+) and

pretreatment functional parameters of tHb, oxyHb and

deoxyHb. We assess the contributions of the hemoglobin

functional parameters on improving the prediction sensi-

tivity, specificity, positive predictive value (PPV), negative

predictive value (NPV) and area under the receiving ope-

rating characteristic (ROC) curve (AUC), and we compare

these measures with and without those obtained from

conventional tumor pathologic characteristics.

Methods
Patients

Patients were recruited from Hartford Hospital and the

University of Connecticut Health Center (UCHC) from

December 2007 to May 2011. The study protocol was

approved by the institutional review board of the Human

Subjects Protection Office of UCHC and Hartford Hospital
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and is HIPAA-compliant (the Health Insurance Portability

and Accountability Act). Written informed consent was

obtained from all patients. Details of the patient study were

reported previously [30]. Briefly, 32 patients who were

treated with neoadjuvant chemotherapy were assessed pre-

treatment, at the end of each treatment cycle and prior to

surgery using ultrasound-guided near-infrared optical to-

mography (US-NIR). Two more patients who completed

the same study procedures and excluded in the previous

report [30] were included in this study because the present

study is focused on assessing pretreatment prediction. One

patient had an inflammatory breast cancer with very low

measurable vascular content throughout the treatment,

and the other was an elderly patient treated differently

from the rest. Patients’ tumor types, grades (Nottingham

score), mitotic index scores and receptor status of ER, PR

and HER2 obtained at core biopsy are summarized in

Table 1 with the two patients discussed above listed at the

bottom of the table.

The 34 total patients (mean age, 48 years; range, 32 to

82 years) were initially split into a training group of 23 pa-

tients with a total of 24 tumors enrolled into this study

during the first 3 years of the recruitment period and a

testing group of 11 patients with a total of 12 tumors. Of

these latter 11 patients, 9 patients were enrolled in the last

7 months of the recruitment period and two more were

enrolled as discussed in the paragraph above. Thus, two-

thirds of the patients are being used for training and one-

third for testing. Owing to the small patient sample,

especially the limited numbers of triple-negative tumors

(n = 6), HER2+ tumors (n = 6) and invasive lobular carcin-

omas (ILCs) (n = 5), we performed cross-validation by ran-

domly splitting the six triple-negative tumors, six HER2+

tumors and five ILCs between training and testing data sets

while keeping approximately two-thirds of the samples of

each subcategory in the training data sets. So, 24 pairs of

training and testing data sets were generated. Additionally,

the rest of the patients were randomly split into training

and testing data sets to generate six more pairs of training

and testing data sets while keeping approximately a similar

percentage (30% to 50%) of patients who achieved a

complete or nearly complete response to NAC in each pair

of training and testing data sets. Thus, a total of 30 pairs of

training and testing data sets were generated to train, valid-

ate and compare the prediction models.

Among the 34 patients, 28 HER2- patients were treated

with paclitaxel-based regimens (dose-dense doxorubicin/

cyclophosphamide/paclitaxel, docetaxel/cyclophosphamide,

doxorubicin/cyclophosphamide/docetaxel, and bevaci-

zumab), and 6 HER2+ patients were treated with a

trastuzumab-based regimen (docetaxel/carboplatin with

trastuzumab). The final pathologic response was assessed

using the Miller-Payne grading system [33], in which

pathologic response is divided into five grades based on

comparison of tumor cellularity between pre-neoadjuvant

core biopsy and definitive surgical specimen. The Miller-

Payne grading system is as follows:

� Grade 1: no change or some minor alteration in

individual malignant cells, but no reduction in

overall cellularity

� Grade 2: a minor loss of tumor cells, but overall

high cellularity; up to 30% reduction of cellularity

� Grade 3: between an estimated 30% and 90%

reduction in tumor cellularity

� Grade 4: a marked disappearance of more than 90%

of tumor cells such that only small clusters or

widely dispersed individual cells remain (almost

pCR)

� Grade 5: no invasive malignant cells identifiable in

sections from the site of the tumor (pCR)

For this study, the Miller-Payne grades 4 and 5 patients

were grouped as responders and grades 1 to 3 were groups

as nonresponders. There were a total of 21 grades 1 to 3

tumors and 15 grade 4 or 5 tumors with a response rate

of 42%.

