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OBJECTIVE

Glucose measurements during an oral glucose tolerance test (OGTT) are useful in
predicting diabetes and its complications. However, knowledge of the pathophys-
iology underlying differences in glucose curve shapes is sparse. We examined the
pathophysiological characteristics that create different glucose curve patterns
and studied their stability and reproducibility over 3 years of follow-up.

RESEARCH DESIGN AND METHODS

We analyzed data from participants without diabetes from the observational
cohort from the European Group for the Study of Insulin Resistance: Relationship
between Insulin Sensitivity and Cardiovascular Disease study; participants had a
five–time point OGTT at baseline (n = 1,443) and after 3 years (n = 1,045). Measures
of insulin sensitivity and secretion were assessed at baseline with a euglycemic-
hyperinsulinemic clamp and intravenous glucose tolerance test. Heterogeneous
glucose response patterns during the OGTT were identified using latent class
trajectory analysis at baseline and at follow-up. Transitions between classes were
analyzed with multinomial logistic regression models.

RESULTS

We identified four different glucose response patterns, which differed with regard
to insulin sensitivity and acute insulin response, obesity, and plasma levels of lipids
and inflammatory markers. Some of these associations were confirmed pro-
spectively. Time to glucose peak was driven mainly by insulin sensitivity, whereas
glucose peak size was related to both insulin sensitivity and secretion. The glucose
patterns identified at follow-up were similar to those at baseline, suggesting that
the latent class method is robust. We integrated our classification model into an
easy-to-use online application that facilitates the assessment of glucose curve
patterns for other studies.

CONCLUSIONS

The latent class analysis approach is a pathophysiologically insightful way to classify
individuals without diabetes based on their response to glucose during an OGTT.
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The term “prediabetes” covers a range
of heterogeneous metabolic states with
varying degrees of insulin resistance and
b-cell dysfunction (1). Fasting plasma
glucose (FPG) and 2-h postload plasma
glucose (2hPG) measurements during an
oral glucose tolerance test (OGTT) are the
most common ways to classify individuals
with prediabetes. The OGTT is seldom
used in clinical practice, where FPG or
HbA1c are preferred for practical reasons.
However, a recent study showed that
HbA1c may not be able to capture the
pathophysiological diversity of impaired
fasting glycemia (IFG) and impaired glu-
cose tolerance (IGT) (2). Also, individuals
identified as having prediabetes on the
basis of the HbA1c criterion seem to have
a different response to physical activity
and lower probability of reverting to
normoglycemia than those identified
through the use of the glucose criteria
(3). Thus, understanding the pathophys-
iological differences between subgroups
of individuals with prediabetes is crucial
to stratify risk and to facilitate more
targeted prevention-focused interven-
tions. In line with this, it has recently
been suggested that insulin sensitivity
and secretion should be assessed in
detail from glucose and insulin mea-
sures at 0, 30, and 120 min during an
OGTT in all individuals with IFG or IGT,
despite the increased cost and effort (4).
While 30-min plasma glucose and

insulin concentrations are necessary to
evaluate first-phase insulin secretion,
intermediate time points during an
OGTT also have been shown to be useful
in predicting diabetes. For instance, 1-h
postload plasma glucose (1hPG) concen-
tration has consistently been shown to
have a stronger association with inci-
dence of type 2 diabetes than 2hPG,
and it has been associated with both
cardiovascular disease and mortality
(5–7). Likewise, individuals without di-
abetes but who have elevated 30-min
plasma glucose levels have an increased
risk of future diabetes and all-cause
mortality, independently of FPG and
2hPG levels (8). However, most previous
studies considered the different time
points during an OGTT separately and
thereby missed the opportunity to con-
sider different OGTT curve features in
relation to future end points. We recently
demonstrated how assessing time to glu-
cose peak through the use of a simple
longitudinal analysis technique, rather

than just selecting the time point with
the highest value, can improve the pre-
dictive power of this variable (9). When
considering the shape of glucose curves
during OGTTs, the most common ap-
proach is to classify them as mono- or
biphasic shapes (10). This method does
not, however, take into account measure-
ment error; it fails to categorize some
individuals, and, most importantly, it may
be too crude to capture subtle differences
between groups. We have taken a dif-
ferent approach and used a data-
driven methoddlatent class trajectory
analysisdto classify individuals based
only on their glucose response during
an OGTT (11,12). A major advantage of
this approach over the mono-/biphasic
classification is that it does not neces-
sarily require a five-point OGTT to
classify individuals. Also, it returns class
membership probabilities indicating the
certainty of the classification. Using this
method, we identified heterogeneous
patterns of glucose response that cannot
be captured by the mono-/biphasic clas-
sification (13). However, previous studies
have not addressed how pathophysio-
logical characteristics and biomarkers of
metabolic functions are linked to differ-
ent glucose curve patterns. Moreover,
the stability and reproducibility of the
different glucose curve patterns over
time have never been examined.

