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Ischemia with non-obstructive coronary arteries (INOCA) has gained increasing attention

due to its high prevalence, atypical clinical presentations, difficult diagnostic procedures,

and poor prognosis. There are two endotypes of INOCA—one is coronary microvascular

dysfunction and the other is vasospastic angina. Diagnosis of INOCA lies in evaluating

coronary flow reserve, microcirculatory resistance, and vasoreactivity, which is usually

obtained via invasive coronary interventional techniques. Non-invasive diagnostic

approaches such as echocardiography, single-photon emission computed tomography,

cardiac positron emission tomography, and cardiac magnetic resonance imaging are

also valuable for assessing coronary blood flow. Some new techniques (e.g., continuous

thermodilution and angiography-derived quantitative flow reserve) have been investigated

to assist the diagnosis of INOCA. In this review, we aimed to discuss the pathophysiologic

basis and contemporary and novel diagnostic approaches for INOCA, to construct a

better understanding of INOCA evaluation.

Keywords: ischemia with non-obstructive coronary arteries (INOCA), coronary microvascular dysfunction,

coronary function test, diagnosis, pathophysiology, vasospasm

INTRODUCTION

Ischemia with non-obstructive coronary arteries (INOCA) is defined as the stenotic reduction
in diameter < 50% detected by investigation of coronary arteries, either invasive coronary
angiography (CAG) or coronary CT angiography (CCTA), in patients with symptoms of
myocardial ischemia such as angina or dyspnea following physical activities (1–5). This particular
population accounted for 70% of all the patients presenting with evidence of myocardial ischemia
that eventually underwent CAG (6, 7). There are approximately 3–4 million American women and
menwho suffered from stable INOCA (8, 9). Epidemiologic analysis also demonstrated an evidently
higher percentage of female patients that suffered from INOCA (10–12).

Strong pieces of evidence have shown that patients with INOCA have a higher risk of
heart failure with preserved ejection fraction, major adverse cardiovascular events (MACEs),
and mortality (4, 10, 13, 14). Compared to patients with no apparent coronary artery disease
(no stenosis > 20%), patients with non-obstructive coronary arteries (≥1 stenosis ≥ 20% but
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no stenosis ≥ 70%) suffered a 2- to 4.5-fold higher risk of
myocardial infarction, while the risk of myocardial infarction and
mortality was similar to patients with single-vessel obstruction
(stenosis ≥ 70% or left the main stenosis ≥ 50%) (13). The
prevalence of coronarymicrovascular dysfunction (CMD), which
is one of the major pathological mechanisms of INOCA,
was as high as 75% in heart failure with preserved ejection
fraction (15). The degree of severity in CMD was also
associated with markers of heart failure severity, such as right
ventricular dysfunction and N-terminal pro-B-type natriuretic
peptide, and the rate of major adverse cardiovascular events
(MACE) and heart failure hospitalization (15, 16). Particularly,
female patients with INOCA face higher risks of unfavorable
prognosis (8, 17–19). The first-year risk for MACE was
2.43 times higher in women with INOCA when compared
to men (18). Apart from the above, many patients with
INOCA encountered issues on quality of life, exercise capacity,
and frequent hospital visits due to unsatisfying symptoms
control (20).

The pathophysiological mechanisms of INOCA include CMD
and/or epicardial vasospasm (21–23). Confirmatory diagnosis of
INOCA requires an assessment of coronary microvasculature
via invasive coronary routes (24). Fractional flow reserve (FFR),
coronary flow reserve (CFR), index ofmicrocirculatory resistance
(IMR), hyperemic myocardial velocity resistance (HMR), and
vasoreactivity in response to vasoactive agents are commonly
used to assess the epicardial and microvascular conditions, and
help to classify different endotypes of INOCA (1). However,
such a technique is time-consuming and usually not widely
available in some facilities, and therefore may not be able to meet
the large demands of indicated candidates (25). Non-invasive
methods that visualize myocardial perfusion, such as positron
emission tomography (PET), can assess microvasculature
more quickly (26). Also, there are some new techniques in
invasive methods, such as continuous thermodilution and
quantitative flow ratio (QFR), that are under research and
are promising in complementing the diagnostic process of
INOCA (27–29). In this review, we aimed to discuss the
pathophysiologic basis and contemporary and novel diagnostic
approaches for INOCA, to construct a better understanding of
INOCA evaluation.

PATHOPHYSIOLOGIC BASIS FOR
ISCHEMIA WITH NON-OBSTRUCTIVE
CORONARY ARTERIES

Coronary microcirculation refers to vessels smaller than
500 um in diameter, namely, the prearterioles (500–
200µm), arterioles (200–40µm), and capillaries (<10µm).
The proximal segment to coronary microcirculation is
the epicardial artery (500µm to 5mm), which is also
known as the macrocirculation (Figure 1) (21, 30, 31).
The pathophysiological mechanisms of INOCA include
CMD and epicardial vasospasm that can overlap in some
cases (21–23).