Hemoglobin parameters

The imager consisted of a handheld probe with nine

source fibers and ten detection light guides deployed

around a commercial US probe. The US images were

used to localize the tumor and were acquired simul-

taneously with the NIR data. For each patient, tumor ab-

sorption maps obtained at four optical wavelengths of

740, 780, 808 and 830 nm were reconstructed. From the

absorption maps, the tHb, deoxyHb and oxyHb maps

were calculated and the maximum tHb, deoxyHb and

oxyHB concentrations were measured. Several quality

NIR images at the tumor location were used to compute

the average maximum tHb, deoxyHb and oxyHB values,

which were used to characterize each tumor as reported

elsewhere [30]. From phantom studies, we found that

the reconstructed maximum value closely represented

the true target value.

Statistical analysis and prediction model

Spearman’s rank correlation coefficient or Spearman’s ρ,

which is more appropriate for assessing the relationship

for both continuous and discrete variables, was computed

between each tumor’s Miller-Payne grade and the pre-

treatment maximum tHb, oxyHb and deoxyHb concentra-

tions; tumor types; Nottingham scores; mitotic index; and

tumor receptor status obtained at the core biopsy. Ad-

ditionally, the Spearman’s ρ between pretreatment para-

meters was computed. Ductal carcinomas were coded as

1, mixed ductal and lobular carcinomas were coded as 1

and lobular carcinomas were coded as 0. Triple-negative,
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Table 2 Statistical analysis of Miller-Payne grades compared with pretreatment variablesa

Maximum tHb Maximum oxyHb Maximum deoxyHb Tumor type NS MC/10 hpf Triple-negative HER2 ER

Spearman’s ρ 0.520 0.455 0.395 0.408 0.545 0.538 0.261 0.305 0.375

P-value 0.001 0.005 0.017 0.013 0.001 0.001 0.124 0.070 0.024

adeoxyHb, Deoxygenated hemoglobin; ER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; hpf, High-power fields; MC, Mitotic count; NS,

Nottingham score; oxyHb, Oxygenated hemoglobin; tHb, Total hemoglobin.

Table 1 Patient demographicsa

Age, yr Tumor type (IDC, 1)
(IDC/ILC, 1) (ILC, 0 )

Nottingham
score (out of 9)

Mitotic
count/10 hpf

Triple-negative
(+, 1) (−, 0)

HER2 (+, 1)
(−, 0)

ER (+, 0) (−, 1) Miller-Payne
grade

32 1 9 20 0 0 0 2

51 1 8 8 0 0 0 2

42 1 8 8 1 0 1 5

64 1 9 34 1 0 1 5

48 1 4 0 1 0 1 3

34 1 6 2 0 0 0 1

39 0 7 1 0 0 0 2

48 1 5 6 0 0 0 1

39 1 9 14 1 0 1 1

42 0 3 0 0 0 0 1

35 1 9 39 0 0 0 4

40 1 4 2 0 0 0 2

47 1 9 15 0 0 0 5

53 0 6 0 or 1 0 0 0 2

32 1 9 16 0 1 1 4

64 1 6 4 0 1 1 4

40 1 9 30 0 1 0 3

38 1 7 9 0 1 0 4

64 1 8 44 0 0 0 2

48 0 6 1 0 0 0 2

69 1 7 16 0 0 0 3

82 1 6 0 0 0 0 1

47b 1 8 10 0 0 0 5

38 1 9 20 1 0 1 5

49 1 6 8 0 0 0 3

63b 1 8 10 0 0 0 3

37 1 7 8 0 0 0 4

55 1 7 10 0 1 0 5

44 1 6 5 0 0 0 3

53 1 9 58 1 0 1 5

54 1 9 26 0 0 1 5

42 0 6 5 0 0 0 2

77 1 9 16 0 1 0 5

35 1 6 4 0 0 0 3

aER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; hpf, High-power fields; IDC, Invasive ductal carcinoma; IDC/ILC, Invasive mammary

carcinoma with mixed ductal and lobular features; ILC, Invasive lobular carcinoma. bTwo distinct tumors in the same breast with the same characteristics.

