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Pathological Element-Based Active Device Models

and Their Application to Symbolic Analysis
C. Sánchez-López, Member, IEEE, F. V. Fernández, E. Tlelo-Cuautle, Senior Member, IEEE,

and S. X.-D. Tan, Senior Member, IEEE

Abstract—This paper proposes new pathological element-based
active device models which can be used in analysis tasks of
linear(ized) analog circuits. Nullators and norators along with
the Voltage Mirror-Current Mirror (VM-CM) pair (collectively
known as pathological elements) are used to model the behavior
of active devices in voltage-, current- and mixed-mode, also
considering parasitic elements. Since analog circuits are trans-
formed to nullor-based equivalent circuits or VM-CM pairs or
as a combination of both, standard nodal analysis can be used
to formulate the admittance matrix. We present a formulation
method in order to build the Nodal Admittance (NA) matrix
of nullor-equivalent circuits, where the order of the matrix is
given by the number of nodes minus the number of nullors.
Since pathological elements are used to model the behavior of
active devices, we introduce a more efficient formulation method
in order to compute small-signal characteristics of pathological
element-based equivalent circuits, where the order of the NA
matrix is given by the number of nodes minus the number
of pathological elements. Examples are discussed in order to
illustrate the potential of the proposed pathological element-
based active device models and the new formulation method in
performing symbolic analysis of analog circuits. The improved
formulation method is compared with traditional formulation
methods, showing that the NA matrix is more compact and the
generation of non-zero coefficients is reduced. As a consequence,
the proposed formulation method is the most efficient one
reported so far, since the CPU-time and memory consumption
is reduced when recursive determinant-expansion techniques are
used to solve the NA matrix.

I. INTRODUCTION

S
YMBOLIC analysis is a powerful tool which is used to

model the behavior of a circuit in terms of symbolic

parameters [1]-[9]. Symbolic expressions not only give better

insight on the behavior of the circuit, but can also be used

in synthesis and optimization procedures [3], [4], [6], [10].

Traditionally, the behavior of active devices is modeled with

voltage- or current-controlled voltage or current sources. Then,

symbolic methods, such as: tree enumeration methods, signal-

flow-graph methods, parameter extraction methods, numerical

interpolation methods and determinant expansion methods [2]-

[4] are used in order to compute the symbolic expressions.
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Particularly, matrix-based formulation methods such as: nodal

analysis, Modified Nodal Analysis (MNA) or tableau analysis,

use the element stamp procedure to fill the admittance matrix.

However, for the case of nodal analysis, only compatible

elements can be introduced. This disadvantage has been over-

come by the MNA technique, in which additional columns

and rows are incorporated into the admittance matrix and

the non-compatible elements are readily included by using a

stamp [2]-[4]. However, not only the size of the admittance

matrix increases with the inclusion of controlled sources,

since it depends on the number of node voltages and on the

branch currents associated to the type of elements contained

in the circuit, but the number of non-zero coefficients into this

matrix is also increased. As a consequence, the CPU-time and

memory consumption used to solve the system of equations

increases [4], [8].

Let Y be a square matrix given by

Y =

















Y1,1 · · · Y1,j · · · Y1,q

...
. . .

...
. . .

...

Yi,1 · · · Yi,j · · · Yi,q

...
. . .

...
. . .

...

Yq,1 · · · Yq,j · · · Yq,q

















(1)

The determinant of (1) can be obtained by applying Laplace

expansion as

|Y | =

q
∑

i=1

Yi,j(−1)i+j |YYi,j
| (2)

or

|Y | =

q
∑

j=1

Yi,j(−1)i+j |YYi,j
| (3)

where Yi,j is a non-zero coefficient of the matrix Y in the most

sparse row i or column j, and |YYi,j
| is the minor with respect

to Yi,j , which is also a determinant and can be computed using

the same rules. From (1), (2) and (3) it can be inferred that for

a full matrix, the computational complexity of the symbolic

calculation of the determinant of (1), is O(q!) [11], where q is

the rank of the matrix. This cost can be significantly reduced,

e.g. by exploiting matrix sparsity, that is directly given by the

number of non-zero coefficients. Therefore, the complexity of

the solution algorithm depends on the size of the matrix and

of the number of non-zero coefficients. On the other hand, the

determinant of (1) can also be obtained by applying

|Y | = Yi,j(−1)i+j |YYi,j
| + |Y

Y i,j
| (4)
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where |Y
Y i,j

| is a matrix obtained from (1) by setting Yi,j = 0.

Note that (2) and (3) are special cases of (4). Based on

(4), the determinant of (1) can be represented with compact

graphs by using the Determinant Decision Diagrams (DDDs)

concept [12]-[14]. Each non-zero coefficient of the matrix

is considered as one distinct symbol and each of them is

represented into DDDs as one non-terminal vertex. Because

DDDs are based in the manipulation of non-zero coefficients

in order to expand the determinant of (1), the complexity to

compute the determinant of a full matrix with an optimal order

of the non-zero coefficients is given by O(q · 2q−1) [11]. But

even if modern simplification during generation techniques,

that only calculate the dominant part of the symbolic solution,

are going to be applied to the solution of (1), the computational

complexity of best algorithms still grow exponentially with

matrix size and the number of non-zero coefficients [15], [16].

Therefore, the CPU time and memory consumption of modern

symbolic analysis algorithms is dramatically improved by

applying formulation techniques of network equations yielding

small and sparse matrices.

Regarding formulation methods, new stamps associated to

the four types of controlled sources as well as for the nullors,

op-amps, transistors and impedance converters, have been

proposed in [17], [18]. Unlike the classical stamps which are

deduced directly from the behavior of the active devices by

using Kirchhoff’s current law [2], [4], the new stamps have

been obtained by using the concept of matrix port-equivalence

and limit-variables [17], [18]. However, although controlled

sources can directly be used into the nodal analysis method,

infinity-limits can only be applied once fully-symbolic small-

signal characteristics of analog circuits are computed [19].