Thus, the aims of this study were
threefold: 1) to examine the association
of pathophysiological characteristics and
biomarkers of metabolic functions with
different glucose curve patterns, 2) to
study the stability and reproducibility of
glucose curve patterns over time, and 3)
to develop an easy-to-use online appli-
cation that facilitates the assessment of
glucose curve patterns for individuals in
other populations and settings.

RESEARCH DESIGN AND METHODS

Study Design and Participants
The Relationship between Insulin Sensi-
tivity and Cardiovascular Disease (RISC)
study is an observational prospective study
with follow-up examinations at baseline
(n = 1,566) and at 3 years (n = 1,059). At
baseline the cohort was clinically healthy;
individuals who were receiving treatment
or who had a serious medical condition
were not eligible to participate (14). The
process used to select participants for our
analyses is displayed in Supplementary
Fig. 1. For the cross-sectional analysis,

we excluded individuals with missing in-
formation on age or sex (n = 53), those who
did not have plasma glucose measured at
all five time points during the OGTT (n =
42), and all participants with diabetes
detected through screening (n = 28).
This resulted in a study population of
1,443 individuals for the cross-sectional
analysis. Among those, 384 individuals did
not attend follow-up, 3 were receiving
glucose-lowering treatment, and 11 did
not have glucose measurements at all
five OGTT time points at follow-up, result-
ing in 1,045 participants for the prospec-
tive analysis. Baseline characteristics were
compared between participants and non-
participants at follow-up.

Procedures and Measurements
At the baseline and follow-up examina-
tions, participants underwent a 75-g OGTT
after an overnight fast. Plasma glucose,
serum insulin, and C-peptide concentra-
tions were assessed at five time points
during the OGTT (0, 30, 60, 90, 120 min). A
euglycemic-hyperinsulinemic clamp and
an intravenous glucose tolerance test
(IVGTT) were performed at baseline. A
detailed description of the clamp proto-
col was published previously (15). Insulin
sensitivity was described by M/I, where
M is the mean glucose concentration
infused over the last 40 min of the clamp
and I is the steady-state serum insulin
concentration measured over the same
time period. Glucose-induced secretory
response (GISR) was expressed as the
integral of incremental insulin secretion
divided by the mean incremental glucose
following administration of an intrave-
nous glucose bolus (15). The disposition
index was calculated as GISR 3 M/I.

Plasma concentrations of adiponectin
and leptin were measured at baseline
after an overnight fast. C-reactive protein
(CRP) and interleukin-6 (IL-6) were mea-
sured in those participating at both base-
line and follow-up, and samples were
analyzed at the same time. Body compo-
sition (fat mass) was determined with a
bioimpedance TBF-300 Total Body Com-
position Analyzer (Tanita, Tokyo, Japan).
Data on physical activity, alcohol con-
sumption, smoking habits, and family
history of diabetes were assessed using
standard questionnaires.

Type 2 diabetes was defined as
FPG $7.0 mmol/L, 2hPG $11.1 mmol/L,
having diabetes diagnosed by a doctor,
or using glucose-lowering treatment.
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Detailed descriptions of the study pro-
tocol were published previously (14,16).

Statistical Analysis

Assessment of Glucose Patterns During the

OGTT

We applied latent class trajectory anal-
ysis to identify glucose patterns during
the OGTT based on measurements taken
at all five time points. This approach
offers a data-driven way to classify in-
dividuals into subgroups that differ with
regard to specific parametersdin our
case, change over time (11,12). We in-
cluded linear, quadratic, and cubic time
terms to model the change in plasma
glucose over the 2 h. These time effects
could vary between the latent classes.
We included an individual-specific ran-
dom intercept in the model to account
for the repeated nature of the data.
The optimal number of classes was
determined by considering model fit
(Bayesian Information Criterion, a measure
based on the log-likelihood penalizing
complexmodels), distribution of classmem-
bership probabilities, class sizes, and inter-
pretability of the identified patterns (12).
The model returns not only the identi-
fied global glucose response patterns but
also class membership probabilities for
each participant, and these can be used
to assign individuals to the most likely
latent glucose response pattern class
(hard assignment based on the highest
classmembership probability). It can also
classify new observations into the pre-
viously derived glucose response pat-
tern classes. This feature was used to
determine class memberships at follow-
up. A detailed, more technical descrip-
tion of the latent class analysis and the
development of the online application is
included in the Supplementary Data.