Zhu et al. Breast Cancer Research 2014, 16:456 Page 4 of 14

http://breast-cancer-research.com/content/16/6/456



HER2 and ER tumor status was coded as 1 for triple-

negative and 0 for otherwise, 1 for HER2+ and 0 for

HER2−, and 0 for ER+ and 1 for ER−. Spearman’s cor-

relation calculations were performed using Minitab 15

software (Minitab, State College, PA, USA), and the re-

sults are given in Table 2.

Logistic regression is a statistical modeling approach

that can be used to describe the relationship of several

predictor variables, X1, X2, … Xk, to a dichotomous re-

sponse variable Y, where Y is coded as 1 (responder) or

0 (nonresponder) for its two possible categories [34].

The model can be written in a form that describes the

probability of occurrence of one of the two possible out-

comes of Y as follows:

prðY ¼ 1 j X1; X2; … XkÞ

¼
1

1 þ exp − β0 þ Σk
n ¼ 1 βnXn

� ��

The estimated outputs (probability) for each set of

predictor variables range from 0 to 1. The model be-

longs to the class of generalized linear models based on

the exponential distribution family. Given the data for Y,

X1, X2, … Xk, the unknown parameters βn, n = 0, 1, …, k

can be estimated using the maximum likelihood method.

In this article, we estimate and validate the 13 logistic

models and their prediction power using combinations

of 12 sets of predictor variables of tumor characteristics

(tumor type, Nottingham score and mitotic counts),

tumor pathological variables (tumor characteristics and

receptor status of triple-negative, HER2 and ER), five

pairs of hemoglobin predictor variables of tHb, oxyHb

and deoxyHb only, tHb and oxyHb (tHboxyHb), and

tHb and deoxyHb (tHbdeoxyHb), without tumor patho-

logical variables and with these variables. The MATLAB

(version 2008a; MathWorks, Natick, MA, USA) logistic

regression function glmfit was used to compute the coef-

ficients βn, where n = 0, 1, …, k, and glmval was used to

predict the response from these coefficients for the train-

ing set. The same coefficients obtained from the training

set were used to predict the response for the testing set.

We also assess the overall performance of the pre-

diction models through the ROC curves and the AUC

for all training and testing sets. For this purpose, the

estimated outputs ranging from 0 to 1 were inputted to

the R console (version R 2.15.2; The R Project for Statis-

tical Computing, Vienna, Austria), and the R open source

software package pROC [35] was used in the R console to

compute the ROC curve and AUC for each model using

combined predictor variables. The 95% confidence inter-

val (CI) of each AUC was obtained using 10,000 stratified

bootstrap replicates, and the average CIs obtained from

Table 3 Statistical analysis of pretreatment hemoglobin parameters with tumor pathological variablesa

tHb oxyHb deoxyHb Tumor type NS MC/10 hpf Triple-negative HER2 ER

tHb 0.841 0.637 0.166 0.430 0.206 0.108 0.144 0.312

P < 0.001 P < 0.001 P = 0.333 P = 0.009 P = 0.229 P = 0.532 P = 0.404 P = 0.064

oxyHb 0.302 0.066 0.234 0.005 0.115 0.108 0.330

P = 0.074 P = 0.703 P = 0.170 P = 0.979 P = 0.505 P = 0.532 P = 0.049

deoxyHb 0.050 0.356 0.292 0.093 0.086 0.275

P = 0.771 P = 0.033 P = 0.084 P = 0.589 P = 0.618 P = 0.105

adeoxyHb, Deoxygenated hemoglobin; ER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; hpf, High-power field; MC, Mitotic count; NS,

Nottingham score; oxyHb, Oxygenated hemoglobin; tHb, Total hemoglobin.

Figure 1 Box-and-whisker plot of baseline total hemoglobin, oxygenated hemoglobin and deoxygenated hemoglobin of two responder

groups. deoxyHb, Deoxygenated hemoglobin; MP, Miller-Payne grade; oxyHb, Oxygenated hemoglobin; tHb, Total hemoglobin.
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the training and testing groups were computed. A thresh-

old of 0.5 was used to separate responders (>0.5) from

nonresponders (≤0.5) for each prediction model output

and prediction sensitivity, specificity, PPV and NPV were

calculated accordingly. In Minitab 15, a two-sample, two-

sided t-test was used to calculate the statistical significance

of differences in the sensitivity, specificity, PPV, NPV and

AUC of different models. P <0.05 was considered statisti-

cally significant.