Coronary Microvascular Dysfunction
The endothelial function is crucial in regulating the vascular tone
of coronary microcirculation and maintaining cardiovascular
homeostasis (32). During physical activity, increased oxygen
consumption and local metabolites serve as triggers for
the release of vasoactive substances, such as nitric oxide
(NO) (33–36). NO has an anti-inflammatory function
and plays a crucial role in protecting the integrity of
the endothelium.

The structural (e.g., vascular remodeling, etc.) and
functional abnormalities (e.g., endothelial dysfunction,
microvascular spams, etc.) are proposed to be associated
with the development of CMD. These mechanisms
interact and are attributable for reduced coronary
flow reserve and increased microcirculatory resistance
(Figure 2) (37–39).

In response to common cardiovascular risk factors (e.g.,
hypercholesterolemia, diabetes mellitus, obesity, smoking, etc.),
low-grade inflammation occurs and results in endothelium
disruption and decreases the production of NO. The shortage
of NO leads to increased platelet activity, lipid oxidation,
and leukocytes adhesion, which, in turn, accelerates the
inflammatory process (40, 41). It also impairs the process
of angiogenesis and collateral development, meanwhile,
promotes the proliferation of fibroblasts and vascular smooth
muscle cells (VSMCs) and converts endothelial cells into
mesenchymal cells (42, 43). The increased fibronectin and
collagen deposition elongates the distance from capillary to
adjacent cardiomyocytes and anticipates hypoxia on exertion
(44–47). In addition, there is hypersensitivity toward the
vasoconstrictor stimuli such as endothelin-I (48, 49) and
serotonin (50), thus, a microvascular spasm might occur
(Figure 2).

Chronic microvascular dysfunction is related to structural
remodeling in patients with atherosclerosis, left ventricular
hypertrophy cardiomyopathy, and arterial hypertension (21,
51, 52), where the arterial medial wall is thickened due
to VSMCs proliferation and perivascular fibrosis, and the
density of microvasculature is reduced (aka. microvascular
rarefaction) due to diminished NO level (Figure 2) (51, 53,
54).

Epicardial Vasospasm
Vasospasm can also occur in the epicardial artery (55).
Common cardiovascular risk factors show no significant
association with epicardial vasospasm, except for smoking
(56, 57). Though inflammation and oxidative stress have
been documented in vasospasm, they hardly constitute a
major cause (56). Instead, the activity of the autonomous
nervous system is important in the pathogenesis of epicardial
vasospasm. Increased tone in the sympathetic nervous
system [e.g., exercise (58), cold pressor test (59), and
cocaine (60)] and/or parasympathetic nervous system [e.g.,
during the night (61)] can trigger epicardial vasospasm
(Figure 2).

The two major mechanisms are endothelial dysfunction and
VSMC hyperreactivity (57, 62).
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FIGURE 1 | Anatomical structures and pathophysiological endotypes of INOCA. INOCA, ischemia with non-obstructive coronary arteries.

FIGURE 2 | Diagram for the association between risk factors and hemodynamic changes in coronary microvascular dysfunction and epicardial vasospasm. VSMCs,

vascular smooth muscle cells.

Endothelium, as discussed before, can release NO to induce
vasodilation. Normally, vasoactive stimuli (e.g., acetylcholine,
serotonin, and histamine) mediate vasodilation via endothelium-
dependent release of vasodilators, especially NO. When
endothelium bears significant damage, these vasoactive
stimuli might directly act on VSMCs and cause paradoxical
vasoconstriction (Figure 2) (56, 63).

On the other hand, VSMC itself can become overreactive
to vasoconstrictors, which is known as VSMC hyperreactivity.
VSMC contraction or relaxation is controlled by rho-kinase
myosin light chain phosphorylation or dephosphorylation
(56, 64–66). However, there are multiple pathways involved
in VSMC contraction, and theoretically, any disturbance
on these pathways could lead to VSMC hyperreactivity.
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Increased activity of rho-kinase (65) and phospholipase C (67),
disrupted endothelium-dependent release of NO (68), and
potassium adenosine triphosphate channels dysfunction
(69, 70) have been identified in epicardial vasospasm
(Figure 2).

DIAGNOSTIC APPROACHES FOR
ISCHEMIA WITH NON-OBSTRUCTIVE
CORONARY ARTERIES

Diagnostic approaches for INOCA are divided into non-invasive
and invasive approaches, which have been studied extensively
in recent years. The non-invasive approaches mainly include
echocardiography, cardiac positron emission tomography (PET),
single-photon emission CT (SPECT), CCTA, and cardiac MRI.
The invasive approaches mainly include coronary function
test (CFT) to measure CFR and/or microcirculatory resistance,
coronary reactivity test to assess vasoreactivity, and some
new-evolving techniques that facilitate these measurements
(Table 1).