Therefore, valuable computer resources will be wasted in gen-

erating symbolic terms that will be pruned when the limits are

applied on the symbolic analysis results. Other limitations of

this method are: the size of the Nodal Admittance (NA) matrix

depends on the number of nodes as independent variables,

the number of non-zero coefficients into the NA matrix is

increased and as a consequence, the solution of the system of

equations is more complex.

On the other hand, since its introduction in 1964 by Carlin

[20], the nullor has proven its usefulness in the areas of

modeling, synthesis and analysis of analog circuits in several

levels of abstraction [21]-[28]. Despite some active devices

can be ideally modeled with the nullor, still other elements,

like resistors, must be added to the equivalent circuit to

adequately model the behavior of some active devices, such as:

the normal and inverting second generation current conveyors

(CCII± and ICCII±) with single or multiple outputs [29],

[30]. As a consequence, the number of non-zero coefficients

into the equivalent NA matrix is increased. More recently,

the Voltage Mirror-Current Mirror (VM-CM) pair has been

shown to be useful to ideally model active devices with

voltage and current reversing properties, without requiring

additional resistors [31]-[36]. The VM-CM pair has also a

NA matrix stamp which has been obtained by using the

limit-variable method [33], [34]. However, only the modeling

of active devices with unity-gain has been introduced and

although the VM-CM pair has mainly been used to synthesize

NoratorNullator CMVM
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Fig. 1. Pathological elements: (a) Nullator and norator, (b) Voltage and
current-mirrors
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Fig. 2. Nullor-based (a) VM and (b) CM equivalents

analog circuits, it exhibits some drawbacks when it is used for

symbolic analysis purposes. The major drawback is that the

stamp of the VM-CM pair introduces the transconductance

gain Gm into the NA matrix and it must be taken as a limit

to infinity once symbolic expressions are computed. Besides

this, the parasitic elements of the synthesized active devices are

not considered [32]-[36]. Therefore, in order to compute fully-

symbolic expressions of pathological element-based equivalent

analog circuits, the nullor properties along with the VM-CM

pair properties, should be taken into account in the formulation

process.

In this paper, the modeling of linear active devices by using

nullators, norators, VM-CM pairs or as a combination of

them, is introduced. Moreover, parasitic elements associated

to active devices are also considered inside the proposed

models. Furthermore, because pathological elements are used

to model the behavior of active devices, a new method to

formulate the NA matrix is also introduced. Experimental

results demonstrate that the proposed models together with

the formulation method, offer a significant improvement over

previous approaches reported so far [1]-[9], [17]-[19], [24]-

[38]. We also observe that the NA matrix is more compact, the

generation of cancellation-terms is reduced, and if DDDs are

used to solve the system of equations, only few non-terminal

vertices are required, reducing the CPU-time and memory

consumption during the solution of the NA matrix [8]-[14].

II. NULLOR AND VM-CM CONCEPTS

The nullor is an ideal element which is composed of a

nullator (O), connected in the input-port and a norator (P),

connected in the output-port, as shown in Fig. 1a [20], [25].

The nullator does not allow current to flow through it, and the

voltage across its terminals is zero

Vb = Va = arbitrary, Ib = Ia = 0 (5)
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For the norator, an arbitrary voltage can exist across its

terminals and an arbitrary current can flow through it

Vd 6= Vc = arbitrary, Id = −Ic = arbitrary (6)

The nullator and norator form the nullor, which can also be

implemented with inverting characteristics by using the VM-

CM pair. Its symbol is shown in Fig. 1b [31], [32], [34]. This

pair is also an ideal element and it is composed of a VM at

the input port and a CM at the output port. The VM imposes

two constraints on its voltage and current, given by

Vb = −Va = arbitrary, Ib = Ia = 0 (7)

The CM also imposes two constraints, given by

Vd 6= Vc = arbitrary, Id = Ic = arbitrary (8)

To efficiently model the behavior of active devices, the VM

and the CM will be used as two-terminal elements, as shown

in Fig. 1b, which are also known as grounded mirror elements

[32]-[36]. The ideal behavior of the VM and CM can be

modeled with nullators, norators and resistors, as shown in

Fig. 2 [30], [31], and the two constraints associated with VMs

and CMs can easily be obtained by analyzing these equivalent

circuits. Further, if any terminal of the VM or CM is connected

to ground, it is equivalent to a nullator or norator element,

respectively.

To perform symbolic analysis of analog circuits, the behav-

ior of the active devices can be modeled with pathological

elements. Then, a formulation method along with a solution

method are executed, where the nullator, norator, VM and

CM properties are taken into account [37], [38]. Suppose that

an electronic network with q nodes, is composed by passive

elements and p pathological elements, as shown in Fig. 3a. The

system of equations of the pathological element-equivalent

network is obtained by applying a standard nodal analysis and

given by (1). To reduce the size of the NA matrix, (5), (6), (7)

and (8) must be applied. For this reduction process, we have

two cases that are discussed as follows.

A. Nullator and norator trees

According to (5), the voltage level in the two nodes of a

nullator is the same. Since each node of a nullator represents

one column into the NA matrix, all the coefficients from the

two columns should be added, yielding a single column. This

process is generalized for the case of nullator trees, as shown

in Fig. 3b. Therefore, all the coefficients Yi,j of (1) associated

with the set of nodes of a nullator tree, m = {j, a, b, ...c},

must be added as

Yi,min{m} =
∑

Yi,m, ∀i = 1...q (9)

where Yi,min{m} is the new coefficient of the reduced matrix

in the i-th row. Besides, if any node of a nullator is grounded,

the column of the NA matrix which is associated with the

ungrounded node of the nullator must be deleted. As a

consequence, (1) is reduced to (10)

Yq×(q−p) =







Y1,1 · · · Y1,q−p

...
. . .

...