Cross-sectional Associations

Categorical and continuous variables
across latent classes are described as
frequencies (percentages) and the me-
dian (interquartile range), respectively.
Adjusted differences were estimated
with multinomial logistic and quantile
regression models using two nested
sets of variables: age and sex (model 1),
and the model 1 variables plus smoking
status, physical activity, alcohol consump-
tion, and BMI (model 2).
We also investigated the associations

of insulin sensitivity and secretion with
glucose peak characteristics (time and
size). To assess glucose peak time and

size, we used mixed-effects models to
fit cubic glucose trajectories. We included
random effects corresponding to all
fixed terms to get individual-specific
model coefficients. Then we used these
estimates to extract the peak time and
size, as described previously (9). We ap-
plied relative importance analyses, with
continuous peak size and time as out-
comes and with insulin sensitivity (M/I)
and secretion (GISR) as determinants,
using the relaimpo R package (17). We
used a metric for importance based on
the decomposition of R2 in the model.

Stability and Reproducibility of Patterns

First, we investigated how the glucose
curves looked at follow-up based on
the individuals’ classification at baseline
(irrespective of their classification at
follow-up). We fitted cubic trajectories
using mixed-effects models that in-
cluded the interaction between time terms
and baseline latent classes. Second, we re-
peated the latent class trajectory ana-
lysis at follow-up to reclassify each indivi-
dual based on their OGTT at the follow-up
examination. We present the curves of
the four classes we identified at follow-up.

We used a Sankey diagram to visualize
the transition between different classes
from baseline to follow-up. As a sensi-
tivity analysis, we also examined the
proportion of participants who stayed
in the same class among those who had
a class membership probability above
0.90 at baseline (n = 643). Then we
selected the largest class at baseline
and characterized transitions from this
class. We used age- and sex-adjusted
multinomial logistic regression models
with class at follow-up as the outcome
and baseline values of the different car-
diometabolic risk factors and change dur-
ing follow-up as exposures. This analysis
was restricted to those exposures that
exhibited a strong association with glu-
cosepattern classmembership at baseline.

RESULTS

Participants
The study population for the cross-
sectional analyses included 1,443 indivi-
duals (644men and 799 women) without
diabetes (Supplementary Fig. 1). The co-
hort had a median (IQR) age of 44 years
(37–50) and BMI of 25.1 kg/m2 (22.8–
27.9). One in four participants was a
current smoker, and one in five reported
being physically inactive at baseline.

Baseline characteristics did not differ be-
tween participants and nonparticipants at
the follow-up examination (16).

Latent Classes of Glucose Patterns
We considered a four- and a five-class
solution because while the latter had the
lowest Bayesian Information Criterion,
class membership probabilities were higher
in the four-class solution (Supplementary
Figs. 2 and 3). We found this last feature
more important and therefore we used
the four-class solution here. We num-
bered the classes from one to four based
on the increasing areas under the glucose
curves.

Glucose, Insulin, and C-peptide
Responses
The identified glucose pattern classes are
plotted in Fig. 1A alongside their corre-
sponding insulin and C-peptide trajecto-
ries (Fig. 1B and C). Glucose curves varied
greatly between classes, with peaks
occurring after 32–61 min at plasma
glucose concentrations between 6.5 and
11.5 mmol/L (Fig. 1A). The highest peak
was observed in class 3, which was char-
acterized by themost rapid increase up to
44min and then a similarly rapid decrease
to the second-lowest 2hPG level. Insulin
levels peaked consistently later than glu-
cose levels, with the largest difference
(16 min) observed in class 3. C-peptide
curves peaked later than insulin curves: in
classes 1, 2, and 3,;25 min after reaching
the glucose peak; in class 4, the serum
C-peptide concentration was still on the
rise after 2 h.

