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Pathological Brain Detection in Magnetic Resonance Imaging
Scanning by Wavelet Entropy and Hybridization of

Biogeography-Based Optimization and Particle Swarm Optimization

Yudong Zhang1, 5, *, Shuihua Wang1, 2, Zhengchao Dong3,
Preetha Phillip4, Genlin Ji1, and Jiquan Yang5

Abstract—(Background) We proposed a novel computer-aided diagnosis (CAD) system based on the
hybridization of biogeography-based optimization (BBO) and particle swarm optimization (PSO), with
the goal of detecting pathological brains in MRI scanning. (Method) The proposed method used
wavelet entropy (WE) to extract features from MR brain images, followed by feed-forward neural
network (FNN) with training method of a Hybridization of BBO and PSO (HBP), which combined
the exploration ability of BBO and exploitation ability of PSO. (Results) The 10 repetition of k-fold
cross validation result showed that the proposed HBP outperformed existing FNN training methods
and that the proposed WE + HBP-FNN outperformed fourteen state-of-the-art CAD systems of MR
brain classification in terms of classification accuracy. The proposed method achieved accuracy of 100%,
100%, and 99.49% over Dataset-66, Dataset-160, and Dataset-255, respectively. The offline learning cost
208.2510 s for Dataset-255, and merely 0.053s for online prediction. (Conclusion) The proposed WE +
HBP-FNN method achieves nearly perfect detection pathological brains in MRI scanning.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a low-risk, fast, non-invasive imaging technique that produces
high quality images of the anatomical structures of the human body, especially in the brain, and provides
rich information for clinical diagnosis and biomedical research [1]. Soft tissue structures are clearer and
more detailed with MRI than other imaging modalities [2]. Numerous researches were performed, trying
not only to improve the magnetic resonance (MR) image quality, but also to seek novel methods for
easier and quicker pre-clinical diagnosis from MR images.

The problem arose that existing manual methods of analysis and interpretation were tedious, time
consuming, costly, and irreproducible, due to the huge amount of imaging data. This necessitated the
requirement to develop automatic computer-aided diagnosis (CAD) tool. One of the most discriminant
features of a normal brain was its symmetry that was obvious in either the axial or the coronal direction.
However, the asymmetry along an axial MR brain suggested a pathological brain. This symmetry-
asymmetry can be modelled by various image processing techniques and can be used to detect foci as
either tumors or neurodegenerative diseases [3]. Note that the CAD is to assist radiologists in the way
of providing a second opinion. The final decision is made by radiologists [4].
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The aim of this paper was to improve the performances of existing CAD systems for pathological
brain detection. The main contribution of this study lied in the improvements of methodology: (i) We
used wavelet entropy to replace commonly used discrete wavelet transform. (ii) We used feed-forward
neural network (FNN) as classifier, and proposed a novel optimization algorithm based on biogeography-
based optimization (BBO) and particle swarm optimization (PSO), in order to train the FNN. (iii) We
used k-fold stratified cross validation to enhance the generalization ability of the CAD system.

The structure of the rest is organized as follows. Section 2 summarizes the state-of-the-art methods.
Section 3 describes the methodology of the proposed system. Section 4 contains the experiment results.
Section 5 discusses the results and the methodology. Section 6 concludes the paper and presents future
work. For the ease of reading, we explained the acronyms in Table A1 (please refer to the appendix).