Results and discussion
A box-and-whisker plot of pretreatment maximum tHb,

oxyHb and deoxyHb values obtained from responder and

nonresponder groups is shown in Figure 1. The corre-

sponding mean values (SD) of pretreatment maximum

tHb, oxyHb and deoxyHb values were 107.9 ± 33.2 μmol/L,

70.3 ± 23.1 μmol/L and 46.5 ± 17.6 μmol/L, respectively,

for responders. The corresponding values were 72.8 ±

22.5 μmol/L, 45.5 ± 17.6 μmol/L and 34.1 ± 11.5 μmol/L

for nonresponders (P = 0.001, P = 0.001 and P = 0.017, re-

spectively) (Figure 1). The Spearman’s correlation coeffi-

cients of these parameters with Miller-Payne grades are

summarized in Table 2. The maximum tHb, deoxyHb and

oxyHb values correlate well with the final pathological re-

sponse. Correlation coefficients of the other pathological

predictor variables with Miller-Payne grades are also

Figure 2 Box-and-whisker plots of area under the receiver operating characteristic curves obtained from prediction models of 12 sets

of predictor variables. (a) Training data. (b) Testing data. Char, Predictor variables of tumor characteristics of type, Nottingham score, mitotic

count; Char+Rec, Predictor variables of tumor characteristics and receptor status of triple-negative, human epidermal growth factor receptor 2

(HER2), estrogen receptor (ER); tHb, oxyHb, deoxyHb: Predictor variables of pretreatment maximum total hemoglobin (tHb), oxygenated hemoglobin

(oxyHb) and deoxygenated hemoglobin (deoxyHb), respectively; tHboxyHb, tHbdeoxyHb: Combined predictor variables of tHb and oxyHb, tHb and

deoxyHb, respectively; Char+Rec+corresponding hemoglobin variables: Combined predictor variables of tumor characteristics, receptor status and

corresponding hemoglobin predictors. ROC, Receiver operating characteristic.
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summarized in Table 2. As shown in the table, tumor type,

Nottingham score, mitotic count and ER status corre-

late well with the final pathological response, and the

triple-negative and HER2+ tumors also show reasonable

correlation with the final pathological response. Patient

age was not correlated with the Miller-Payne grade

(Spearman’s ρ = 0.127, P = 0.473) and was not used as a

predictor variable.

The Spearman’s correlation coefficients between pre-

treatment hemoglobin parameters and tumor pathological

variables are given in Table 3. It is interesting to note that

tHb and deoxyHb correlate well with tumor Nottingham

score (P = 0.009 and P = 0.033, respectively) and that tHb

and oxyHb show a moderate negative correlation with

tumor ER expression (P = 0.064 and P = 0.049, respec-

tively). Note that ER+was coded as 0, and ER−was coded

as 1. These results suggest that tumor hemoglobin levels

estimated using the US-NIR imager measure the aggres-

siveness of breast cancers.

AUC statistics obtained from two sets of predictor vari-

ables of tumor characteristics (tumor type, Nottingham

score and mitotic count), tumor pathological variables

(tumor characteristics and receptor status of triple-negative,

HER2, ER) are shown in the first two columns of Figure 2.

The horizontal axis indicates the predictor variables. On

average, the addition of the tumor receptor status improves

the AUC from 76.9% (95% CI, 59.5; 95.46) to 87.1% (95%

CI, 71.54; 98.63) in the training data (P <0.001) (Figure 2a)

and from 80.0% (95% CI, 51.11; 99.29) to 84.0% (95% CI,

57.16; 99.03) in the testing data (P = 0.087) (Figure 2b).