Cross-sectional Associations
Demographic and lifestyle factors by
glucose pattern classes are reported in
Table 1. Individuals in class 1 had the most
favorable risk profile. They were youngest,
most physically active, and most likely to
be women, and only one in five reported
a first-degree relative with diabetes.
Men had more than threefold higher
odds than women of being in class 3
than in class 1. Class 3 had the highest
proportion of current smokers and its
members had the highest degree of
alcohol consumption. However, class 4
had the highest proportion of individuals
with a family history of diabetes and
the most physically inactive individuals.

Clinical characteristics by glucose pat-
tern classes are also reported in Table 1.
BMI and fat mass were gradually higher
from class 1 to class 4, and the differences
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were not explained by lifestyle factors.
In the adjusted models, LDL cholesterol
did not differ between classes, but HDL
cholesterol was lower, whereas trigly-
cerideswere higher, from class 1 to class
4, regardless of adjustment. The in-
flammatory markers CRP and IL-6 both
showed associations with class mem-
bership in the age- and sex-adjusted
models. The association with CRP levels
remained statistically significant after
adjustment for lifestyle factors and BMI.
Levels of adiponectin were lower from
class 1 to class 4, regardless of adjust-
ment. Although we observed large differ-
ences in absolute leptin levels by glucose
pattern class, they were markedly atten-
uated by adjustment for lifestyle factors
and BMI.

Pathophysiological Measures From
the Clamp and IVGTT
Figure 2 shows clamp-basedmeasures of
insulin secretion as a function of insulin
sensitivity stratified by glucose pattern
class, glucose peak time, and the size
of the glucose peak. A position closer to
the origin, meaning also a lower disposi-
tion index, indicates higher risk for dia-
betes (18). The disposition index was
consistently lower from class 1 to class
4, but impaired insulin sensitivity and
secretion had different relative contribu-
tions (Fig. 2A). Individuals in classes 1 and
2 had similar insulin secretion, but those in
class 2 had lower insulin sensitivity than
those in class 1, also after adjustment for
age and sex (median difference227 [95%
CI 233 to 221]). Classes 2 and 3 were

similar with regard to insulin sensitivity,
but individuals in class 3 had lower insulin
secretion (median difference213 [95%
CI 221 to 24]). Last, individuals in
classes 3 and 4 had similar insulin se-
cretion, but those in class 4 had lower
insulin sensitivity (median difference233
[95% CI 242 to 219]).

Time of glucose peak was almost ex-
clusively determined by insulin sensitiv-
ity, indicated by a 96% contribution in
the relative importance analysis. The size
of the glucose peak was also, and to
a larger extent, driven by insulin sensi-
tivity; however, for this characteristic in-
sulin secretion also made a substantial
contribution (32%). Both later and higher
glucose peaks were associated with lower
disposition indices (Fig. 2B and C).

Figure 1—Plasma glucose patterns identified at baseline (A), corresponding serum insulin (B) and C-peptide (C) curves, and plasma glucose tra-
jectories at follow-up for the groups identified at baseline (D) and independently at follow-up (E ). Curves are estimatedmean trajectories (solid
lines) with 95% CIs (dashed lines).
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Stability and Transitions
Glucose curves for each baseline latent
class at the 3-year follow-up are shown
in Fig. 1D. We observed regression to the
mean; however, differences in shape and
peak rankings between classes were
still clear. When we conducted the latent
class trajectory analysis using measure-
ments from follow-up, we found patterns si-
milar to those identified at baseline (Fig. 1E).

In the transition analysis we deter-
mined class memberships at follow-up
using the baseline model and data from
the OGTT at follow-up. Half of the co-
hort (55%) was in the same class at
follow-up as at baseline, whereas 19%
moved to a class with a more favorable
glucose profile (lower area under the
curve [AUC]) and 27% moved to a class
with a less favorable profile (higher AUC)

(Supplementary Fig. 4). We found
that younger age and both lower base-
line levels of and declines from baseline
to follow-up in BMI, fat mass, triglycer-
ides, and CRP were associated with tran-
sition from class 2 to class 1 compared
with staying in class 2 at the follow-up
examination (Table 2).