2. LITERATURE REVIEW

2.1. Existing Pathological Brain Detection Systems

In the last decade, various CAD systems were proposed for pathological brain detection. Chaplot et
al. [5] used the approximation coefficients obtained by discrete wavelet transform (DWT), and
employed the self-organizing map (SOM) neural network and support vector machine (SVM). Maitra
and Chatterjee [6] employed the Slantlet transform, which is an improved version of DWT. Their
feature vector of each image is created by considering the magnitudes of Slantlet transform outputs
corresponding to six spatial positions chosen according to a specific logic. Then, they used the common
back-propagation neural network (BPNN). El-Dahshan et al. [7] extracted the approximation and detail
coefficients of 3-level DWT, reduced the coefficients by principal component analysis (PCA), and used
feed-forward back propagation artificial neural network (FP-ANN) and K-nearest neighbors (KNN)
classifiers. Zhang et al. [8] proposed using DWT for feature extraction, PCA for feature reduction,
and FNN with scaled chaotic artificial bee colony (SCABC) as classifier. Based on it, Zhang et
al. [9] suggested to replace SCABC with scaled conjugate gradient (SCG) method. Ramasamy and
Anandhakumar [10] used fast-Fourier-transform based expectation-maximization Gaussian mixture
model for brain tissue classification of MR images. Zhang and Wu [11] proposed to use kernel SVM
(kSVM), and they suggested three new kernels as homogeneous polynomial (HPOL), inhomogeneous
polynomial (IPOL), and Gaussian radial basis (GRB). Saritha et al. [12] proposed a novel feature of
wavelet-entropy (WE), and employed spider-web plots (SWP) to further reduce features. Afterwards,
they used the probabilistic neural network (PNN). Zhang et al. [13] suggested that removing spider-
web-plot yielded the same classification performance. Das et al. [14] proposed to use Ripplet transform
(RT) + PCA + least square SVM (LS-SVM), and the 5 × 5 CV shows high classification accuracies.
Kalbkhani et al. [15] modelled the detail coefficients of 2-level DWT by generalized autoregressive
conditional heteroscedasticity (GARCH) statistical model, and the parameters of GARCH model are
considered as the primary feature vector. Their classifier was chosen as KNN and SVM models. Padma
and Sukanesh [16] used combined wavelet statistical texture features, to segment and classify Alzheimer’s
disease (AD) benign and malignant tumor slices. El-Dahshan et al. [17] used the feedback pulse-coupled
neural network for image segmentation, the DWT for features extraction, the PCA for reducing the
dimensionality of the wavelet coefficients, and the FBPNN to classify inputs into normal or abnormal.
The classification accuracy on both training and test images is 99%, which was significantly good.
Zhang et al. [18] used discrete wavelet packet transform (DWPT), and harnessed Tsallis entropy (TE)
to replace traditional Shannon entropy (SE) with the aim of obtaining features from DWPT coefficients.
Then, they used a generalized eigenvalue proximal SVM (GEPSVM). Zhou et al. [19] used wavelet-
entropy as the feature space, then they employed a Naive Bayes classifier (NBC) classification method.
Their results over 64 images showed that the sensitivity of the classifier is 94.50%, the specificity
91.70%, the overall accuracy 92.60%. Damodharan and Raghavan [20] combined tissue segmentation and
neural network for brain tumor detection. Yang et al. [21] selected wavelet-energy as the features, and
introduced biogeography-based optimization (BBO) to train the SVM. Their method reached 97.78%
accuracy on 90 T2-weighted MR brain images. Zhang et al. [22] used wavelet-energy (WEnergy) and
SVM. Their results only obtained 82.69% accuracy. Nazir et al. [23] suggested to use filters for the
removal of noises, and extracted color moments as mean features. Finally, they achieved an overall
accuracy of 91.8%. Zhang et al. [24] suggested to use a 3D eigenbrain method to detect subjects and
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brain regions related to AD. The accuracy achieved 92.36 ± 0.94. Harikumar and Kumar [25] analyzed
the performance of ANN, in classification of medical images using wavelets as feature extractor. Good
classification percentage of 96% was achieved using the RBF when Daubechies (db4) wavelet based
feature extraction was used. Wang et al. [26] suggested to use stationary wavelet transform (SWT)
to replace DWT, and then they proposed a hybridization of PSO and ABC (HPA) algorithm to train
the classifier. Zhang et al. [27] proposed a novel classification system that implemented 3D discrete
wavelet transform (3D-DWT) to extract wavelet coefficients the volumetric image. The triplets (energy,
variance, and Shannon entropy) of all subbands coefficients of 3D-DWT were obtained as feature vector.
They used Winner-Takes-All (WTA) strategy for the multiclass SVM. The results showed an overall
accuracy of 81.5%.

All above-mentioned methods achieved promising results, nevertheless, most methods suffered from
three points:

First, DWT or similar techniques were commonly used in pathological brain detection; however,
they required large storage and were computationally expensive. Therefore, we proposed to extract
entropy from the wavelet approximation coefficients [28]. Such a reduction leads to less number of data
values for following procedures.

Second, their classifier performed well on training image, but poorly on new query images. To
address this, we used K-fold stratified cross validation, with the aim of enhancing the generalization
ability of the CAD system. In addition, the feed-forward neural network (FNN) [29] was chosen as
the classifier because it had advantages that can classify nonlinear separable patterns and approximate
an arbitrary continuous function. However, how to find the optimal parameters of FNN is a difficult
task because the search algorithms are easily trapped in local extrema. To address this problem, we
proposed a novel optimization algorithm that is a hybridization method of both BBO and PSO.

Third, their algorithms were test on a small dataset (66 images) or even smaller, which may
undermine the reliability. Therefore, we tested the proposed method on three benchmark datasets,
which consisted of 66, 160, and 255 images, respectively.

2.2. Wavelet-Entropy

The discrete wavelet transform (DWT) is a powerful implementation of the wavelet transform (WT)
using the dyadic scales and positions [30]. Applying this technique to MR images, there are 4 subband
(LL, LH, HH, HL) images at each scale. The subband LL is used for the next 2D-DWT. The LL
subband can be regarded as the approximation component of the image, while the LH, HL, and HH
subbands can be regarded as the detailed components of the image. As the level of the decomposition
increased, we obtained more compact yet coarser approximation components. Thus, DWT provides a
simple hierarchical framework for interpreting the image information.

Usually DWT coefficients cost a mass of memory storage; hence, entropy is used to further extract
features from DWT coefficients [31]. Entropy S was a statistical measure of randomness, associated
with the order of irreversible processes from a traditional point of view. It was then redefined as as
a measure of uncertainty regarding the information content of a system as Shannon entropy [18] as
S = −∑

pi log2(pi), where i represents the greylevel of reconstructed coefficient, pi the probability of
greylevel of i. Here we treated the subband coefficients as a grayscale image.