Yq,1 · · · Yq,q−p






(10)

O1

O2

Op
j

a

b

c
P1

P2

Pp
i

d

e

f

a

b

cg

h

k

j

O1

O3

O5

VM2

VM4

VMp
d

e

fs

t

v

i

P1

P3

P5

CM2

CM4

CMp

(b) (c)

(d) (e)

network of passive
elements
q nodes

p pathological
elements

(a)

Op

VMp

Pp

CMp

Fig. 3. (a) Analog network (b) Nullator tree, (c) Norator tree, (d) Nullator-
VM tree, (e) Norator-CM tree

For the case of a norator element, it is also connected

between two nodes and each node represents one row in the

NA matrix. According to (6) and because the current that flows

from one node to another through a norator is the same, all

the coefficients from the two rows in the NA matrix must be

added to obtain a single row. This process is also generalized

for the case of norator trees, as shown in Fig. 3c. Thus, all

the coefficients Yi,j of (10) associated with the set of nodes

of a norator tree, n = {i, d, e, ...f}, must be added as

Ymin{n},j =
∑

Yn,j , ∀j = 1...(q − p) (11)

where Ymin{n},j is the coefficient of the reduced matrix in

the j-th column. Otherwise, if any terminal of a norator is

connected to ground, the row of the NA matrix which is

represented by the other node of the norator must be deleted

[24], [37], [38]. Hence, when the NA matrix is built from

nullor-equivalent circuits, the order of the system of equations

is given by (q − p) × (q − p).

B. Nullator-VM and norator-CM trees

In the general case when nullors and VM-CM pairs are

used to model the behavior of active devices, the formulation

method should take into account the inverting properties of

the VM-CM pair. Similar to the nullator, the nodes of a VM

are related to the columns of the admittance matrix, but with

opposite characteristics. According to (7), two columns in the

NA matrix should be subtracted in order to obtain a single

column. This reduction process can also be generalized by

considering nullator-VM trees, as shown in Fig. 3d. In this
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way, all the coefficients Yi,j of (1) associated with the set

of nodes of a nullator-VM tree, m = {j, a, b, ...c} and r =
{g, h, ...k}, must be added as

Yi,min{m,r} =
∑

Yi,m −
∑

Yi,r , ∀i = 1...q (12)

where Yi,min{m,r} is the new coefficient of the reduced matrix

in the i-th row. As a result, (1) is reduced to (10). Similar

to the norator, the nodes of a CM are related to the rows

of the admittance matrix, but with opposite characteristics.

According to (8), two rows in the NA matrix should be

subtracted in order to obtain a single row. Again, this reduction

process can also be generalized by considering norator-VM

trees, as shown in Fig. 3e. Therefore, all the coefficients Yi,j

of (10) associated with the set of nodes of a norator-VM tree

given as n = {i, d, e, ...f} and w = {s, t, ...v}, must be added

as

Ymin{n,w},j =
∑

Yn,j −
∑

Yw,j , ∀j = 1...(q − p) (13)

where Ymin{n,w},j is the coefficient of the reduced matrix

in the j-th column. As a consequence, when the NA matrix

is built from pathological element-based equivalent circuits,

the order of the system of equations is given by (q − p) ×
(q − p). However, although (9), (11), (12) and (13) can be

used to obtain the NA matrix of pathological element-based

circuits, valuable computer resources are still wasted in the

generation of (1) and later on (10). An improved formulation

method of pathological element-based equivalent circuits will

be presented in Section V.

To reduce the number of non-zero coefficients in the equiv-

alent NA matrix, the behavior of an active device should be

modeled with pathological elements as simple as possible,

avoiding the use of floating resistors. This is because a

grounded resistor has only one entry in the NA matrix, whereas

a floating resistor has four entries. Further, from (9), (11), (12)

and (13) one can see that the coefficients of (1) are always

added or subtracted during the reduction process in order to

obtain the new coefficients. As a consequence, the number of

non-zero coefficients of the equivalent NA matrix is usually

smaller than the number of non-zero coefficients generated by

other formulation methods, like the MNA method.

III. PATHOLOGICAL ELEMENT-BASED ACTIVE DEVICE

MODELING

According to the voltage-current relationships of the nullor,

a nullator can model a node with high-impedance, if it is

floating, or a node with low-impedance, if any terminal of

the nullator is grounded [27], [28]. For the norator, it can

model both impedance levels: high or low, depending of the

signal to be measured. Thus, by considering the impedance

characteristics along with the gain-equations of operational

amplifiers, and by applying the nullor properties, several active

devices can adequately be modeled with the nullor, as shown

in Fig. 4. Some of these active device models are well known

[39]-[44], but the nullor-based models of the OTRA, COA,

FOTRA, CFB-OTA and OFC are reported herein for the

first time in the literature. As an example, the nullor-based

model of the OFC is derived as follows; the OFC is a hybrid

amplifier which can process voltage and current signals at

its input and output ports. According to the gain equation in

the input port, the voltage in the positive terminal is equal

to the voltage in the negative terminal. Also, since a voltage

signal is applied in the positive terminal of the OFC, its input

impedance must be ideally infinity. Thus, by using the nullator

properties, the input port of the OFC can be modeled with

a floating nullator, as shown in Fig. 4. For the output port,

both terminals are processing current signals and therefore,

they must have ideally an infinity impedance level. Again,

by considering the gain equation, the impedance levels of the

output terminals and the norator properties, the output port of

the OFC can adequately be modeled with a floating norator.

Furthermore, the OFC is basically a transresistance amplifier

with low and high impedance levels, respectively. Since, the

negative terminal in the input port of the OFC can only process

current signals, its behavior is better modeled by using a

floating norator. Afterwards, this current signal is transformed

to voltage by using a grounded resistor, which models the

transresistance gain of the OFC. Finally, by applying the

nullator properties, the voltage signal is obtained in the W-

terminal of the OFC. In the same manner, positive/negative-

type first-, second- and third-generation inverting and non-

inverting current conveyors with a single or multiple outputs

can also be modeled with the nullor [22], [29], [39]. Therefore,

standard nodal analysis can be applied in order to compute

fully-symbolic expressions of analog circuits [37], [38].