We implemented our latent class
model in an online application, the

Table 1—Demographics, lifestyle factors, and clinical characteristics of participants by latent glucose pattern classes at
baseline

Class 1 Class 2 Class 3 Class 4

Demographic and lifestyle factors
Individuals 534 (37) 651 (45) 112 (8) 146 (10)
Age (years) 41 (35–48) 45 (38–51) 47 (41–54) 47 (41–53)
Male sex (%) 178 (33) 329 (50) 76 (69) 61 (45)
Currently smoking (%) 131 (25) 154 (24) 49 (45) 38 (29)
Physical activity
Inactive 99 (19) 127 (21) 20 (19) 32 (25)
Minimally active 209 (41) 273 (44) 47 (44) 54 (43)
Active 205 (40) 214 (35) 39 (37) 41 (32)

Alcohol consumption per week
,30 g 210 (40) 222 (35) 24 (22) 59 (44)
30–80 g 170 (32) 204 (32) 24 (22) 33 (25)
.80 g 145 (28) 214 (33) 61 (56) 42 (31)

Family history of diabetes (%) 106 (20) 177 (28) 45 (41) 64 (47)

Clinical characteristics
Glucose tolerance status
Normal 494 (93) 503 (77) 59 (53) 36 (25)
IFG 39 (7) 116 (18) 52 (46) 6 (4)
IGT 1 (0) 26 (4) 0 (0) 68 (47)
IFG and IGT 0 (0) 6 (1) 1 (1) 36 (25)

BMI (kg/m2) 23.8 (21.7–26.3) 25.4 (23.2–28.0) 27.0 (23.9–29.7) 27.0 (25.0–29.7)
Difference1 Reference 1.0 (0.4–1.3) 2.2 (1.0–3.4) 2.7 (1.9–3.4)
Difference2 Reference 0.8 (0.3–1.3) 2.0 (1.1–3.0) 2.2 (1.5–3.0)

Fat mass (%) 27.0 (20.0–33.5) 27.1 (20.9–33.7) 28.6 (23.0–33.2) 31.2 (25.9–36.6)
Difference1 Reference 1.4 (0.7–2.3) 4.2 (2.2–5.3) 5.4 (4.0–6.4)
Difference2 Reference 1.3 (0.5–2.4) 3.6 (2.6–5.3) 4.5 (3.4–5.9)

LDL cholesterol (mmol/L) 2.7 (2.2–3.3) 2.9 (2.4–3.4) 3.2 (2.5–3.6) 3.1 (2.6–3.5)
Difference1 Reference 0.08 (20.01 to 0.18) 0.23 (0.02–0.34) 0.28 (0.12–0.43)
Difference3 Reference 0.11 (20.03 to 0.19) 0.14 (20.11 to 0.26) 0.16 (20.06 to 0.38)

HDL cholesterol (mmol/L) 1.49 (1.26–1.74) 1.33 (1.14–1.60) 1.30 (1.07–1.53) 1.27 (1.04–1.54)
Difference1 Reference 20.09 (20.14 to 20.05) 20.12 (20.21 to 20.03) 20.22 (20.25 to 20.16)
Difference3 Reference 20.05 (20.10 to 20.01) 20.04 (20.15 to 0.01) 20.10 (20.16 to 20.03)

Triglycerides (mmol/L) 0.82 (0.61–1.10) 0.96 (0.70–1.27) 1.25 (0.78–1.66) 1.13 (0.86–1.63)
Difference1 Reference 0.09 (0.04–0.14) 0.25 (0.14–0.43) 0.24 (0.18–0.36)
Difference3 Reference 0.06 (0.01–0.09) 0.19 (0.02–0.35) 0.21 (0.12–0.29)

CRP (mg/L) 0.48 (0.21–1.02) 0.71 (0.32–1.57) 0.67 (0.35–1.49) 1.33 (0.60–3.09)
Difference1 Reference 0.20 (0.07–0.33) 0.17 (0.04–0.32) 0.88 (0.47–1.41)
Difference3 Reference 0.11 (0.02–0.20) 0.10 (20.08 to 0.23) 0.50 (0.26–1.15)

IL-6 (pg/mL) 0.63 (0.47–1.02) 0.73 (0.49–1.15) 0.86 (0.64–1.56) 0.93 (0.58–1.42)
Difference1 Reference 0.06 (0.01–0.12) 0.16 (0.04–0.36) 0.23 (0.12–0.44)
Difference3 Reference 20.01 (20.06 to 0.05) 0.03 (20.06 to 0.22) 0.18 (20.03 to 0.34)