Additionally, five pairs of hemoglobin predictor variables of

tHb, oxyHb, deoxyHb, tHboxyHb and tHbdeoxyHb with-

out tumor pathological variables and with these variables

are shown in groups in Figure 2. The average percentage

AUCs of training and testing results, as well as average 95%

CIs of all 12 prediction models using a different set of pre-

dictor variables, are summarized in Tables 4 and 5. For

training data shown in (Figure 2a), the addition of the

tumor pathological variables to each set of hemoglobin pre-

dictors significantly improves the AUC and tightens up the

95% CI as compared with data obtained without the patho-

logical variables (P ≤ 0.001). The AUCs obtained from the

hemoglobin predictors with tumor pathological variables

are significantly higher than those of the pathological vari-

ables alone (P <0.001), except deoxyHb and deoxyHb with

the tumor pathological variables pair (P = 0.068), which ap-

proaches statistical significance. For the testing data shown

in Figure 2b, the combined predictor set of tHb with tumor

pathological variables and oxyHb with these variables out-

perform tHb and oxyHb alone (P = 0.030 and P = 0.004, re-

spectively) and pathological variables alone (P = 0.001 and

P = 0.007, respectively). On average, the AUCs of tHb and

oxyHb with tumor pathological variables are 92.4% (95%

CI, 79.42; 99.80) and 90.6% (95% CI, 74.36; 99.35), respec-

tively, as compared with 87.3% (95% CI, 62.13; 99.82) and

84.0% (95% CI, 56.01; 100), respectively, obtained without

the pathological variables. Note that the 95% CI is much

tighter with the addition of pathological variables. However,

the other three sets of hemoglobin predictors combined

with tumor pathological variables did not achieve statistical

significance as compared with the tumor pathological va-

riables alone. One reason is that tHb is correlated with

oxyHb and deoxyHb (see Table 3). However, oxyHb and

deoxyHb are independent variables. Because the signal-to-

noise ratio of estimated tHb and oxyHb is much higher

than that of deoxyHb, the tHb and oxyHb pair and tHb

and deoxyHb pair are more robust predictors than the

oxyHb and deoxyHb pair and are used with and without

Table 4 Training data set resultsa

Tumor pathologic
variables

Receptors
(core biopsy)

Pretreatment
hemoglobin parameters

Sensitivity (%)/
specificity (%)

PPV (%)/
NPV (%)

AUC (%) (95% CI)

IDC/ILC, NS, MC 76.2/74.3 65.7/83.1 76.9 (59.60; 95.46)

IDC/ILC, NS, MC TN, HER2, ER 71.1/80.7 70.5/81.6 87.1 (71.54; 98.63)

tHb 58.1/84.5 69.9 /75.9 76.7 (53.01; 96.64)

oxyHb 52.9/86.1 71.5/73.8 76.8 (54.60; 94.34)

deoxyHb 59.3/81.8 68.1/75.9 67.4 (40.97; 90.09)

tHb, oxyHb 60.3/87.9 77.1/77.5 78.6 (55.46; 97.08)

tHb, deoxyHb 64.1/85.2 74.3/78.5 74.6 (55.58; 97.31)

IDC/ILC, NS, MC TN, HER2, ER tHb 80.5/87.6 80.8/87.5 92.9 (82.76; 99.70)

IDC/ILC, NS, MC TN, HER2, ER oxyHb 79.9 /91.4 85.2/87.9 96.1 (88.91; 100.0)

IDC/ILC, NS, MC TN, HER2, ER deoxyHb 73.0/82.0 72.9/82.9 88.9 (74.94; 98.94)

IDC/ILC, NS, MC TN, HER2, ER tHb, oxyHb 92.5/95.2 92.5/95.2 98.2 (93.68; 100.0)

IDC/ILC, NS, MC TN, HER2, ER tHb, deoxyHb 83.9/87.2 80.7/89.7 95.1 (86.94; 99.75)

aCI, confidence interval; deoxyHb, Deoxygenated hemoglobin; ER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; IDC, Invasive ductal

carcinoma; IDC/ILC, Invasive mammary carcinoma with mixed ductal and lobular features; ILC, Invasive lobular carcinoma; MC, Mitotic count; NS, Nottingham

score; oxyHb, Oxygenated hemoglobin; NPV, Negative predictive value; PPV, Positive predictive value; tHb, Total hemoglobin; TN, Triple-negative.
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pathological variables as predictors for analysis. Both sets

of the tHb and oxyHb pair and the tHb and deoxyHb pair

contain information about tumor oxygenated and deo-

xygenated blood distributions. The combined predictor

deoxyHb with tumor pathological variables performs bet-

ter than deoxyHb alone (P <0.001). The validation data

suggest that the combined predictor variables of tHb or

oxyHb with tumor pathological variables are strong pre-

dictors of a patient’s final pathological response and are

more informative than the other three sets of combined

predictors.