The VM-CM pair, recently introduced as an universal active

element [34], can be used to reduce the number of circuit-

elements in the nullor-based operational amplifier models

shown in Fig. 4. For instance, we can identify the nullor-

based model of the CM shown in Fig 2b, in several amplifiers

of Fig. 4, which are surround with a dashed line. Therefore,

by substituting the equivalent model from Fig. 2b in Fig.

4, some operational amplifier models can be compacted, as

shown in Fig. 5. In an analogous manner, some types of

current conveyor models introduced in [29] can be improved,

as shown in Fig. 6. The grounded resistors in Figs. 4, 5

and 6 model the gain of the operational amplifiers and along

with nullators, norators, VMs or CMs, they are also used to

transform current to voltage or vice-versa. Further, parasitic

resistors and capacitors can easily be included in the input-

output terminals of Figs. 4, 5 and 6. For instance, a CFOA

is characterized by Rx in the x-terminal, Ry and Cy in the

y-terminal, Rz and Cz in the z-terminal (here, Rm is the

parallel of Rz and Cz). Therefore, a more realistic model can

be built, as shown in Fig. 7. Note, however, that although

floating pathological element-based active device models have

been introduced [32], [36], they can not be used without the

limit-variables, whose negative impact for symbolic analysis

has been discussed above and will be illustrated in Section V.

IV. FORMULATION METHOD FOR NULLOR-BASED

EQUIVALENT CIRCUITS

The behavior of active devices can be modeled with

grounded resistors, nullators and norators, as shown in Fig.

4, and by substituting the VMs and CMs in Figs. 5 and 6 by
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their nullor-based models shown in Fig. 2. As a consequence, a

fully connected nullor-equivalent circuit is obtained. It follows

that before computing symbolic small signal characteristics, a

formulation method must be applied to obtain the system of

equations given by

J = Y V (14)

where J is the current vector, Y is the NA matrix and V
represents the vector of nodal voltages. The proposed formu-

lation method along with a detailed application example are

described in the next subsections.

A. Generation of tables for nullators, norators, independent
current sources and admittances

1) Replace each active device by its nullor-based model.

2) Group and store nullators, norators, independent current

sources and admittances in tables, including their sym-

bols and nodes.

3) From the nullor-equivalent circuit, obtain a set of nodes

ordered in ascending form (0 is assigned to the reference

node).

SetNode = {q1, q2, ...qi}

B. Computing norator and nullator indexes

The nodes of the nullators and norators must be manipulated

to generate two vectors, namely: P (norator vector) and O
(nullator vector). These vectors have the indexes associated to

the column and row variables of the NA matrix. The procedure

to compute the indexes is done as follows

1) Group each pair of nodes of a norator and nullator as a

set and store it in the vector P or vector O, respectively.

2) Compare the nodes of each set with every set of nodes

into the same vector (P or O). If a node is duplicated

in two sets, they must be joined into a single set and

ordered in ascending form.

3) Compare each node qi of SetNode with every set of

nodes of the vector P (alternatively O).

• If a node of SetNode matches the first node of any

set of nodes of the vector P (alternatively O), the set

of nodes must be reordered according to the position

of the node in SetNode.

• If a node qi of SetNode does not match with the

nodes of any set of nodes of the vector P (alter-

natively O), qi must be included into the vector P
(alternatively O) and placed in the same position as

in SetNode.
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4) Delete the set of nodes of the vector P (alternatively O),

if the reference node is one of its nodes.

The final vectors are given as

O = [O1, O2, ...Oj ], P = [P1, P2, ...Pi]

where Oj = {a1, a2...ax} along with Pi = {b1, b2...bx} are

the sets of nodes, and ax along with bx are the nodes of the

sets.

C. Construction of the NA matrix

Manipulating the indexes of the admittances and the vectors

O and P, the NA matrix is done as follows

1) Compare the nodes of every set of nodes of the vector

O with the pair of nodes of the admittances.

• If node ax of a set Oj matches with any node of

some floating admittances, include the nodes along

with the names of the admittances into a list called

Col{Oj} = [{ax, [k, ad1], ...[k, adn]}], where adn is

the name of the n-th admittance and k is the non-

matching node of adn.

• If node ax matches the node of some grounded

admittances, include the node ax and the admittance

names as Col{Oj} = [{ax, ad1, ...adn}].

2) Compare each node bx of every set Pi with the nodes

of each set of the list Col{Oj}, in order to generate each

coefficient Yi,j of the NA matrix

• If bx = ax, all the admittances in the set of Col{Oj}

are added in Yi,j with positive sign.

• If bx = k, only the admittance connected to the k
node is added in Yi,j with negative sign.

D. Generation of the vectors V and J

Each node of the sets in vector O, represents a nodal voltage.

Therefore, the voltage vector is obtained as

V = [VO1, VO2, ...VOj ]
T (15)

Each set in vector P, represents an entry of a current source

J = [P1, P2, ...Pi]
T (16)

To fill (16), each node of Pi must be compared with the

nodes (k, l) of a current source.

• If bi = k, add the current source with negative sign in

(16), according to the position of Pi in the vector P.

• If bi = l, add the current source with positive sign in

(16), according to the position of Pi in the vector P.

Hence, for any analog circuit modeled with nullor elements,

the equivalent circuit has q nodes and p nullor elements, thus,

the size of the admittance matrix is equal to (q−p)× (q−p).

E. NA matrix formulation using nullor-based models

To illustrate the NA matrix formulation using nullor-based

models, let us consider the symbolic analysis of the ICCII+-

based inverting low-pass filter shown in Fig. 8a [45]. If the

nullor-based VM and CM models shown in Fig. 2 are used in

the ICCII+ model in Fig. 6f, then a nullor-equivalent circuit
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Fig. 8. (a) Inverting low-pass filter, the output is the node 3 (b) Stamp model
(c) Nullor-based model (d) Pathological element-based model

TABLE I
TWO-TERMINAL ELEMENTS FROM FIG. 8C.