Following the paper of Saritha et al. [12], we used 6-level db4 wavelet, and the set of wavelet entropy
(WE) was calculated as the entropy of wavelet approximation components at 6-levels (LL1, LL2, LL3,
LL4, LL5, and LL6). The reasons are threefold: First, average entropy of high-level decomposition
approximates to zero [12], hence 6-level is appropriate. Next, db4 is good for smoothly varying signals
like MR images of brain [5]. Third, approximation coefficients provide more information than detailed
coefficients [28].

2.3. Feed-forward Neural Network

After extracting and reducing the features from the MR brain images, we feed them to the classifier.
Classification methods consist of two categories [32]: supervised classification and unsupervised
classification. Both achieved satisfactory results; however, supervised classification performed better
than unsupervised classification in terms of classification accuracy (successful classification rate) [33].
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We chose the latter category and used a typical supervised classification method: feedforward
neural network (FNN) as the classifier. It can classify nonlinear separable patterns and approximate
an arbitrary continuous function [34], it is widely used in pattern classification and does not need any
information about the probability distribution and a priori probabilities of different classes [35].

The training vectors (i.e., features) were presented to the FNN in batch mode. The general one-
hidden-layer model of FNN consists of a structure of three layers: input layer, hidden layer, and output
layer. Nodes of each adjacent layer are connected completely and directly to form the links. Each link
has a weighted value that presents the relational degree between two nodes.

The training of FNN can be regarded as an optimization problem. The variables of the optimization
problem can be presented as the combination of the connection weight matrix between the input and
hidden layers, and between the hidden and output layers. The objective function is written as the
average mean squared error (MSE) of the difference between output and target value.

In this study, considering that there are 6 features remaining, the structure of the FNN is set to
6-10-1. The input neurons NI correspond to the number of features as 6. The number of hidden neurons
NH is set to 10 by information-entropy criteria [36]. The number of output neurons NO corresponds to
the number of classes as 1 (true for pathological brain and false for normal brain).

2.4. Traditional Optimization Methods

There were a variety of optimization methods for training the weights of FNN, such as back-propagation
(BP) [37], momentum BP (MBP) [38], genetic algorithm (GA) [39], simulated annealing (SA) [40],
artificial bee colony (ABC) [41], BBO [42], particle swarm optimization (PSO) [43]. Among them, the
BBO and PSO perform excellent for various applications.

2.4.1. Biogeography-Based Optimization

Biogeography-based optimization (BBO) was inspired by biogeography, which describes speciation and
migration of species between isolated habitats, and the extinction of species [44]. Habitats friendly to
life are termed to have a high habitat suitability index (HSI), and vice versa. Features that correlate
with HSI are called suitability index variables (SIV). Like other bio-inspired algorithms, the SIV and
HSI are considered as search space and objective function, respectively [45].

Habitats with high HSI have not only a high emigration rate, but also a low immigration rate,
because they already support many species. Species that migrate to this kind of habitat will tend to die
even if it has high HSI, because there is too much competition for resources from other species. On the
other hand, habitats with low HSI have both a high emigration rate and a low immigration rate; the
reason is not because species want to immigrate, but because there is a lot of resources for additional
species [46].

Following common convention, we assumed a linear relation between rates and number of species,
and gave the definition of the immigration and emigration rates of habitats that contains S species as
follows:

λS = I(1 − S/Smax), μS = ES/Smax (1)

where the λ and μ represent the immigration and emigration probability, respectively. I and E represent
the maximum immigration and emigration rate, respectively. Smax is the maximum number of species
which the habitat can support, and S0 the equilibrium species count. The emigration and immigration
rates are used to share information between habitats. Consider the special case E = I, we have
λS + μS = E.

Next, consider the probability PS that the habitat contains exactly S species. PS changes from
time t to time (t + Δt) as

PS(t + Δt) = PS(t) (1 − λSΔt − μSΔt) + PS−1λS−1Δt + PS+1μS+1Δt (2)

The left term of the equation represents the probability of having S species at time (t + Δt). The right
term of the equation consists of three explanations [42]: (1) There were S species at time t, and no
immigration or emigration occurred during Δt; (2) There were (S − 1) species at time t, and only one
species immigrated; (3) There were (S + 1) species at time t, and one species emigrated.
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Now, we need to discuss how the biogeography theory can be applied to optimization problems.
Emigration and immigration rates of each habitat are used to share information among the ecosystem.
With modification probability Pmod , we modify solutions Hi and Hj in the way that we use the
immigration rate of Hi and emigration rate of Hj to decide some SIVs of Hj be migrated to some
SIVs of Hi.

Mutation was simulated in the SIV level. Very high and very low HSI solutions are equally
improbable, nevertheless, medium HSI solutions are relatively probable. Above idea can be implemented
as a mutation rate m, which is inversely proportional to the solution probability PS .

Elitism was also included in standard BBO, in order to retain the best solutions in the ecosystem.
Hence, the mutation approach will not impair the high HSI habitats. Elitism is implemented by setting
λ = 0 for the p best habitats, where p is a predefined elitism parameter. In closing, the pseudocode of
BBO is listed in Table 1.