Statistics of prediction sensitivity, specificity, PPV and

NPV obtained from two sets of predictor variables of

tumor characteristics, tumor pathological variables and

five pairs of hemoglobin predictor variables without and

with tumor pathological variables are shown in Figure 3

(training) and Figure 4 (testing), respectively. For the

training data shown in Figure 3 and Table 4, three pairs of

hemoglobin predictors of tHb, oxyHb, tHboxyHb com-

bined with tumor pathological variables significantly im-

prove prediction sensitivity, specificity, PPV and NPV as

compared with corresponding hemoglobin predictors

alone (P ≤ 0.012) and tumor pathological variables alone

(P ≤ 0.006). deoxyHb combined with pathological variables

does not improve the performance of these measures

as compared with tumor pathological variables alone;

tHbdeoxyHb combined with pathological variables does

not improve specificity, but it does improve the other

three measures. For the testing data shown in Figure 4

and Table 5, all hemoglobin predictors, except deoxyHb,

combined with pathological variables significantly improve

the prediction sensitivity and NPV as compared with

tumor pathological variables alone (P ≤ 0.05). On average,

the sensitivity and NPV of tHb, oxyHb, tHboxyHb,

tHbdeoxyHb are 78.7% (P <0.001), 76.9% (P <0.001), 73.2%

(P = 0.001), 71.5% (P = 0.001) and 93.6% (P <0.001), and

85.2% (P <0.001), 84.9% (P <0.001) and 84.3% (P = 0.002),

respectively, as compared with 56.8% and 70.9% obtained

from pathological variables alone. However, no statistically

significant improvement is achieved in specificity and PPV

as compared with prediction using tumor pathological

variables alone. In general, all hemoglobin predictors

combined with pathological variables perform better than

hemoglobin predictors alone, except deoxyHb. tHb com-

bined with the pathological variables is the best predictor,

with an average 79% sensitivity, 94% specificity, 90%

PPV and 86% NPV. The second best predictor is oxyHb

combined with pathological variables, with corresponding

measures of 77%, 85%, 83% and 83%, respectively.

Taken together, our findings based on AUC, sensitivity,

specificity, PPV and NPV support the hypothesis that tHb

and oxyHb combined with tumor pathological variables

are strong pretreatment predictors of patient final patho-

logical response. Figure 5 shows a typical example of ROC

curves obtained from tumor pathological variables only

(Figure 5a), tHb without pathological variables (Figure 5b)

and tHb with pathological variables (Figure 5c), oxyHb

without pathological variables (Figure 5d) and oxyHb with

pathological variables. The AUC values computed by

pROC are 82.9%, 80.0%, 90%, 84.3% and 90%, respectively.

The 95% CI value is also given in each figure.

Different breast cancers have different degrees of che-

motherapy sensitivity. Conventionally used tumor his-

topathological variables have been used to predict a

patient’s pathological response. Immunohistochemistry

results of ER, PR and HER2 status have been routinely

evaluated in assisting and guiding the treatment selec-

tion. High tumor grade, ER−, triple-negative and HER2+

Table 5 Testing data set resultsa

Tumor pathologic
variables

Receptors
(core biopsy)

Pretreatment
hemoglobin parameters

Sensitivity (%)/
specificity (%)

PPV (%)/
NPV (%)

AUC (%) (95% CI)

IDC/ILC, NS, MC 51.8/68.1 57.9/63.3 80.0 (51.11; 99.29)

IDC/ILC, NS, MC TN, HER2, ER 56.8/88.9 84.8/70.9 84.0 (57.16; 99.03)

tHb 63.2/82.1 75.0/72.8 87.3 (62.13; 99.82)

oxyHb 60.8/81.9 73.6/71.4 84.0 (56.01; 100.0)

deoxyHb 52.2/89.6 80.4/69.1 72.2 (36.55; 97.67)

tHb, oxyHb 64.4/82.1 75.2/73.4 85.0 (57.61; 99.82)

tHb, deoxyHb 60.7/80.6 73.3/70.9 79.5 (56.32; 97.82)