O Node P Node Adm. Node Current Node
sources

O1 1,5 P1 1,0 1 5,0 Vin 0,5

O2 2,8 P2 2,6 g1 1,2

O3 3,9 P3 4,7 1 6,0

O4 6,7 P4 8,9 1 7,0

1 8,0

1 9,0

C1 3,0

C2 4,0

g2 3,4

for Fig. 8a is generated, as shown in Fig. 8c. Following the

proposed formulation method described above, the set of nodes

is given by

SetNodes = {1, 2, 3, 4, 5, 6, 7, 8, 9} (17)

The nullators, norators, admittances and independent current

sources are stored as two-terminal elements in Table I. The

nodes of the nullators and norators are grouped and stored in

the vectors O and P, respectively

O = [{6, 7}, {2, 8}, {3, 9}, {1, 5}] (18)

P = [{4, 7}, {1, 0}, {8, 9}, {2, 6}] (19)

Each node in (17) is compared with all the nodes of the set

of nodes in (18) and (19). In this way, the sets are ordered in
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ascending form and the nodes of (17) which are not considered

in the vectors O and P are readily included

O = [{1, 5}, {2, 8}, {3, 9}, {4}, {6, 7}] (20)

P = [{1, 0}, {2, 6}, {3}, {4, 7}, {5}, {8, 9}] (21)

Because the reference node is included in the first set of nodes

in (21), this set must be removed. Thus, the final vectors are

obtained as

O = [{1, 5}, {2, 8}, {3, 9}, {4}, {6, 7}] (22)

P = [{2, 6}, {3}, {4, 7}, {5}, {8, 9}] (23)

According to the Step 1 from subsection IV-C, the lists

Col{Oj} are obtained by manipulating the admittances along

with their nodes given in Table I and the indexes of (22),

which are given as

Col{O1} = [{1, [2, g1]}, {5, 1}]
Col{O2} = [{2, [1, g1]}, {8, 1}]
Col{O3} = [{3, [4, g2], C1}, {9, 1}]
Col{O4} = [{4, [3, g2], C2}]
Col{O5} = [{6, 1}, {7, 1}]

(24)

In order to generate all the coefficients Yi,j of the NA

matrix, the nodes bi of (23) must be compared with the nodes

of (24). For instance, to obtain the element Y3,4, each node

of the third set in (23) should be compared with each node of

Col{O4}, thus, Y3,4 = g2 +sC2. On the other hand, the vector

V is obtained from (22) and given by

V = [V1,5, V2,8, V3,9, V4, V6,7]
T (25)

Finally, the vector J is obtained by comparing each node of

(23) with the node pair of the independent current source

shown in Table I and given by

J = [0, 0, 0, Vin, 0]T (26)

Thus, the system of equations becomes









0
0
0

Vin

0









=









−g1 g1 0 0 1
0 0 g2 + sC1 −g2 0
0 0 −g2 g2 + sC2 1
1 0 0 0 0
0 1 1 0 0

















V1,5

V2,8

V3,9

V4

V6,7









(27)

The output voltage is taken at V3,9 and is given by

H(s) = −
1

C1C2R1R2s2 + (C1 + C2)R1s + 1
(28)

V. EXTENDED FORMULATION METHOD FOR

PATHOLOGICAL ELEMENT-BASED EQUIVALENT CIRCUITS

Pathological element-based active device models have been

shown in Section II. Thus, according to the pathological

element-equivalent circuits, the NA matrix can be formulated.

A. NA matrix formulation by applying limit variables

To illustrate the evolution towards a more efficient NA

matrix formulation method for symbolic analysis purposes, let

us consider again the analysis of the ICCII+-based inverting

low-pass filter in Fig. 8a [45], by using the limit variables

method [33], [34]. For this case, the VM-CM-based ICCII+

model from Fig. 6f is used in Fig. 8a, as shown in Fig. 8b.

The stamp of the VM-CM pair shown in Fig. 1b [33], is given

as
a b

c

d

[

Gm Gm

Gm Gm

]

(29)

where Gm is the transconductance gain of the VM-CM pair

considered as a voltage-controlled current source (VCCS). In

this manner, by applying (29) and by using the voltage source

stamp in Fig. 8b, the system of equations is given by

J =













g1 −g1 0 0 1
−g1 g1 + Gm Gm 0 0
0 0 g2 + sC1 −g2 0
0 Gm −g2 + Gm g2 + sC2 0
1 0 0 0 0













V

(30)

where

J =













0
0
0
0

Vin













, V =













V1

V2

V3

V4

iV in













(31)

The fully-symbolic transfer function of the inverting low-pass

filter with node 3 considered as output node is given by

−

Gm

C1C2R2(1 + GmR1)s2 + (C1 + C2)(1 + GmR1)s + Gm

(32)

However, once this expression has been generated, it must

still be reduced by taking the limit to infinity of Gm in (32)

[17], [18], [32], [33], [34]. The resulting symbolic expression

is the same as the one given by (28). Furthermore, it can

be inferred that the size of (30) depends on the number of

nodes of the original circuit. Therefore, not only the size of

the matrix and the number of non-zero elements has not been

reduced with respect to the nullor-based formulation method,

but a limit to infinity must be applied. Hence, this formulation

method does not show any advantage with respect to nullor-

based models.