Adiponectin (mg/L) 8.5 (6.4–11.5) 7.5 (5.5–10.0) 6.3 (4.9–9.2) 6.3 (5.0–9.0)
Difference1 Reference 20.55 (20.90 to 20.24) 21.17 (21.61 to 20.38) 21.60 (22.33 to 20.78)
Difference3 Reference 20.47 (20.84 to 0.06) 20.89 (21.43 to 20.17) 21.03 (21.38 to 20.38)

Leptin (ng/mL) 9.4 (4.3–16.4) 9.2 (4.2–18.1) 8.6 (4.1–18.4) 13.6 (7.9–25.3)
Difference1 Reference 1.7 (0.9–2.3) 3.3 (2.2–4.6) 5.9 (4.1–7.5)
Difference2 Reference 0.0 (20.6 to 0.5) 0.5 (20.5 to 1.6) 0.7 (20.8 to 2.4)

For the continuous clinical characteristics, the median (Q1–Q3) is presented in the first row followed by the median (95% CI) for adjusted differences
(different levels of adjustment from quantile regression models) in the second and third rows. Other data are n (%), except for age, which is presented
as median (Q1–Q3). 1Adjusted for age and sex. 2Adjusted for age, sex, smoking status, physical activity, and alcohol consumption. 3Adjusted for age,
sex, smoking status, physical activity, alcohol consumption, and BMI.
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Glucose Response Classifier, which is
now available at https://steno.shinyapps.
io/grc2h. The application calculates glu-
cose response class membership probabil-
ities for a person based on glucose
concentrations during a frequently sam-
pledOGTT. Technical details of themodel
are described in the Supplementary
Data.

CONCLUSIONS

This study highlights a novel way of
analyzing glucose responses during the

OGTT and provides new information on
the contributions of insulin sensitivity and
first-phase insulin secretion to differ-
ences in glucose curve shapes. The iden-
tified glucose curve patterns differed
from each other with regard to insulin
sensitivity and acute insulin response,
obesity, lipid levels, and inflammatory
markers. In prospective analyses, chan-
ges in obesity, triglycerides, and inflam-
matory markers were associated with
transition fromone glucose curve pattern
to another. Together, these findings

suggest that the glucose curve patterns
identified by latent class trajectory anal-
ysis are clinically relevant andmodifiable
by lifestyle factors. An application was pub-
lished online to provide a tool to classify
individuals outside this study.

The detailed assessment of first-phase
insulin secretion and insulin sensitivity in
the RISC cohort allowed us to investigate
further the pathophysiological features
responsible for the different curve
shapes. Individuals with an early but
relatively low glucose peak had the

Figure 2—Insulin sensitivity (M/I) and acute insulin secretion (GISR) by latent glucose pattern classes (A) and the time (B) and size (C) of the glucose
peak. Thin gray hyperbolas represent different levels of the disposition index, calculated as the product of insulin sensitivity (M/I) and acute insulin
secretion (GISR) during the clamp. Data are the median and quartiles (Q1–Q3) of M/I (horizontally) and GISR (vertically).
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most favorable pathophysiological pro-
file (class 1), whereas participants be-
longing to class 2 had lower insulin
sensitivity but normal insulin secretion.
This finding indirectly suggests that in-
dividuals with this risk profile are likely
to benefit from interventions aimed at
improving insulin sensitivity (e.g., exer-
cise) (3). Individuals in class 3 had an
early but high glucose peakdfeatures
that were associated both with lower
first-phase insulin secretion and insulin
sensitivity. Serum insulin and C-peptide
concentrations were highest in class 3
compared with the other groups despite
the lower first-phase insulin secretion
measured during the IVGTT. Parallel to
previous findings of a discrepancy be-
tween insulin responses from oral versus
intravenous glucose testing (19), this
finding is likely to be explained by the
release of incretin hormones, which
stimulate glucose-induced insulin response
during an OGTT but not during intrave-
nous testing. Individuals in class 4 had
a slightly later glucose peak than those
in class 3, potentially driven by the
lower degree of insulin sensitivity. Thus,
a novel finding of this study is that whole-
body insulin sensitivity determines almost
exclusively the time to glucose peak
during the OGTT (Fig. 2B), whereas
first-phase insulin secretion also plays a

substantial role in determining the size
of the glucose peak (Fig. 2C). A previous
analysis of the RISC cohort found that
individuals with normal glucose toler-
ance who had a high glucose peak
($8.95 mmol/L) had a risk profile similar
to that of participants with IGT (20),
which underscores that a higher glucose
peak reflects an abnormal metabolic
state.