The 2019 European Society of Cardiology guideline for
chronic coronary syndrome has clear recommendations for each
of these diagnostic approaches. For patients with suspected
CMD, that is, having persistent symptoms but coronary arteries
that are either angiographically normal or have moderate
stenoses with preserved FFR, the invasive approaches for
measuring CFR and microcirculatory resistance should be
considered, while the coronary reactivity test and non-invasive
approaches for measuring CFR (i.e., echocardiography, cardiac
PET, and cardiac MRI) may be considered. For patients
with suspected vasospasm, that is, having a clinical picture
of coronary spasm but normal findings or non-obstructive
lesions on CAG, the coronary reactivity test should be
considered (7).

NON-INVASIVE DIAGNOSTIC
APPROACHES

Stress Transthoracic Doppler
Echocardiography
Transthoracic color Doppler echocardiography is commonly
performed at the mid-to-distal portion of the left anterior
descending artery, and pulse wave Doppler is used to detecting
flow velocity signal at rest and during hyperemia under
stress. Stress can be induced by physical exercise (e.g.,
treadmill, exercise) or pharmacological agents (e.g., dobutamine,
adenosine, dipyridamole) (71). Coronary flow velocity reserve
[CF(V)R] is the ratio of coronary flow velocity during peak
hyperemia and mean coronary flow velocity at rest (15, 72–76).
A CFR < 2.5 is defined as CMD (15, 77).

Though CFR is generally available and reproducible, its
clinical use is limited by the lack of integration of the whole
myocardium, in addition to the high requirement for operators
(72, 73, 76, 78, 79).

Myocardial Contrast Echocardiography
(MCE)
Myocardial contrast echocardiography requires injection of
ultrasonic contrast agent and microbubbles that have a similar
size as red blood cells (<7µm diameter). These microbubbles
bounce echo signal, which is positively correlated with the
capillary blood volume (80, 81). As 90% of coronary circulation is
at capillaries at rest, a decayed signal intensity during continuous
microbubble infusion would provide a hint of microvascular
dysfunction (80, 82, 83). To obtain CFR, myocardial blood
flow (MBF) needs to be measured by the product of peak
contrast intensity (db) and myocardial flow velocity (db/s) in
each myocardial segment first. Then, CFR is the ratio of MBF
at peak hyperemia and MBF at rest. The normal interval of
MCE-measured CFR was 4–5 (84).

Myocardial contrast echocardiography-measured CFR
has been compared with the gold standard of CMD, which
showed acceptable consistency. However, considerable variation
of results among operators can disturb the reproducibility,
which is due to the high variability of image quality and might
be improved by increasing the numbers of operators (80–
82). Therefore, quantitative and qualitative measurement
of myocardial perfusion from MCE requires further
validation (85).

Cardiac PET
Cardiac PET is a technique based on the use of radiotracers
labeled with isotope emission positrons. Common radiotracers
are 15O-water, 82Rubidium, 13N-ammonia, and 18F-labeled
agents (86). Their high myocardial extraction fraction allows
the acquisition of myocardial perfusion images (MPI). MBF
and myocardial flow reserve (MFR) are commonly obtained
parameters (26). MBF is measured on dynamic PET. To measure
MBF, “time-attenuation curves” that measure radioactive tracer
activity transported by coronary arterial blood to myocardial
tissue over time are required. The “time-attenuation curve” is
fitted to a mathematic model, most commonly the one-tissue
compartment model or simplified retention model. MBF is
then estimated from the equation in the respective mathematic
model (87–91). MFR is the ratio of MBF during pharmacological
induced hyperemia to MBF at rest (86, 92) an MFR > 2.3
represents a favorable prognosis while anMFR< 1.5 is suggestive
of CMD and a high risk of future cardiac events (93, 94).

Cardiac PET is until now the most reliable method of
non-invasive assessment of INOCA (74, 76, 91, 93, 95). The
procedure is generally safe, time-saving, and accurate (96).
The prognostic value has been verified for certain diseases,
namely, hypertrophic cardiomyopathy (97), cardiac allograft
vasculopathy (98), metabolic syndrome (99–101), heart failure
with preserved ejection fraction (16), and female patients with
INOCA (94), in which CMD plays an important role and
impaired MFR is predictive of MACE (102, 103). However, PET
is limited by its unavailability, cost-ineffectiveness, and radiation
exposure even with a novel radiotracer (76, 93, 104). In addition,
the cutoff value of MFR might vary among different PET tracers
due to their unique kinetics (Figure 3) (105).
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TABLE 1 | Summary of diagnostic approaches of INOCA.

Diagnostic approaches Principle of measure Parameters Advantages Disadvantages

Non-invasive methods

Stress transthoracic

Doppler echocardiography

Flow velocity of mid-to-distal

proportion of LAD

CF(V)R =
flow velocity at peak hyperemia

flow velocity at rest

(normal ≥2.5)

Non-invasive, no radiation,

reproducible.