B. NA matrix formulation by using pathological element-
based models

By using nullor-based models, the original circuit is trans-

formed to a nullor-equivalent circuit and then standard nodal

analysis can be applied to formulate the system of equations

and to compute symbolic expressions. However, the order

of the NA matrix is given by the number of nodes minus

the number of nullors, which becomes large if the nullor-

based models are also more complex. The reason for this

disadvantage is that grounded resistors are used to model the
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inverting behavior of some operational amplifiers and current

conveyors, as shown in Fig. 4 and in [29]. To avoid the

problem of using large nullor-equivalents in active devices

with inverting characteristics, the use of pathological element-

based models is proposed. The main idea of using pathological

elements is to obtain more compact active device models,

but with their same original behavior. As a consequence, the

order of the system of equations and the number of non-

zero coefficients should be reduced. Let us consider again the

circuit shown in Fig. 8a and the current conveyor model shown

in Fig. 6f. The pathological element-based equivalent circuit

is shown in Fig. 8d and by applying standard nodal analysis,

the system of equations is obtained as









0
0
0
0

Vin









=









g1 −g1 0 0 0
−g1 g1 0 0 0
0 0 g2 + sC1 −g2 0
0 0 −g2 g2 + sC2 0
0 0 0 0 1

















V1

V2

V3

V4

V5









(33)

To reduce the order of (33), the nullor and VM-CM pair

properties mentioned in Section II should be applied. Ac-

cording to the nullator properties, the coefficients of the fifth

column are added to the first column. From Fig. 8d and by

considering the voltage-constraint of the VM, V2 = −V3, the

coefficients of the second column should be subtracted from

the third column. For the norator connected between node 1

and ground, the first row in (33) should be deleted. Finally,

because a CM is connected between nodes 2 and 4 and by

applying its current-constraint, the coefficients of the fourth

row are subtracted from the second row. So, the NA matrix of

Fig. 8b in (33) is reduced to




0
0

Vin



 =





−g1 g2 − g1 −g2 − sC2

0 g2 + sC1 −g2

1 0 0









V1,5

V−2,3

V4





(34)

As can be seen, not only the order of the NA matrix is much

lower when using the pathological element-based ICCII+

model compared to traditional stamps and nullor-equivalents,

but the number of non-zero coefficients is also reduced. For

example, the order in (30) is 5 with 12 non-zero coefficients;

the order in (27) is 5 with 11 non-zero coefficients, but

using the pathological elements the order of the NA matrix

is reduced to 3 with only 6 non-zero coefficients, as given by

(34). This is a good advantage of using pathological elements

in active devices with inverting properties, e.g. the ICCII+.

Therefore, the fully-symbolic transfer function of the inverting

low-pass filter is computed by considering V−2,3 as output

and yielding the same function in (28). Since V2 = −V3,

a non-inverting low-pass filter is also obtained if the node

2 is the output, as shown in [45]. A systematic method to

obtain (34) is very convenient if active devices are modeled

with pathological elements instead of only nullors, as shown

in Fig. 5 and Fig. 6, since the formulation method described

in Section IV can not be applied. Therefore, a formulation

method is required that considers the inverting properties of

the VM-CM pair during the formulation process. The new

proposed formulation method is described as follows.

C. Generation of tables for nullator-VM, norator-CM, inde-
pendent current sources and admittances

1) Replace each active device by its pathological element-

based model.

2) Group and store nullators along with VMs, norators

along with CMs, admittances and independent current

sources in a table, including their symbols and nodes.

From the two constraints given by (7) and (8), the nodes

of each VM and CM must be included with their signs,

but one should be careful of not to duplicate a node

with different signs. In this case, the sign of the nodes

of a VM or a CM must be inverted, in order to obtain

a uniform agreement of signs.

3) Compute the set of nodes ordered in ascending form:

SetNode = {q1, q2, ...qi} (0 is the reference node).

D. Computing Norator, Nullator, VM and CM indexes

The nodes of nullators, norators, VMs and CMs are manip-

ulated to generate two vectors, namely: P −CM (norator-CM

vector) and O − V M (nullator-VM vector), as follows

1) Group each pair of nodes of a norator, nullator, VM

and CM as a set and store it in the vector P − CM or

O − V M , respectively.

2) Compare the nodes of each set with every set of nodes

into the same vector (P −CM or O−V M ). If a node is

duplicated in two sets, they are joined into a single set

and ordered in ascending form, but without considering

the negative sign of the node numbers.

3) Compare each node qi of SetNode with every set of

nodes of the vector P − CM (alternatively O − CM )

• If a node of SetNode matches the first node of any

set of nodes of the vector P − CM (alternatively

O−V M ) (without considering the negative sign of

the node), the set of nodes must be placed according

to the position of the node in SetNode.

• If a node of SetNode does not match with the

nodes of any set of nodes of the vector P − CM

(alternatively O − V M ), qi must be included into

the vector P − CM (alternatively O − V M ) and

placed in the same position as in SetNode.

4) Delete the set of nodes of the vector P −CM (alterna-

tively O − V M ), if the reference node is within the set

of nodes.

The final vectors are given as: O−V M = [O1, O2, ...Oj ] and

P − CM = [P1, P2, ...Pi], where Oj = {±a1,±a2... ± ax}
and Pi = {±b1,±b2...±bx} are the set of nodes, and ax along

with bx are the nodes of the sets.

E. NA matrix formulation

Manipulating the indexes of admittances along with the

vectors O − V M and P − CM , the NA matrix is built as

follows

1) Compare the nodes of every set of nodes of the vector

O − V M with the pair of nodes of the admittances.

• If the node |ax| of a set Oj match with any node of

some floating admittances, include the nodes along
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with the names of the admittances into Col{Oj} =
[{ax, [k, ad1], ...[k, adn]}].

• If the node |ax| match the node of some grounded

admittances, include the node ax and the admit-

tances as Col{Oj} = [{ax, ad1, ...adn}].

2) Compare each node ±bx of every set Pi with the nodes

of each set of the list Col{Oj}, in order to generate each

coefficient Yi,j of the NA matrix.

• If bx = ax, all the admittances in the set of Col{Oj}

are added in Yi,j with positive sign.

• If bx = −ax, all the admittances in the set of

Col{Oj} are added in Yi,j with negative sign.

• If bx = k, only the admittance connected to the

node k is added in Yi,j with negative sign.

• If bx = −k, only the admittance connected to the

node k is added in Yi,j with positive sign.

F. Generating V and J vectors

The voltage vector is obtained from the vector O − V M

V = [VO1, VO2, ...VOj ]
T (35)

Each set Pi in the vector P − CM represents an entry of

current sources

J = [P1, P2, ...Pi]
T (36)

To fill (36), each node |bi| of the set Pi must be compared

with the nodes (k, l) of a current source.