In line with this observation, we found
that individuals belonging to class 3,
which was characterized by the highest
and earliest glucose peak, were likely
to bemen and smokers. This observation
is in accordance with previous findings
of individuals belonging to a group with
similar OGTT curve characteristics (13).
The finding is also in line with previous
findings from the RISC study, showing
higher total glucose and C-peptide AUCs
during OGTTs among men who smoke
(21). There is also evidence for higher
intermediate glucose levels in those
who smoke, despite similar FPG and
lower 2hPG (22). Possible explanations
include a delayed insulin response
among smokers (23) and a faster gastric
emptying rate (24). In a study of another
cohort, we showed that individuals with
a glucose curve pattern characterized by
a high glucose peak had an increased
risk for future diabetes and all-cause

mortality independent of age, sex,
smoking, and other cardiometabolic
risk factors (8). Together, these find-
ings and the pathophysiological differ-
ences (e.g., between classes 2 and
3 despite very similar FPG and 2hPG
concentrations;,6%) suggest that the
shape of the glucose curve carries in-
formation that cannot be captured by
FPG and/or 2hPG. Because of the relatively
short follow-up, we could not study in-
cidence of diabetes and cardiovascular
disease, and therefore we cannot con-
cludewhich of the glucose curve features
are most detrimental to health.

Among cardiometabolic risk factors,
obesity, triglycerides, and markers of
subclinical inflammation all were associ-
ated with the glucose pattern classes in
both cross-sectional and prospective
analyses. Fat mass was more strongly
associated with the glucose curve clas-
ses than BMI, and, of interest, low levels
of adiponectin, which is downregulated
in obese and insulin-resistant individu-
als (25,26), were related to a higher
probability of being in classes 3 and
4. Although the underlying mechanism
is not fully understood, adiponectin is
consistently found to be the only anti-
inflammatory cytokinewith a decreased
level before the diagnosis of type 2
diabetes (27). Also,markers of low-grade

Table 2—Risk factors associated with transitioning from class 2 at baseline to another class at the 3-year follow-up

Class at follow-up

Class 1 Class 2 Class 3 Class 4

Individuals, n (%) 112 (23) 258 (54) 45 (9) 63 (13)

Age (years) 0.96 (0.94–0.99) 1.00 1.02 (0.98–1.06) 1.01 (0.98–1.04)

Sex (men vs. women) 0.74 (0.47–1.17) 1.00 0.95 (0.50–1.80) 0.86 (0.49–1.50)

Family history of diabetes 0.65 (0.38–1.12) 1.00 1.36 (0.69–2.71) 1.39 (0.77–2.50)

Insulin sensitivity (per 20 M/I units) 1.08 (1.01–1.16) 1.00 1.02 (0.91–1.13) 0.86 (0.76–0.96)

Insulin secretion (per 10 GISR units) 0.99 (0.92–1.07) 1.00 0.88 (0.77–0.998) 0.99 (0.89–1.09)

Risk factors measured at both baseline and follow-up
BMI (kg/m2) 0.92 (0.86–0.99) 1.00 1.06 (0.97–1.14) 0.99 (0.92–1.08)
DBMI (kg/m2) 0.76 (0.64–0.91) 1.00 1.25 (1.04–1.50) 1.05 (0.87–1.27)
Fat mass (%) 0.95 (0.91–0.98) 1.00 1.03 (0.98–1.09) 1.00 (0.95–1.06)
DFat mass (%) 0.93 (0.88–0.99) 1.00 1.00 (0.93–1.09) 1.03 (0.97–1.10)
HDL cholesterol (0.5 mmol/L) 0.99 (0.70–1.42) 1.00 0.79 (0.46–1.37) 0.62 (0.38–1.01)
DHDL cholesterol (0.5 mmol/L) 1.21 (0.74–1.97) 1.00 0.71 (0.33–1.52) 0.65 (0.33–1.28)
Triglycerides (log2 transformed) 0.56 (0.36–0.87) 1.00 1.56 (0.89–2.75) 1.28 (0.77–2.12)
DTriglycerides (0.5 mmol/L) 0.65 (0.49–0.85) 1.00 1.08 (0.80–1.45) 0.87 (0.65–1.15)
CRP (log2 transformed) 0.79 (0.69–0.91) 1.00 1.33 (1.07–1.65) 0.98 (0.82–1.17)
DCRP (mg/L) 0.81 (0.67–0.98) 1.00 1.09 (0.98–1.21) 1.10 (0.99–1.21)