2.4.2. Particle Swarm Optimization

Particle swarm optimization (PSO) performs searching via a swarm of particles that updates from
iteration to iteration. To seek the optimal solution, each particle moves in the direction to its previously
best (pbest) position and the global best (gbest) position in the swarm.

pbest(i, t) = arg min
k=1,...,t

[f (Pi(k))] , i ∈ {1, 2, . . . , NP } (3)

gbest(t) = arg min
i=1,...,NP
k=1,...,t

[f (Pi(k))] (4)

where i denotes the particle index, NP the total number of particles, t the current iteration number, f
the fitness function, and P the position. The velocity V and position P of particles are updated by the
following equations.

Vi(t + 1) = ωVi(t) + c1r1 (pbest(i, t) − Pi(t)) + c2r2 (gbest(t) − Pi(t)) (5)
Pi(t + 1) = Pi(t) + Vi(t + 1) (6)

Table 1. Pseudocode of BBO.

Algorithm — BBO

Step 1

Initialize BBO parameters, which include a problem-dependent method of mapping problem solutions to

SIVs and habitats, the modification probability Pmod , the maximum species count Smax, the maximum

migration rates E and I , the maximum mutation rate mmax, and elite number p.

Step 2 Initialize a random set of habitats.

Step 3 Compute HSI for each habitat.

Step 4 Computer S, λ, and μ for each habitat.

Step 5 Modify the whole ecosystem by migration based on Pmod , λ and μ.

Step 6 Mutate the ecosystem based on mutate probabilities.

Step 7 Implement elitism.

Step 8 If termination criterion was met, output the best habitat, otherwise jump to Step 3.

Table 2. Pseudocode of PSO.

Algorithm — PSO

Step 1 Initialize particle’s position, and the pbest, gbest, and velocity.

Step 2 Repeat until a termination criteria is met

a. Pick random numbers: r1, r2 ∼ U (0, 1).

b. Update particle’s velocity and position;

c. Update pbest and gbest ;

Step 3 Output gbest(t) that holds the best found solution.
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where V denotes the velocity and ω the inertia weight used to balance the global exploration and local
exploitation. r1 and r2 are uniformly distributed random variables within range [0, 1]. c1 and c2 are
positive constant parameters called “acceleration coefficients” [47].

It is common to set an upper bound for the velocity parameter. “Velocity clamping” [48] was
used as a way to limit particles flying out of the search space. Another method is the “constriction
coefficient” strategy, proposed by Clerc and Kennedy [49], as an outcome of a a theoretical analysis of
swarm dynamic, in which the velocities are constricted too. The pseudocode of PSO is listed in Table 2.

2.5. Biography Particle Swarm Optimization

Mo and Xu [50] proposed a hybridization method of both BBO and PSO, and termed it as biography
particle swarm optimization (BPSO). In their method, the particle position strategy was used to modify
the habitats not selected for immigration. The pseudocode of BPSO is listed in Table 3.

Table 3. Pseudocode of BPSO.

Algorithm — BPSO

Step 1 Initialize parameters

Step 2 Evaluate the fitness for each individual

Step 3 While termination criteria is not met, do

Step 3.1 Record the previous best and neighborhood best positions of each habitat.

Step 3.2 Map the HIS to number of species S, immigration rate λ, and emigration rate μ.

Step 3.3 If a habitat is selected to be immigrated, migrate randomly selected SIVs

Else update the position of current habitat by particle position strategy

End if

Step 3.4 Mutate the worst half of the population

Step 3.5 Evaluate the fitness of each individual and sort them from best to worst, save the best two habitats

Step 4 End while

3. METHODOLOGY

Unfortunately, the GA, SA, PSO and BBO algorithms all demand expensive computational costs and
can still be easily trapped into the local best, hence would probably end up without finding the optimal
weights of the FNN.

Recently, hybridization optimization methods were proposed, since they usually combined the
advantages of two successful optimization algorithms. In this study, we aimed to combine BBO and
PSO, because the former has effective search ability (by migration operations) while its exploration
ability is poor [51], and the latter has good exploitation ability but may get stuck into local minima.

3.1. Proposed Hybridization Method

Although Mo and Xu [50] proposed the BPSO method, we proposed a novel hybridization method that
can further enhance the optimization performance by introducing a novel variable elig. We termed it as
Hybridization of BBO and PSO (HBP) algorithm. Two improvements were proposed: (i) we divided the
whole population into two sub-populations, one implements PSO and other BBO. (ii) We introduced
in the crossover (recombination) operation [52] from GA, to produce a new offspring elig from the elite
of BBO and the gbest of PSO. The former improvement combined the exploration ability of BBO and
exploitation ability of PSO, while the latter enhanced the variety of population, providing the HBP
with better global search and exploitation abilities.

Suppose that elig(i) is the ith component (dimension) of elig, and the same for elite and gbest, then
the crossover was implemented as

elig(i) =
{

elite(i) rand < Pelig

gbest(i) otherwise (7)
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Table 4. Pseudocode of HBP.

Algorithm — HBP

Step 1 Initialize the HBP parameters, and determine gbest of PSO and elite of BBO.

Step 2 Repeat until termination criterion is met

Step 3 Apply the crossover procedure to the gbest of PSO and elite of BBO to generate elig.