• If |bi| = k, add the current source with negative sign in

(36), according to the position of Pi in vector P −CM .

• If |bi| = l, add the current source with positive sign in

(36), according to the position of Pi in vector P −CM .

Hence, for any analog circuit modeled with pathological

elements, the equivalent circuit has q nodes and p pathological

elements, thus, the size of the admittance matrix is equal to

(q − p) × (q − p). Comparing the two proposed formulation

methods, that introduced in Section IV, and that described

above, we can conclude that the former can be considered a

particular case of the latter.

G. NA matrix formulation by applying the proposed method

To show the usefulness of the pathological element-based

models of active devices and the potential of the proposed

symbolic formulation method introduced in the previous sec-

tions, we consider again the symbolic analysis of the ICCII+-

based inverting low-pass filter shown in Fig. 8d [45]. Fol-

lowing the proposed formulation method, all the two-terminal

elements are stored in Table II. The set of nodes is obtained

from Fig. 8d and given by

SetNodes = {1, 2, 3, 4, 5} (37)

According to subsection V-D and from Table II, the final

vectors O − V M and P − CM are obtained as

O − V M = [{1, 5}, {−2, 3}, {4}] (38)

P − CM = [{2,−4}, {3}, {5}] (39)

TABLE II
TWO-TERMINAL ELEMENTS FROM FIG. 8D.

O-VM Node P-CM Node Adm. Node Current Node
source

O1 1,5 P1 1,0 gs 5,0 Vin 0,5

V M2 3,-2 CM2 2,-4 g1 1,2

g2 3,4

C1 3,0

C2 4,0

C
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Fig. 9. (a) Non-inverting band-pass and low-pass filter taken from [45] (b)
Pathological element-based model

According to subsection V-E, the nodes of the admittances

given in Table II along with the indexes of (38) are manipu-

lated to obtain the lists Col{Oj} as

Col{O1} = [{1, [2, g1]}, {5, gs}]
Col{O2} = [{-2, [1, g1]}, {3, [4, g2], C1}]
Col{O3} = [{4, [3, g2], C2}]

(40)

Later on, each node of (39) is compared with each node

of (40) and therefore, the admittance matrix given by (34) is

obtained with gs = 1. The voltage vector is obtained from

(38) as

V = [V1,5, V−2,3, V4]
T (41)

and finally, the current vector is obtained by comparing each

node of (39) with the nodes of the current source in Table II

and given by

J = [0, 0, Vin]T (42)

VI. ILLUSTRATIVE EXAMPLE

As a second example to compare the existing and proposed

formulation methods, lets us consider the non-inverting band-

pass and low-pass filter using ICCII± shown in Fig. 9a

[45]. The behavior of each active device is modeled with

its pathological element-equivalent as shown in Figs. 6f and

6g augmented with parasitic elements. The equivalent circuit

is illustrated in Fig. 9b. Following the proposed formulation

method, the names and nodes of the nullators, norators, VMs,

CMs, admittances and independent current sources are stored

in Table III. From Fig. 9b, the set of nodes is obtained as

SetNodes = {1, 2, 3, 4, 5, 6} (43)

From Table III, the nodes of the nullators, VMs, norators and

CMs are grouped and stored in the vectors O − V M and

P − CM , respectively

O − V M = [{−3, 4}, {0,−5}, {1, 2}] (44)
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TABLE III
TWO-TERMINAL ELEMENTS FROM FIG. 9B.

O-VM Node P-CM Node Adm. Node Current Node
source

O1 1,2 P1 2,0 gs 1,0 Vin 0,1

V M2 4,-3 P2 3,6 ga 2,3

V M3 0,-5 CM3 5,-4 gb 5,6

gz1 6,0

gz2 4,0

gy1 4,0

C1 4,0

C2 6,0

Cz1 6,0

Cz2 4,0

Cy1 4,0

P − CM = [{5,−4}, {3, 6}, {2, 0}] (45)

The set of nodes in (44) and (45) are ordered with respect

to the nodes of (43), and the nodes qi of (43) which are not

considered in the set of nodes in (44) and (45), are included

in the vectors O − V M and P − CM , respectively

O − V M = [{1, 2}, {−3, 4}, {−5, 0}, {6}] (46)

P − CM = [{1}, {2, 0}, {3, 6}, {−4, 5}] (47)

The reference node is included into the third and second

set of nodes in (46) and (47), hence, they should be deleted.

Thus, the final vectors are given by

O − V M = [{1, 2}, {−3, 4}, {6}] (48)

P − CM = [{1}, {3, 6}, {−4, 5}] (49)

By manipulating the admittances along with their nodes

given in Table III and the indexes of (48), the lists Col{Oj}

are given as

Col{O1} = [{1, gs}, {2, [3, ga]}]
Col{O2} = [{-3, [2, ga]}, {4, gz2, gy1, Cz2, Cy1, C1}]
Col{O3} = [{6, [5, gb], gz1, Cz1, C2}]

(50)

Afterwards, each node ±bi of every set Pi in (49) is

compared with the nodes of (50). For instance, let us consider

the set P3 = {−4, 5}. In order to obtain the coefficent Y3,2,

each node of the set P3 is compared with each node of

Col{O2}, thus, Y3,2 = −gy1 − gz2 − s(Cy1 + Cz2 + C1).
Vector V is obtained by using (48) and given by

V = [V1,2, V−3,4, V6]
T (51)

Vector J is obtained by comparing each node of (49) with

the pair of nodes of the independent current source shown in

Table III and given by

J = [Vin, 0, 0]T (52)

Therefore, the system of equations from Fig. 9b by using

pathological element-based models becomes

J =





gs 0 0
−ga −ga gb + gz1 + sCb

0 −gy1 − gz2 − sCa −gb



V

(53)

TABLE IV
COMPARISON OF FORMULATION METHODS.