Lack of integration of the

whole myocardium, high

requirement for operators,

inability to evaluate

vasospasm.

Myocardial contrast

echocardiography

Microbubbles that bounce

echo signal in capillary

beds, reflecting capillary

blood volume

MBF = peak contrast intensity×

myocardial flow velocity

CFR =
MBF at peak hyperemia

MBF at rest

(normal 4–5)

Non-invasive, no radiation,

acceptable consistency with

gold standard.

Variability, inability to

evaluate vasospasm.

Cardiac positron emission

tomography

Radiotracer labeled with

isotopes allows myocardial

perfusion imaging to

perform

MBF obtained from radiotracer

time-attenuation curve.

MFR =
MBF at peak hyperemia

MBF at rest

(normal >2.3)

Non-invasive, consistency

with gold standard, accurate

results, prognostic value.

Unavailability,

expensiveness, radiation

exposure, inability to

evaluate vasospasm

Coronary computed

tomography angiography

Iodine-contrast allows

computed tomographic

perfusion imaging to

perform.

MBF obtained from contrast

time-attenuation curve.

(normal 75–164 ml/min/100ml)

Non-invasive,

supplementary

Rarely used in clinical

practice, radiation exposure,

inability to evaluate

vasospasm

Cardiac magnetic

resonance imaging

Gadolinium-based contrast

allows first-pass perfusion

imaging to perform

Myocardial perfusion obtained from

time-attenuation curve.

MFR index

=
myocardial perfusion at peak hyperemia

myocardial perfusion at rest

(normal > 1.5)

High-quality images,

prognostic value, no

radiation.

Unavailability, variability,

expensiveness, time

consumption.

Invasive methods

Coronary function test Wire-based technique

(pressure, Doppler or

bolus-thermodilution based

methods) to assess

coronary flow and

microvascular resistance.

FFR =
Pd at hyperemia
Pa at hyperemia (normal >0.80)

CFRDoppl =
APV at hyperemia

APV at rest
(normal ≥

2.0)

CFRthermo =
Tmn at rest

Tmn at hyperemia
(normal ≥

2.0)

IMR = Pd at hyperemia

× Tmn at hyperemia

(normal < 25.0)

HMR =
Pd at hyperemia
APV at hyperemia (normal < 1.9)

Evaluation of epicardial and

microvascular function, gold

standard, prognostic value.

Invasive nature, operator

variability.

Coronary reactivity test Endothelium-dependent

(acetylcholine, substance P,

bradykinin) and

endothelium-independent

(adenosine, sodium

nitroprusside) induction

vasoreactivity

Epicardial spasm is diagnosed if

(1) reproducible chest pain;

(2) ischemic ECG shift;

(3) more than 90% reduction of

epicardial arterial diameter.

Microvascular spasm is diagnosed if

fitting (1), (2), and excluding (3)

Evaluation of vasospasm Invasive nature, side effects

of vasospasm.

Continuous thermodilution Room temperature saline

infusion at constant rate to

achieve hyperemia at artery.

Temperature change reflects

coronary blood flow and

resistance

AF = 1.08 × Qi TiT
AR =

Pd
AF

(normal range not available)

Operator-independent

quantification, no side

effects of vasodilators.

Normal range not available,

interpersonal variability.

Angiography-derived

quantitative flow reserve

Three-dimensional

reconstruction of coronary

angiography to evaluate

epicardial artery

QFR is measured in mathematic

models to compute FFR and A-IMR.

(normal range not available)

Rapid and accurate results,

non-invasive naturea, low

cost.

Normal range not available

INOCA, ischemia with non-obstructive coronary arteries; LAD, left anterior descending artery; CF(V)R, coronary flow (velocity) reserve; MBF, myocardial blood flow; MFR index, myocardial

flow reserve index; FFR, fractional flow reserve; Pd, distal coronary pressure; Pa, aortic pressure; CFRDoppl , coronary flow reserve that measured by Doppler method; APV, average

peak velocity; CFRthermo, coronary flow reserve that measured by thermodilution method; Tmn, mean transit time; IMR, index of microcirculatory resistance; HMR, hyperemic myocardial

velocity resistance; ECG, electrocardiography; AF, absolute flow; Qi, infusion rate; Ti, temperature of saline; T, temperature of blood mixing with saline; AR, absolute resistance; QFR,

quantitative flow ratio; A-IMR, angiography-derived index of microcirculatory resistance.
aQFR is in nature not invasive, but it requires invasive coronary angiography for 3D reconstruction.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 March 2022 | Volume 9 | Article 731059

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Fu et al. Pathophysiology and Diagnosis for INOCA

FIGURE 3 | Diagram for the measurement of MBF in PET, SPECT, CCTA, and MRI. MBF, myocardial blood flow; PET, positron emission tomography; SPECT,

single-photon emission computed tomography; CCTA, coronary computed tomography angiography; MRI, magnetic resonance imaging.