Step 4 Update the velocities and positions of the particles, and update the pbest of the particles and the gbest of

the population.

Step 5 Implement immigration, emigration, mutation and elitism of BBO. Determine the elite of BBO.

Step 6 Return to Step 2.

Step 7 Output the best of elig.

Figure 1. Flowchart of the proposed HBP.

where Pelig is defined as the ratio of fitness values of elite to the sum of elite and gbest.

Pelig =
felite

felite + fgbest
(8)

The pseudocode of HBP is listed in Table 4.
By introducing the variable elig, a strong relationship is offered between the elite in BBO and

the gbest in PSO, i.e., the elig works as a communication component. From another point of view,
the exploitation ability of BBO is improved through the direct use of information provided by gbest,
meanwhile, the exploration ability of PSO is enhanced through through the elite information. The gbest
of PSO is replaced with a more powerful variable elig, which is also given to replace elite in BBO. The
flowchart of the proposed HBP is displayed in Figure 1.

3.2. Dataset and CV Setting

Three benchmark MR image datasets of different sizes, (Dataset-66, Dataset-160, and Dataset-255),
were used in this study. All datasets consist of T2-weighted MR brain images in axial plane and
256× 256 in-plane resolution, which were downloaded from the website of Harvard Medical School with
URL of http://med.harvard.edu/AANLIB.

Among them, the Dataset-66 and Dataset-160 were already widely used in pathological brain
detection. They consist of normal brain images and pathological brain images from seven types of
diseases: glioma, meningioma, Alzheimer’s disease, Alzheimer’s disease plus visual agnosia, Pick’s
disease, sarcoma, and Huntington’s disease.
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Figure 2. Sample of 1 normal brain and 11 types of diseases. (a) A normal brain. (b) Glioma.
(c) Meningioma. (d) AD. (e) AD with visual agnosia. (f) Pick’s disease. (g) Sarcoma. (h) Huntington’s
disease. (i) Chronic subdural hematoma. (j) Cerebral toxoplasmosis. (k) Herpes encephalitis.
(l) Multiple sclerosis.

Table 5. Statistical characteristics and CV setting of three datasets.

Dataset
Total Training Validation

K-Fold
Normal Pathological Normal Pathological Normal Pathological

Dataset-66 18 48 15 40 3 8 6-

Dataset-160 20 140 16 112 4 28 5-

Dataset-255 35 220 28 176 7 44 5-

In addition, Das et al. [14] proposed a third dataset “Dataset-255”, which contains 11 types of
diseases, among which 7 types are the same as above, and 4 new diseases (chronic subdural hematoma,
cerebral toxoplasmosis, herpes encephalitis, and multiple sclerosis) were included. Figure 2 shows
samples of a normal brain and 11 types of diseases.

Following common convention and ease of stratified cross validation, 6-fold stratified cross validation
(CV) was used for Dataset-66, and 5-fold stratified CV was used for the other two datasets. Table 5
shows the statistical characteristics and CV setting of the three datasets used in this experiment. We
did not use a 10-fold CV because of the stratification, i.e., we would like to guarantee each fold contains
roughly the same proportions of either 7 or 11 diseases.

3.3. Proposed System

Based on FNN and HBP optimization methods, we proposed a novel classifier: HBP-FNN. From another
point of view, the proposed systems consists of two stages (Figure 3) as feature extraction by WE, and
classification by HBP-FNN. The system is in line with existing classification systems except the feature
reduction. Note that the number of extracted features was only 6, and it was unnecessary to include
a feature-reduction stage. The implementation of the whole system was two-fold: offline learning with
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Figure 3. Flowchart of the proposed system.

Table 6. Pseudocodes of the proposed system.

Phase I: Offline learning (users are scientists)

Step 1. Images were decomposed by DWT, and Entropy was implemented on the approximation coefficients.

a. 6-level db4 wavelet decomposition was performed on each brain image.

b. Entropy was calculated on all approximation components (LL1–LL6)

c. The 6 WEs are stored as the feature database.

Step 2. The set of WE features along with the corresponding class labels, were used to train the HBP-FNN.

a. Initialize a FNN with structure of 6-10-1.

b. Use k-fold cross validation and feed the feature database to FNN in batch.

c. Train the FNN by the proposed HBP algorithm.

d. Store the trained FNN for online prediction use.

Step 3. Report the classification performance.

a. Run 10 times since it is a 10-time k-fold cross validation.

b. For one-run, combine the confusion matrix generated by each fold and calculate the accuracy.

c. Average the accuracies of 10 runs and reported the averaged accuracy.

Phase II: Online prediction (users are radiologists)

Step 1. Users presented to the system the query image to be classified.

a. For a new subject, capture his/her 2D brain image containing the focus.

Step 2. WE was extracted on every query image, and was input to the previously trained HBP-FNN.

a. Obtain the 6 WEs from the query image by the method in Phase I.

b. Input the 6 WEs to the trained HBP-FNN in Phase I.

Step 3. The classifier labeled the input query image whether pathological or not.

a. The value from output neuron is binary, either true of false

b. True represents a pathological brain, and false a normal brain.

the aim of training the classifier and online prediction with the aim of detecting existence of diseases
for subjects (Table 6). Note that we did not get the size and location of the foci of those diseases.