Formulation method Size Non-zero
coefficients

MNA with controlled sources 8× 8 20

MNA with limit-variables 6× 6 15

Nodal analysis with nullor-equivalent 6× 6 13

Nodal analysis with pathological elements 3× 3 6

TABLE V
CPU-TIME AND MEMORY CONSUMPTION USED TO SOLVE THE SYSTEM OF

EQUATIONS.

Equation CPU-time Memory DDD nodes DDD paths
(ms) (bytes)

(53) 1 136,648 5 2

(56) 30 2,029,036 11 2

(57) 10 271,852 12 4

(58) 10 271,852 10 2

where Ca = Cy1+Cz2+C1 and Cb = Cz1+C2. The low-pass

response with both polarities can be obtained by solving (53)

to V−3,4 and considering that V3 = −V4, as already provided

in (54). The band-pass response is available at node V6 and

given by (55). If parasitic elements are not considered, then

ideal transfer functions are computed [45].

The system of equations of the circuit shown in Fig. 9a, has

also been formulated with

– MNA by using controlled sources

– MNA by applying limit-variables stamp

– Nodal analysis by using nullor-equivalents

The system of equations for each formulation method is

given by: (56), where β1, β2 and µ1 are the gains of the

controlled sources; (57), where, Gm1, Gm2 are the transcon-

ductance gains of the VM-CM pairs and (58), where the

formulation method introduced in Section IV has been ap-

plied. Comparisons between the size of the admittance matrix

and the generation of non-zero coefficients according to the

formulation methods are summarized in Table IV. Therefore,

we can see that by applying the formulation method described

in Section V, the size of the admittance matrix is reduced.

Further, we also note that some cancelling terms are generated

with the formulation methods described in Table IV, whereas

with the new formulation method, the generation of cancelling

terms is reduced. For instance, (53) is cancellation-free and

(34) has only one cancelling term. Furthermore, if controlled

sources are used to model the behavior of ICCII± and the

MNA method is applied, twenty non-zero coefficients are

generated. Otherwise, if the proposed formulation method is

executed, only six non-zero coefficients are generated.

To validate the efficiency of our formulation methods in

terms of CPU-time and memory consumption, the four system

of equations from Fig. 9a given by Eqs. (53), (56), (57)

and (58) have been solved by applying DDD method. The

solution method was run on a 3.06-GHz Intel Xeon 4 Cores

machine with 2GB RAM. Table V shows the average CPU-

time and memory consumption required during solution of

the system of equations for each formulation method. In this

way, less CPU-time and memory consumption are required

to solve (53) instead of (56). Also, from Table IV, twenty
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V3 = −V4 =
gagb

CaCbs2 + (Ca(gb + gz1) + Cb(gy1 + gz2))s + gb(ga + gy1 + gz2) + gz1(gy1 + gz2)
(54)

V6 =
ga(gy1 + gz2 + Cas)

CaCbs2 + (Ca(gb + gz1) + Cb(gy1 + gz2))s + gb(ga + gy1 + gz2) + gz1(gy1 + gz2)
(55)
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ga −ga 0 0 0 0 0 1
−ga ga 0 0 0 −1 0 0
0 0 gy1 + gz2 + sCa −β2gb β2gb 0 0 0
0 0 0 gb −gb 0 1 0

−β1ga β1ga 0 −gb gb + gz1 + sCb 0 0 0
0 −1 −µ1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
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1 0 0 0 0 0
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0 1 1 0 0 0
0 0 0 1 0 0
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(58)

non-terminal vertices are required to represent (56) by means

of DDDs. Otherwise, if the proposed formulation method

is executed, only six non-terminal vertices are necessary to

represent (53) with DDDs. As a consequence, the complexity

in the generation of non-terminal vertices along with the CPU-

time and memory consumption used during the solution of (53)

are reduced, as shown in Table V [8], [12], [13], [14].

Our experiences show that if the behavior of active devices

are adequately modeled with pathological elements, the size

of the system of equations and the number of non-zero coeffi-

cients are always smaller than those generated with other for-

mulation methods. In the worst case, there are analog circuits

that by the manner of how they are connected, the pathological

element-based model is reduced to its nullor-based equivalent

model and, however, the proposed formulation method from

Section V still can be applied. This is the case of the OTRA,

COA and FOTRA when the negative terminal is floating, for

instance. Additionally, in the proposed pathological element-

based models, parasitic elements can be considered while

maintaining a lower order of the NA matrix than by applying

the limit-variables method or nullor-equivalents, for which

the system of equations is large and as already shown in

Subsection V-A a limit to infinity is always required in order

to simplify the symbolic expressions.

On the other hand, the proposed formulation methods are

based on the manipulation of the interconnection relation-

ships of the pathological elements. Therefore, if pathological

element-based models of new active devices are complex, (i.e.

a large number of floated or grounded resistors are used to

model the behavior of active devices), the size of the NA

matrix and the number of non-zero coefficients increases. As a

consequence, the CPU-time and memory consumption used to

solve the system of equations with any solution method is also

increased. A limitation of the proposed formulation methods is

that floating pathological element-based active device models

cannot be included into the formulation process. In this case,

stamps of floating pathological elements can be used, but a

limit to infinity must be again applied to reduce the symbolic

expressions.

VII. CONCLUSIONS

In this paper, we proposed novel pathological element-based

active device models and new approaches to formulate the NA

matrix of analog circuits. Nullators, norators VMs and CMs

properties were used in order to model the behavior of several

active devices, eventually including parasitic elements. The

significant advantage of our proposed symbolic formulation

method is that the NA matrix can quickly be constructed

by manipulating the relationship between the indexes of the

pathological elements and admittances. It was demonstrated

that the new approximation achieves a considerable reduction

not only in the order of the system of equations, but also in the

generation of non-zero coefficients into the NA matrix, which

have been compared with the formulation methods given in

Table IV. The formulation method described in Section V can

be easily implemented within a design automation tool and

from Table V we can conclude that the compacted NA matrix
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improves the CPU-time and memory consumption during the

solution process.
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