FIGURE 4 | Illustration of coronary function test. Pd, distal coronary pressure;

Pa, aortic pressure; APV, average peak velocity; Tmn, transit time.

FIGURE 5 | Illustration of coronary reactivity test.

Single-Photon Emission CT
Single-photon emission CT is a technique using different
radioactive tracers from PET (i.e., 99mTc-sestamibi or 99mTc-
tetrofosmin). MPI obtained from SPECT is used to estimate

MBF and CFR (106). According to the “microsphere method”
proposed by Sugihara et al. (107) it is assumed that radioactive
tracers are taken up by myocardial tissue. MBF is the ratio
of myocardial retention of tracers over the integral arterial
concentration of tracers. CFR is the ratio of MBF during peak
hyperemia to MBF at rest (108).

Compared to PET, SPECT has wider availability and MPI is
more commonly performed (106). However, the estimation of
SPECT-measured CFRwas believed to be inaccurate, especially at
the higher flow rate, and the optimal threshold was inconsistent
across studies (Figure 3) (107, 109–111). Poor image quality is
also a disadvantage due to tracer attenuation (106). To solve these
problems, a cadmium-zinc-telluride semiconductor detector is
a recently developed cardiac dedicated gamma camera system
that can be used to reduce radiation exposure and improve time
efficacy (112, 113). MPI obtained from dynamic SPECT reserves
high quality of images and accuracy of data (108). MBF and CFR
measurement from this cardiac dedicated SPECT are still under
research, but the prognostic value of dynamic SPECT has been
demonstrated (104, 114).

Coronary CT Angiography (CCTA)
Coronary CT angiography is a commonly used screening test
by using an iodine-based contrast agent to detect plaque and
stenosis (106). However, CCTA is limited by the inability to
identify ischemia, thus unable to provide diagnostic value for
INOCA (7, 115). Dynamic computed tomographic perfusion
image (CPI) is a recently developed technique that can be
used to quantify MBF and other parameters. To calculate MBF,
displacement of the myocardium is corrected and poor-quality
images resulting from rhythm irregularities are excluded before
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FIGURE 6 | Diagram for the evaluation of INOCA. INOCA, ischemia with non-obstructive arteries; PET, positron emission tomography; MRI, magnetic resonance

imaging; CCTA, coronary computed tomography angiography; CFR, coronary flow reserve; MFR, myocardial flow reserve; CAD, coronary artery disease; FFR,

fractional flow reserve; IMR, index of microcirculatory resistance; HMR, hyperemic myocardial velocity resistance; CMD, coronary microvascular dysfunction. Mixed

type refers to combination of coronary microvascular dysfunction and epicardial vasospasm.

data acquisition. Then, the ventricular myocardium is discretized
into small volumetric elements, where each element creates their
“time-attenuation curve,” respectively. The function of arterial
input is generated by taking a sample volume in descending
aorta. The arterial input function and “time-attenuation curve”
are coupled in a hybrid deconvolution model. MBF is the
ratio of the convoluted maximal slope of the “time-attenuation
curve” of the myocardium and arterial input function (116).
The normal range of MBF varies among studies: from 75 to
164 ml/min/100ml (117). CFR is the ratio of MBF during
hyperemia to MBF at rest (118). To calculate FFR, coronary
blood flow simulation from CCTA images is required. Resting
coronary blood flow is computed from myocardial territory-
specific ventricular volume. Coronary resistance is computed
from resting coronary flow according to the morphometry
laws. Specifically, the microvascular resistance is inversely
proportional to the size of vessels which carried a certain amount
of blood (119, 120). Decrease in microvascular resistance in
response to adenosine is modeled to simulate hyperemia. Mean

aortic pressure is estimated from the mean brachial artery
pressure. FFR is the ratio of computational mean coronary
pressure distal to a lesion to the mean blood pressure in the aorta
during simulated peak hyperemia (119–123).

The advance of CPI allows non-invasive quantification of
FFR and CFR. Furthermore, the combination of CCTA and CPI
can increase the diagnostic accuracy of INOCA and provide
equivocal information with PET (124). Nevertheless, CPI is rarely
used in clinical practice and its usefulness is yet to be tested in
terms of INOCA (92, 106, 125).

Cardiac MRI
Cardiac MRI is based on a gadolinium-based contrast agent
and a first-pass perfusion image is commonly performed to
assess myocardial ischemia. MBF can be obtained via visual
assessment or semi-quantitative methods. As gadolinium first
passes the myocardium, the signal intensity in the well-perfused
myocardium is brighter than the ischemic area due to the
shorter T1 relaxation time in the myocardium, which is visually
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evident. Without obstructive coronary arteries, diminished MBF
might be related to CMD. MBF can also be quantified by
the myocardial perfusion reserve (MPR) index (126–131). The
myocardium is sliced into several segments. The signal intensity
of the left ventricular blood pool and myocardium are measured.
The myocardial upslope during contrast enhancement generates
a “time-attenuation curve” which allows measurement of
myocardial perfusion. Themyocardial upslope is also normalized
to adjacent ventricular blood pool upslope (132). MPR index
is the ratio of myocardial perfusion during hyperemia to
myocardial perfusion at rest. MPR index ≤ 1.5 is defined as
pathological (126).