IDC/ILC, NS, MC TN, HER2, ER tHb 78.7/93.6 89.5/85.9 92.4 (79.42; 99.80)

IDC/ILC, NS, MC TN, HER2, ER oxyHb 76.9/85.2 82.6/83.3 90.6 (74.36; 99.35)

IDC/ILC, NS, MC TN, HER2, ER deoxyHb 60.1/85.0 78.4/71.8 85.0 (58.78; 98.95)

IDC/ILC, NS, MC TN, HER2, ER tHb, oxyHb 73.2/84.9 81.8/81.7 88.6 (72.21; 97.51)

IDC/ILC, NS, MC TN, HER2, ER tHb, deoxyHb 71.5/84.3 79.5/79.1 85.0 (63.09; 99.53)

aCI, confidence interval; deoxyHb, Deoxygenated hemoglobin; ER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; IDC, Invasive ductal

carcinoma; IDC/ILC, Invasive mammary carcinoma with mixed ductal and lobular features; ILC, Invasive lobular carcinoma; MC, Mitotic count; NS, Nottingham

score; oxyHb, Oxygenated hemoglobin; NPV, Negative predictive value; PPV, Positive predictive value; tHb, Total hemoglobin; TN, Triple-negative.
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Figure 3 Training data. Box-and-whisker plot of sensitivity (a), specificity (b), positive predictive value (c), and negative predictive value (d) obtained

from 12 prediction models with predictor variables given along the x-axis. The predictor variables are the same as those given in Figure 2.
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Figure 4 Testing data. Box-and-whisker plot of sensitivity (a), specificity (b), positive predictive value (c), and negative predictive value (d) obtained

from 12 prediction models with predictor variables given along the x-axis. The predictor variables are the same as those given in Figure 2.
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Figure 5 (See legend on next page.)
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cancers have significantly higher rates of response to

chemotherapy than other breast cancers. However, these

models have always fallen short. Our data derived from

34 patients demonstrate that 67% of triple-negative tu-

mors were Miller-Payne grade 5 and 83.3% of the HER2

+ tumors were grade 4 or 5 (Table 6). On the basis of

NIR pretreatment tHb level, we could predict responders

with 80% accuracy for grades 4 and 5 tumors. It is

known that ER+ tumors do not respond well to standard

paclitaxel-based regimens. Our data show that 80.9% of

the ER+ tumors were Miller-Payne grades 1 to 3. On the

basis of NIR pretreatment tHb level, we could predict

nonresponders with 69% accuracy for grades 1 and 2

tumors and 87.5% accuracy for grade 3 tumors (Table 6).

This result is comparable to that based on receptor

markers.

Our current study shows that when the pretreatment

measurements of hemoglobin content are used together

with histopathologic parameters as predictors in a multi-

variable prediction model, a substantially improved esti-

mation of patient treatment outcome, especially prediction

sensitivity and NPV, is obtained.

Ueda et al., using a diffuse optical spectroscopy

technique, found that the pretreatment tumor oxygen

saturation correlates with pathological complete re-

sponse for patients undergoing NAC [31]. Our

hemoglobin parameters were estimated from max-

imum values of US-guided tomographic images with

spatial and depth distributions. In tomography, oxy-

gen saturation = oxyHb/tHb × 100% can be obtained

pixel by pixel using tHb as a denominator, and it is

not robust for pixels with small tHb values. There-

fore, we did not compute oxygen saturation directly;

however, we show in Figure 1 that pretreatment tHb,

oxyHb, deoxyHb predict responders from nonre-

sponders with statistical significance.

ER− cancers are typically high-grade and more aggres-

sive. Our study shows that tHb and oxyHb inversely cor-

relate with ER expression. A related study was reported by

Koukourakis et al., who found an inverse association of

microvascular density with ER expression [36]. In another

study [37], Fuckar et al. reported a negative correlation

between vascular endothelial growth factor expression

and ER status. These ER− negative tumors were cha-

racterized by higher proliferative activity. The precise

mechanisms for oncogenic and angiogenic activities in

ER− breast cancer are not fully understood [38].