3.4. Experiment Design

We designed four experiment tasks in this study.
I. We gave a visual illustration of WE features from a normal brain and two types of diseases.

II. We compared the proposed HBP with BP [37], MBP [38], GA [39], SA [40], 2.4.1 [41], BBO [42],
PSO [43], and BPSO [50]

III. We compared the proposed HBP-FNN with fourteen state-of-the-art classification methods as DWT
+ PCA + FP-ANN [7], DWT + PCA + KNN [7], DWT + PCA + SCABC-FNN [8], DWT + PCA
+ SVM + HPOL [11], DWT + PCA + SVM + IPOL [11], DWT + PCA + SVM + GRB [11], WE
+ SWP + PNN [12], RT + PCA + LS-SVM [14], PCNN + DWT + PCA + BPNN [17], DWPT
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+ SE + GEPSVM [18], DWPT + TE + GEPSVM [18], WE + NBC [19], WEnergy + SVM [22],
and SWT + PCA + HPA-FNN [26].

IV. We analyzed the computation time for every step of offline learning and online prediction.

4. RESULTS

The experiments were carried out on the platform of IBM machine with 3 GHz core i3 processor and
8GB RAM, running under Windows 7 operating system. Matlab 2014a was employed as the develop
platform.

4.1. Feature Illustration

First, we carried out 6-level db4 decomposition on a three MR brain images (a normal brain, a Pick’s
disease, and a Huntington’s disease). Table 7 and Table 8 show the approximation components and
their corresponding entropy values, respectively.

Table 7. The approximation components.

Level Normal Pick's disease Huntington's disease 

1

2

3

4

5

6

Table 8. WE values of Table 7.

Level Normal Pick’s Huntington’s

1 3.6039 3.9678 3.7850

2 2.8924 2.5358 2.0946

3 2.1121 1.8152 1.8229

4 1.7614 1.9777 1.9365

5 1.9631 2.4611 2.2714

6 1.9405 2.3301 2.0990
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4.2. Optimization Comparison

We compared the proposed HBP method with latest state-of-the-art optimization algorithm, BP [37],
MBP [38], GA [39], SA [40], ABC [41], BBO [42], PSO [43], and BPSO [50]. The parameters of these
algorithms were obtained using grid-searching method, and are listed in Table 9. For fair comparison,
the maximum iterative epochs of all algorithms were all set to 5000. The numbers of population were set
to 100. Each algorithm ran 20 times on the training set of MR brain images. The mean and standard
deviation (SD) of MSE of all algorithms are listed in Table 10.

Table 9. Parameters of optimization algorithms.

Algorithm Parameter/Value

BP learning rate = 0.01,

MBP learning rate = 0.01, momentum constant = 0.9

GA population = 100, crossover probability = 0.8, mutation probability = 0.1

SA
population = 100, initial temperature = 100, final temperature = 0, temperature decrease function =

“exponential”

ABC population = 100 (50 employed bees and 50 onlooker bees)

BBO
population = 100, Modification Probability = 0.95, maximum immigration rate = maximum

emigration rate = 1, maximum mutation rate = 0.1, elite number = 2

PSO population = 100, maximal velocity = 1, initial weight = 0.5, acceleration coefficient = 1

BPSO
Population = 100 (50 habitats and 50 particles), other parameters are the combination of parameters

of BBO and PSO.

HBP
Population = 100 (50 habitats and 50 particles), other parameters are the combination of parameters

of BBO and PSO.

Table 10. Comparison of training algorithms on FNN for MR brain image classification.

Algorithm Mean of MSE SD of MSE Rank

BP [37] 0.1533 0.0693 9

MBP [38] 0.1082 0.0720 8

GA [39] 0.0119 0.0046 6

SA [40] 0.0863 0.0427 7

ANC [41] 0.0072 0.0027 4

BBO [42] 0.0085 0.0035 5

PSO [43] 0.0051 0.0039 3

BPSO [50] 0.0047 0.0025 2

HBP (Proposed) 0.0042 0.0029 1

4.3. Classification Comparison

We compared the proposed method of “WE + HBP-FNN” with fourteen state-of-the-art methods.
The full explanations of the abbreviations can be found either in Section 2 or in the appendix. The
comparison result is shown in Table 11. Some authors used 5 repetition while other used 10 repetition.
In this work, the proposed method used 10 repetitions to get more robust evaluation result.

The number of correct prediction cases and its corresponding accuracy of the proposed WE +
HBP-FNN method over Dataset-255 for each fold and each run are listed in Table 12. Note that our
method obtained 100.00% accuracy over Dataset-66 and Dataset-160, so their accuracies for each fold
and each run are all 100.00%.
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Table 11. Average classification accuracy comparison.