Myocardial perfusion reserve index has a significant
correlation with CMD and shows good consistency with
measurement from PET and invasive methods, and thus could
be proposed as a non-invasive assessment tool for INOCA
(131, 133–135). MPR index can be used in CMD for clinical
outcome prediction, where one unit increase leads to 90%
decrease in the risk of long-term MACE (136). Cardiac MRI
has the advantages of high-resolution images and are free of
radiation exposure, but can be limited by its cost ineffectiveness,
time consumption, unavailability, and influence of baseline
myocardial perfusion and tissue contrast concentration on the
MPR index (Figure 3) (92, 106, 132).

Summary for Myocardial Blood Flow
Measurement in PET, SPECT, CCTA, and
Cardiac MRI
The principle of measuring MBF in PET, SPECT, CCTA, and
cardiac MRI is similar (Figure 3) (92, 106). The first step is to
select a radiotracer in PET/SPECT or contrast agent in CCTA
and cardiacMRI, which is then infused through vessels and taken
up by the myocardium. The second step is to record myocardial
signal intensity during enhancement and attenuation with time,
which is illustrated as the “time-attenuation curve.” Well-
perfused myocardium during enhancement is represented as the
“black area” and ischemic myocardium during enhancement is
represented as the “gray area.” The third step is to calculate MBF
by fitting the “time-attenuation curve” to mathematic models.
MBF estimation is related to signal extraction of themyocardium.
There is a constant with 100% extraction for 15O-water and
almost 100% extraction for 13N-ammonia. The extraction for
agents commonly used in MRI, SPECT, and CCTA decreases
as MBF increases, therefore underestimating MBF when MBF
is high.

INVASIVE DIAGNOSTIC APPROACHES IN
INOCA

Coronary Function Test (CFT)
Coronary function test is a wire-based technique and is
performed invasively when INOCA is considered after initial
coronary angiography (7, 137). Multiple parameters are
generated from this test, including but not limited to FFR, CFR,
IMR, and HMR.

With a guiding catheter placed at the ostium of the coronary
artery, a pressure monitoring guide wire is calibrated and
advanced distally to the stenotic lesion of the coronary artery.
Hyperemia is induced by intravenous injection of a vasodilator
such as adenosine. The distal coronary pressure (Pd) and aortic
pressure (Pa) during maximal coronary flow are recorded. FFR
is the ratio of Pd to Pa (Figure 4) (138, 139). Most of the recent
studies defined 0.80 as the optimal threshold, and FFR ≤ 0.80
is indicated for PCI therapy (140–142). In the assessment of
INOCA, FFR serves as the physiologic parameter of the epicardial
artery and is particularly useful in distinguishing intermediate
stenotic severity visualized on angiogram (143).

Coronary flow reserve (CFR) is the ratio of maximal to
basal coronary flow. CFR can be measured via Doppler or
thermodilution methods, and their equations to obtain CFR
are slightly different. For the Doppler-based method, a Doppler
guiding wire is used to measure phasic flow velocity and
determine the average peak velocity (APV). CFRDoppl is the
ratio of hyperemic APV to resting APV (Figure 4) (144, 145).
For the thermodilution method, a bolus of saline is injected
manually into the guiding catheter and the mean transit time
(Tmn) is defined as the time needed for the bolus to travel from
the guiding catheter to the sensor located in the distal part of
the artery. CFRthermo is the ratio of resting Tmn to hyperemic
Tmn (Figure 4) (145–147). IMR is the product of Pd and Tmn

during hyperemia via the thermodilution method (Figure 4)
(148–150). HMR is the ratio of Pd to APV during hyperemia
via the Doppler-based method (Figure 4) (151, 152). CFR is not
as reproducible and specific as IMR owing to the influence of
systemic hemodynamics (i.e., blood pressure, heart rate, etc.) and
myocardial contractility. Therefore, IMR is usually necessary to
assess microvascular resistance accurately (72, 153–155). CFR <

2.0, IMR ≥ 25, and HMR ≥ 1.9 are defined as pathological and
accounting for CMD (147, 154, 156–158).

A coronary reactivity test can be used to provide
further information about vasospasm. Endothelial
function was evaluated via endothelium-dependent
(acetylcholine, substance P, and bradykinin) and endothelium-
independent (adenosine and sodium nitroprusside)
agents (1, 5, 159). Epicardial spasm is diagnosed if (1)
reproducible chest pain, (2) detection of ischemic changes
of electrocardiography, and (3) more than 90% reduction
of epicardial arterial diameter. Microvascular spasm is
diagnosed if (1) and (2) are present and excluding (3)
(Figure 5) (160).