This study has limitations. First, the patient sample is

small, in particular the ILC, HER2+ and triple-negative

tumor cases. A large sample size would make the logistic

regression results more reliable because of the increased

number of observations in each case and thus the in-

creased accuracy in estimation of regression parameters

and improved prediction. However, the predictive values

of ILC, HER2+ and triple-negative tumors for NAC are

well-documented in the literature, and the new know-

ledge reported in this study is the improved prediction

of NAC by addition of hemoglobin parameters. Overfit-

ting could occur when three hemoglobin predictors, as

well as pretreatment optical scatter data, in addition to

tumor pathological variables were used as predictor vari-

ables to fit a limited set of training data points. As a re-

sult, the model memorizes the training data and is less

robust to generalize to an independent testing set. Cur-

rently, a larger-scale patient study is being designed to

validate the initial results reported in this article. More

data could allow robust estimation and validation of

additional predictor variables, such as pretreatment op-

tical scatter data and new biomarkers. Once validated

with a larger patient pool, it may serve as a benchmark

for preoperative chemotherapy prediction and also for

integrating newly discovered molecular markers and

(See figure on previous page.)

Figure 5 Typical example of receiver operating characteristic curves obtained with pathological variables. (a) Receiver operating

characteristic curve (ROC) obtained from tumor pathological variables only. (b) ROC obtained from tumor tHb only. (c) ROC obtained

from tHb with pathological variables. (d) ROC obtained from oxyHb only. (e) ROC obtained from oxyHb. The 95% confidence interval is

also given in each figure.

Table 6 Distributions of tumor receptor status and tumor responses based on Miller-Payne gradesa

Miller-Payne grades 1 and 2 Miller-Payne grade 3 Miller-Payne grade 4 Miller-Payne grade 5

Triple-negative (n = 6) n = 1 (17%, 1/6) n = 1 (17%, 1/6) n = 4 (67%, 4/6)

ER− HER2+ (n = 6) n = 1 (16.7%, 1/6) n = 3 (50%, 3/6) n = 2 (33.3%, 2/6)

ER+ HER2− (n = 21) n = 12(57.1%, 12/21) n = 5(23.8%, 5/21) n = 2 (9.5%, 2/21) n = 2 (9.5%, 2/21)

ER− PR + HER2− (n = 1) n = 1 (100%)

Pretreatment tHb > Th n = 4 (31%, 4/13) n = 1 (12.5%, 1/8) n = 3 (60%, 3/5) n = 9 (90%, 9/10)

Pretreatment tHb < Thb n = 9 (69%, 9/13) n = 7 (87.5%, 7/8) n = 2 (40%, 2/5) n = 1 (10%, 1/10)

aER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; tHb, Total hemoglobin. bPrediction based on pretreatment tHb. Th is the threshold used

to separate responders (> Th = 90 μmol/L) from nonresponders (< Th). This threshold Th was selected in a previously reported study [30].
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guiding tailored therapy. Second, patients in the study

were treated with standard chemotherapy regimens, in-

cluding anthracyclines, taxanes and trastuzumab. The

applicability of the prediction model to novel targeted

agents remains to be tested in future clinical trials.

Conclusions
As demonstrated by ROC analysis on testing data, tumor

pathologic predictor variables achieved an average pre-

diction sensitivity of 56.8%, specificity of 88.9%, PPV of

84.8%, NPV of 70.9% and AUC of 84.0%. tHb combined

with the tumor pathological variables is the best predictor,

with corresponding measures of 79%, 94%, 90%, 86% and

92.4%. oxyHb combined with pathological variables is

the second best predictor, with corresponding measures of

77%, 85%, 83%, 83% and 90.6%. The addition of tHb or

oxyHb significantly improves the prediction sensitivity,

NPV and AUC as compared with using tumor patho-

logical variables alone. Our initial data indicate that

combining widely used breast tumor pathologic variables

with novel tumor functional parameters of hemoglobin

(assessed by using a US-NIR technique) as predictor vari-

ables may provide a powerful tool for predicting patient

pathological response before the initiation of neoadjuvant

chemotherapy.
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