Existing approach # of features # of runs Dataset-66 Dataset-160 Dataset-255
∗DWT+ PCA +FP-ANN [7] 7 5 97.00 96.98 95.29

∗DWT+ PCA +KNN [7] 7 5 98.00 97.54 96.79
∗DWT+ PCA +SCABC-FNN [8] 19 5 100.00 99.27 98.82

∗DWT+PCA + SVM+ HPOL [11] 19 5 98.34 96.88 95.61
∗DWT+ PCA + SVM+ IPOL [11] 19 5 100.00 98.12 97.73
∗DWT+PCA + SVM+ GRB [11] 19 5 100.00 99.38 98.82

WE+ SWP+PNN [12] 3 5 100.00 99.88 98.90
∗RT+ PCA +LS-SVM [14] 9 5 100.00 100.00 99.39

PCNN+ DWT+ PCA + BPNN [17] 7 5 100.00 98.88 98.43

DWPT+SE+ GEPSVM [18] 16 10 99.85 99.62 98.78

DWPT+TE +GEPSVM [18] 16 10 100.00 100.00 99.33

WE+ NBC [19] 7 10 92.58 91.87 90.51

WEnergy+ SVM [22] 7 10 82.58 80.13 77.76

SWT+ PCA + HPA-FNN [26] 7 10 100.00 100.00 99.45

Proposed approach # of features # of Runs Dataset-66 Dataset-160 Dataset-255

WE+HBP-FNN 6 10 100.00 100.00 99.49

(∗ Some results are obtained in Ref. [14])

Table 12. Results of WE + HBP-FNN over Dataset-255 for each fold and each run (A 10 × 5-fold
cross validation).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Run 1 51 (100.00%) 51 (100.00%) 50 (98.04%) 51 (100.00%) 51 (100.00%) 254 (99.61%)

Run 2 50 (98.04%) 51 (100.00%) 51 (100.00%) 50 (98.04%) 51 (100.00%) 253 (99.22%)

Run 3 51 (100.00%) 51 (100.00%) 51 (100.00%) 51 (100.00%) 51 (100.00%) 255 (100.00%)

Run 4 51 (100.00%) 50 (98.04%) 50 (98.04%) 51 (100.00%) 50 (98.04%) 252 (98.82%)

Run 5 51 (100.00%) 50 (98.04%) 51 (100.00%) 51 (100.00%) 51 (100.00%) 254 (99.61%)

Run 6 51 (100.00%) 51 (100.00%) 51 (100.00%) 51 (100.00%) 51 (100.00%) 255 (100.00%)

Run 7 51 (100.00%) 50 (98.04%) 50 (98.04%) 51 (100.00%) 51 (100.00%) 253 (99.22%)

Run 8 51 (100.00%) 50 (98.04%) 51 (100.00%) 51 (100.00%) 51 (100.00%) 254 (99.61%)

Run 9 51 (100.00%) 51 (100.00%) 51 (100.00%) 51 (100.00%) 50 (98.04%) 254 (99.61%)

Run 10 51 (100.00%) 50 (98.04%) 50 (98.04%) 51 (100.00%) 51 (100.00%) 253 (99.22%)

Total 2537 (99.49%)

Table 13. Computation time analysis.

Offline learning (on Dataset-255) Time (s)

WE 8.680

HBP-FNN Training 199.571

Online Prediction (on one query image) Time (s)

WE 0.052

FNN Prediction 0.001

4.4. Time Analysis

Finally, computation time was checked as another important measure of the developed system. Table 13
records the consumed time of each step of the proposed “WE + HBP-FNN” method. For the offline
learning phase, the two procedures, i.e., WE, and HBP-FNN training, cost 8.680 s and 199.571 s,
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respectively. For the online learning phase, the two procedures, i.e., WE, and FNN prediction, cost
0.052 s and 0.001 s, respectively.

5. DISCUSSION

The multi-scale and multi-resolution representations of DWT are obviously shown in Table 7. As the
decomposition increases, the size of the approximation coefficients is reduced to approximately 2−j of
original size on x and y direction. Here we chose db4 other than the Haar wavelet, because db4 is good
for smoothly varying signals as MR images of brain [5]. The values in Table 8 prove the effectiveness
of WE, because the WE values of different types have significant differences; hence, the WE is a good
informative indicator to detect pathological brains from normal brains, which is coherent with past
literature [12]. The reason behind the good performance of WE may fall in its ability to analyze
transient features of non-stationary signals, which are abundant in MR brain images.

Results in Table 10 show that the proposed HBP algorithm performs the best, obtaining the least
mean MSE of 0.0042. BPSO ranks the second with mean MSE of 0.0047. PSO ranks third with MSE
of 0.0051. BBO ranks fifth with MSE of 0.0085. It is unexpected that BBO is worse than ABC, which
ranks fourth with MSE of 0.0072. GA and SA rank 6th and 7th, respectively. SA is third worst with
MSE of 0.0863, due to its requirement of large iterative epochs [53]. The worst two algorithms are
BP and MBP, which were developed to classify linear problems. However, in this study the MR brain
classification is a nonlinear problem; hence, the output neurons are working in the saturated nonlinear
range, impairing the performance of BP and MBP [54].

From another point of view, this demonstrates the effectiveness of HBP. By using the crossover
procedure, a novel variable elig is created based on elite in BBO and gbest in PSO. The proposed
HBP not only enhances the variety of the ecosystem (population), but also improves the exploitation
ability of BBO and the exploration ability of PSO. The most distinct difference of the proposed HBP
with BPSO [50] lies in the proposed new variable elig that is the crossover result of elite of BBO and
gbest of PSO. The elig is able to enhance the variety of population, providing better global search and
exploitation abilities.