The invasive evaluation of INOCA was proposed by the
Coronary Vasomotion Disorders International Study Group.
First of all, an initial assessment of the epicardial coronary artery
is required to exclude an obstructive lesion, where FFR is strongly
recommended in addition to the angiogram. Next, CFR, IMR,
and HMR can be measured routinely to provide information
regarding microvascular resistance. Last but not least, a coronary
reactivity test is performed to reveal vasospasm. CMD is defined
as FFR > 0.80, CFR < 2.0, IMR ≥ 25, HMR ≥ 1.9, and positive
microvascular spasm. Vasospastic angina is defined as FFR >

0.80, CFR ≥ 2.0, IMR < 25, HMR < 1.9, and epicardial spasm.
Mixed type of CMD and vasospastic angina is defined as FFR
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TABLE 2 | Abbreviation and definition.

Abbreviation Definition

INOCA Ischemia with non-obstructive coronary arteries

CMD Coronary microvascular dysfunction

VSA Vasospastic angina

CAG Coronary angiography

MACE Major adverse cardiovascular event

NO Nitric oxide

VSMCs Vascular smooth muscle cells

PET Positron emission tomography

CCTA Coronary computed tomography angiography

SPECT Single-photon emission computed tomography

MRI Magnetic resonance imaging

CFR Coronary flow reserve

MCE Myocardial contrast echocardiography

MBF Myocardial blood flow

MPI Myocardial perfusion image

MFR Myocardial flow reserve

CPI Computed tomographic perfusion image

MPR Myocardial perfusion reserve

CFT Coronary function test

FFR Fractional flow reserve

IMR Index of microcirculatory resistance

Pd* Distal coronary pressure

Pa* Aortic pressure

APV* Average peak velocity

CFRDoppl Coronary flow reserve that measured by Doppler method

CFRthermo Coronary flow reserve that measured by thermodilution method

Tmn* Mean transit time

HMR Hyperemic myocardial velocity resistance

QFR Quantitative flow ratio

AF Absolute flow

AR Absolute resistance

*These abbreviations are used in equations and detailed definitions are included in the text.

> 0.80, CFR < 2.0, IMR ≥ 25, HMR ≥ 1.9, and microvascular
and/or epicardial spasm (Figure 6) (1, 24, 161, 162).

Besides confirmatory diagnosis and classification of INOCA,
the role of CFT in predicting the prognosis of INOCA is
widely acknowledged. Both CMD and epicardial vasospasm are
relevant to MACE (163, 164). Patients with both CMD and
epicardial vasospasm, which is defined as the mixed type of
INOCA, have a particularly higher risk of unstable angina,
myocardial infarction, and cardiac death (165, 166). CFT was
also proven to be feasible in stratifying patients with INOCA for
different treatment strategies (159, 167). Categorizing patients
into different pathophysiological endotypes and treating them
with specific protocol has improved symptom control of angina
and quality of life to a significant extent (165, 167). Coronary
blood flow changes in response to endothelium-dependent
reactivity, i.e., acetylcholine infusion, which also has prognostic
value. Coronary blood flow change of <50% is considered

abnormal microvascular reactivity and is associated with long-
term mortality (163). Non-invasive diagnostic approaches, when
compared to CFT, showed extreme limitation in regards to
detection of vasospasm, which is frequently encountered in
INOCA (137). Therefore, CFT and coronary reactivity test are
encouraged as soon as possible when INOCA is suspected, to
prevent unnecessary diagnostic tests and promote early stratified
treatment (137). The major limitation of CFT is its invasive
nature and unavailability (25). However, the safety of invasive
diagnostic procedures can be guaranteed by the experienced and
dedicated interventional team and the rate of life-threatening
complications such as coronary artery dissection, myocardial
infarction, and ventricular arrhythmia are rare (168, 169).
Overall, CFT is a safe and reliable diagnostic approach of INOCA.

Continuous Thermodilution
Several disadvantages of Doppler and bolus thermodilution
methods have been noticed, such as intraoperator variability
and side effects resulting from vasodilators (115). Reliable
results occurred only in 60–70% of the cases (170). Continuous
thermodilution is a novel method that measures absolute flow
(AF) and absolute resistance (AR) in a coronary artery, which
is independent of operator quantification (28, 29). By infusing
room temperature saline (Ti) at the rate of 8–20 ml/min (Qi),
maximal hyperemia could be achieved in seconds (171, 172).
Temperature of blood mixing with saline is denoted as T, which
decreases as saline infused to the coronary artery. AF is the result
of 1.08 × Qi × Ti/T.” AR is then calculated by dividing Pd
by AF (28). Higher AR has been noticed to be associated with
abnormal CFR and IMR, but neither AF nor AR is correlated
with vasospasm (173). In addition, large interpersonal variability
makes it difficult to establish the reference range of AF and AR.
Further studies are required for assessing the validity of AF and
AR (174).