Dataareodds ratios (95%CI) unlessotherwise indicated.Age- and sex-adjustedodds ratioswere calculatedusingmultinomial logistic regressionmodels
with follow-up class membership as the outcome (reference outcome: staying in class 2). Odds ratios represent the association between
moving to a specific class rather than staying in class 2 and a unit difference in the risk factors listed in the first column. Values are baseline
measurements or are changes (D) between baseline and follow-up (e.g., DBMI = BMI at follow-up2 BMI at baseline). Odds ratios for log2-transformed
variables should be interpreted as the effect of doubling the predictor’s value. Estimates for a variable and the change in the same variable are from
the same model including both variables at the same time.
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inflammation, such as CRP and IL-6, were
associated with classes 3 and 4, which
included individuals with the lowest insulin
sensitivity and poorest insulin secretion.
Markers of subclinical inflammation have
previously been prospectively associated
with the development of increased glyce-
mia, insulin resistance, andb-cell dysfunc-
tion (27,28). Now we demonstrate that
thesemarkers are also related to different
glucose curve characteristics during an
OGTT in individuals who do not have
diabetes. Differences in CRP levels, but
not in IL-6 levels, between the identified
classes were robust for confounder ad-
justment. In line with previous studies,
this suggests that CRP might indicate an
earlier stage of glycemic defects than
IL-6 (28).
Previous investigations used prede-

fined and rather arbitrary approaches
(e.g.,mono-/biphasic curves, time to the
return to FPG level) to assess the shapeof
glucose curves (29). Our study takes
advantage of methodologies routinely
used in longitudinal epidemiology by
considering change over time while ac-
counting for measurement error and by
not relying on predefined characteriza-
tions. This method captures change
over time in a more intuitive way than
the mono-/biphasic classification, and
it provides class membership pro-
babilities indicating the certainty of the
estimates. Recent studies have focused
on the role of 1hPG in the risk of diabetes
and diabetes complications (7). Consid-
ering our results, however, a cutoff value
at 1hPG would not be able to distinguish
between classes 3 and 4, just as 2hPG
cannot distinguish between classes 2 and
3. Our comparisons between classes
are based on individuals who mostly
have high class membership probabili-
ties but not perfect classification with
100% probability. In such a theoretical
comparison based on perfectly match-
ing members, we would expect even
larger differences between the classes.
The RISC study offers a unique data set

achieved with “gold standard”measures
of insulin sensitivity and secretion, and
a repeated five–time point OGTT, but
such detailed data are seldom available.
An online application was developed
to facilitate the dissemination of our
methodology and to provide a tool for
classification of individuals outside of
our study, even with fewer than five
measurements. Further research is

needed to investigate whether accurate
classification can be achieved by mea-
suring glucose at fewer time points but
by adding to the model other determi-
nants as concomitant variables (30).

The OGTTs at follow-up allowed us to
investigate the robustness of the latent
class method. These analyses showed
reassuring results in the sense that the
same latent classes found at baseline
could be identified at follow-up. Thus,
the appearance of very similar patterns
at follow-up and similarities to our pre-
vious study (13) confirm the utility of
latent class trajectory analysis in finding
heterogeneous subgroups of individuals
without diabetes based on a detailed
characterization of their glucose response.
Our sensitivity analysis of transitions
showed that movements between classes
are due to random variation only to a
modest degree.

In conclusion, we identified four glu-
cose curve patterns that differed from
each other with regard to insulin sensi-
tivity, insulin secretion, obesity, plasma
lipids, and low-grade inflammatory
markers. In general, whole-body insulin
sensitivity was a more important deter-
minant than insulin secretion of time to
glucose peak during the OGTT, whereas
both seemed to contribute substantially
to the size of the glucose peak. The
identified glucose curve patterns were
robust over time, and transitions be-
tween classes were associated with
changes in cardiometabolic risk factors,
suggesting that the latent class trajectory
method may be useful to stratify risk.
Future research is warranted to explore
in more detail genetic and lifestyle deter-
minants,aswellas long-termconsequences
of different glucose curve patterns,
such as incidence of diabetes, cardio-
vascular disease, and response to inter-
ventions.
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