It is clear from Table 11 that the proposed “WE + HBP-FNN” obtains the highest accuracy of
100.00%, 100.00%, and 99.49% over Dataset-66, Dataset-160, and Dataset-255, respectively. The results
are better than fourteen state-of-the-art algorithms in terms of classification accuracy. The performance
of WE + HBP-FNN shows the effectiveness of this technique.

From Table 13, we can calculate that the offline learning costs totally 8.680+199.571 = 208.2510 s.
To predict a query image, the computer costs only 0.052+0.001 = 0.053 s, which is rather fast and meets
real-time requirement. The offline learning costs 208.2510 s in total, which is rather considerable time.
The reason is the training is implemented on 255 images in the dataset. Nevertheless, the prediction
procedure does not need to re-train the FNN and can obtain the classification output directly by
submitting the WE of query image to the trained FNN.

The proposed method WE + HBP-FNN is similar to WE + SWP + PNN [12], however, we did not
use the spider web plot (SWP) method, because we found that procedure did not improve the accuracy
in our published work [13]. In addition, we did not choose probabilistic neural network (PNN) because
of following three points [54]: (i) FNN can achieve higher accuracy than PNN in general [55]; (ii) PNN
is slower than FNN in predicting new cases; and (iii) PNN requires more memory space to store the
model.

The proposed method does not contain the image segmentation procedure in [17], because we
believe that the image segmentation will impair the information that was contained in original MR
image. For example, the maximum gray values will decrease to the number of segments. Another
reason is that the goal of image segmentation is to simplify the representation of an image for human
eyes. However, computers did not think unsegmented image too complicated. Hence, there is no need
to perform the “image segmentation” procedure. The final proof is that most of recent publications
about pathological brain detection did not involve segmentation procedure (See Section 2).

The proposed method largely solves the problem raised in the introduction. The contributions
of this study center in following five aspects. (i) We used WE that combined wavelet decomposition
and entropy to estimate the degree of order/disorder of a signal with a high time-frequency resolution.
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(ii) We proposed a novel optimization method as HBP that combined two successful optimization
algorithms of BBO and PSO. (iii) We proposed a novel classification method of HBP-FNN. (iv) We
proved the HBP performed the best than existing FNN training methods. (iv) We proved the proposed
WE + HBP-FNN methods achieved better classification than existing state-of-the-art methods w.r.t.
accuracy. (v) We proved the computation time of online prediction of the proposed system reached the
requirement of realistic use.

Three limitations are revealed after reconsidering the proposed system. First, FNN established
machine-oriented rules not human-oriented rules. It was hard to interpret the model of FNN. Second,
how to choose the optimal wavelet and optimal decomposition level remained a question. Third, the
computation time of training procedure should be reduced.

6. CONCLUSION AND FUTURE WORK

In this study, we employed WE to replace DWT method for feature extraction, proposed a novel
optimization method HBP, and further proposed a novel classification method of HBP-FNN, with the
aim of developing a CAD tool for detecting pathological brains. The experiments over three datasets
of different sizes demonstrated that the HBP outperformed existing FNN training methods and that
the HBP-FNN outperformed state-of-the-art MR brain classification methods in terms of classification
accuracy.

Future work should focus on the following four aspects: (i) We shall include other advanced imaging
modalities, such as DTI and MRSI [56]; (ii) The classification performance may be increased by using
other advanced wavelet families, varying decomposition level, and using other advanced entropy forms.
(iii) Additional advanced DWT variants may be tested, such as wavelet packet analysis [57], dual tree
complex wavelet transform, second generation wavelet transform, etc. (iv) Novel classification methods
will be tested, such as deep leaning, and others.
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APPENDIX A.

Table A1. Abbreviation list.

Abbreviation Definition

(A)(BP)(F)NN (Artificial) (Back propagation) (Feed-forward) Neural Network

(B)PSO (Biogeography) Particle swarm optimization

(LS)(k)SVM (Least square ) (kernel) Support vector machine

(M)BP (Momentum) back-propagation

(SC)ABC (Scaled chaotic) Artificial bee colony

AD Alzheimer’s disease
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Abbreviation Definition

BBO Biogeography-based optimization

CAD Computer-aided diagnosis

DW(P)T Discrete wavelet (packet) transform

FP-ANN Feed-forward back propagation ANN

GEPSVM Generalized eigenvalue proximal SVM

GRB Gaussian radial basis

H(I)POL Homogeneous (Inhomogeneous) polynomial

HBP Hybridization of BBO and PSO

HPA Hybridization of PSO and ABC

HSI Habitat suitability index

KNN K-nearest neighbors

MR(I) Magnetic resonance (imaging)

MSE Mean squared error

NBC Naive Bayes classifier

PNN Probabilistic neural network

RT Ripplet transform

SCG Scaled conjugate gradient

SIV Suitability index variable

SOM Self-organizing map

SWP Spider-web plot

SWT Stationary wavelet transform
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