Angiography-Derived Quantitative Flow
Ratio
Recently, a three-dimensional quantitative coronary angiography
that enables rapid computation of FFR, which is denoted as
QFR, has been developed. Coronary angiography is performed
and two angiographic images that are at least 25 degrees apart
from the artery of interest are selected. Three-dimensional
reconstruction is automatically done and manual correction
is allowed in case of suboptimal image quality. QFR can be
calculated in three different flow models: (1) the fixed-flow
QFR pullback: a fixed empiric hyperemic flow velocity of 0.35
m/s derived from Shengxian Tu et al. is used (27); (2) the
contrast-flow QFR pullback: frame count analysis is performed
on two diagnostic angiographic images without pharmacological
induction. Modeled hyperemic flow velocity is derived by
calculating two new QFR pullbacks (27); (3) the adenosine-
flow QFR pullback: frame count analysis is performed on
two diagnostic angiographic images with adenosine-induced
hyperemia. Measured hyperemic flow velocity is derived by
calculating two new QFR pullbacks (175). QFR shows good
consistency with pressure wire-derived FFR and can be used
to promote rapid computation of FFR (175–178). Furthermore,
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the formula of angiography-based IMR has been proposed.
Without induction of hyperemia and use of pressure guidewire,
angiography-based IMR also has a good correlation with IMR
(179). QFR allows faster and more accurate evaluation of
coronary microcirculation, therefore showing great potential in
future practice. However, the reference range of FFR and IMR
needs to be corrected in a larger sample size. CMD and acute
coronary syndrome can influence the diagnostic performance
of QFR. Therefore, indication for the use of QFR needs to
be addressed before it becomes a routine tool in modern
catheterization labs (179, 180).

DISCUSSION

Ischemia with non-obstructive coronary arteries is recognized
as a clinical condition with strong evidence for unfavorable
prognosis, including issues on quality of life, heart failure with
preserved ejection fraction, MACE, and mortality. CMD and/or
epicardial vasospasm are the two major pathophysiological
mechanisms for INOCA. To establish a confirmatory diagnosis
of INOCA, coronary blood flow, microvascular resistance, and
vasoreactivity are required to be assessed, in which invasive
coronary function test and coronary reactivity test are the
gold standards. Several new techniques help complement the
diagnosis of INOCA, such as continuous thermodilution and
QFR. As for non-invasive methods, cardiac PET is a more
reliable method compared to echocardiography, SPECT, CCTA,
and cardiac MRI. Nevertheless, the non-invasive methods are
unable to evaluate vasospasm, which is a frequently encountered
endotype of INOCA. Another disadvantage is the variability
of computed parameters due to poor image quality and
low reproducibility.

A straightforward diagnostic diagram for INOCA evaluation
has been proposed by Kunadian et al. (1). The evaluation
of INOCA begins with history taking to address risk factors
and events of ischemia, followed by physical examination and
electrocardiography to exclude acute coronary syndrome at
primary healthcare facilities. If patients are highly suspected to
have INOCA, then they should be referred to cardiologists, where
further diagnostic tests are performed. Non-invasive diagnostic
approaches are the first-line tools. Techniques that can provide
information about the coronary function (i.e., FFR, CFR, MBF,
etc.) are preferred, such as echocardiography, cardiac PET, and
cardiac MRI, based on local expertise and availability. CCTA
may be performed to reveal any obstructive lesions on coronary
arteries. According to the 2019 European Society of Cardiology

guideline for the chronic coronary syndrome, invasive diagnostic
approaches should be considered for patients with suspected
CMD, that is, having persistent symptoms but coronary arteries
that are either angiographically normal or have moderate
stenoses with preserved FFR, or for patients with suspected
vasospasm, that is, having a clinical picture of coronary spasm
but normal findings or non-obstructive lesions on CAG (7). After
ruling out obstructive CAD on CAG, invasive functional tests
measuring CFR, IMR, HMR, and assessing vasoreactivity are
performed to further classify INOCA into different endotypes,
that is, CMD, epicardial spasm, and mixed type of CMD and
epicardium (Figure 6).

In clinical practice, however, thorough diagnostic procedures
on all suspected patients are unrealistic. Therefore, patients’
follow-ups are essential for the assessment of the quality
of life, identification of adverse events, prompt evaluation,
and modification of treatment plans. In addition, though
the confirmatory diagnosis has relied on invasive diagnostic
approaches, non-invasive diagnostic approaches are promising
as fast and accurate screening tests to meet the large
demands of indicated candidates, if the limitations can be
improved in future investigations. Last but not least, coronary
microvascular dysfunction could be a regional presentation
of systemic microvascular diseases. Diagnostic techniques that
assess microvasculature in the kidney, retina, and cerebral white
matter could also be an interesting research direction (181).
The abbreviation and definition of this article are listed in
Table 2.
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