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Abstract

Oxygen is essentially required by most eukaryotic organisms as a scavenger to remove harmful electron and

hydrogen ions or as a critical substrate to ensure the proper execution of enzymatic reactions. All nucleated cells

can sense oxygen concentration and respond to reduced oxygen availability (hypoxia). When oxygen delivery is

disrupted or reduced, the organisms will develop numerous adaptive mechanisms to facilitate cells survived in the

hypoxic condition. Normally, such hypoxic response will cease when oxygen level is restored. However, the

situation becomes complicated if hypoxic stress persists (chronic hypoxia) or cyclic normoxia-hypoxia phenomenon

occurs (intermittent hypoxia). A series of chain reaction-like gene expression cascade, termed hypoxia-mediated

gene regulatory network, will be initiated under such prolonged or intermittent hypoxic conditions and

subsequently leads to alteration of cellular function and/or behaviors. As a result, irreversible processes occur that

may cause physiological disorder or even pathological consequences. A growing body of evidence implicates that

hypoxia plays critical roles in the pathogenesis of major causes of mortality including cancer, myocardial ischemia,

metabolic diseases, and chronic heart and kidney diseases, and in reproductive diseases such as preeclampsia and

endometriosis. This review article will summarize current understandings regarding the molecular mechanism of

hypoxia in these common and important diseases.
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Introduction

In metazoan organisms, the oxygen delivery and cel-

lular adaptation to oxygen deprivation are accelerated

through the hypoxic signaling pathway in order to

sustain oxygen homeostasis [130]. Lack of oxygen

supply or an excessive oxygen consumption could re-

sult in insufficient oxygen levels for maintaining nor-

mal cellular function, a condition defined as hypoxia.

Hypoxia may not be considered as the inequivalent to

ambient oxygen concentration (21% oxygen) as many

tissues physiologically function at levels equal to 5%

oxygen or even as low as 1% oxygen [61]. Mostly,

hypoxia is referred to the relatively low (generally <

2%) oxygen content compared to normal status in a

given organ, tissue, or cell type. Hypoxia is a state of

continuously lack of oxygen for a short (acute hyp-

oxia, e.g., ischemia) or long (chronic hypoxia, e.g.,

chronic kidney disease, cancer) period of time. There-

fore, a wider range of oxygen concentrations and

feedback to acute stresses from seconds to days, even

weeks to months, shall be put into consideration

when referring the mechanisms of pathophysiological

relevancies.

Hypoxia is usually considered to have pathological ef-

fects; however, it also involves in maintaining normal
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physiological functions. Taking human as an example,

the central and peripheral chemoreceptors sense the re-

duction of oxygen tension and send signals to respira-

tory center in medulla and pons, where a series of

processes are initiated to increase pulmonary ventilation

and cardiac output to maintain normal functions of hu-

man body. Oxygen exchange occurs in the alveoli of

lung with more than 95% of oxygen diffuses into the ca-

pillary vessels via the alveolar-capillary exchange system

and then binds to hemoglobin. The oxygenated blood

returns to left atrium through pulmonary vein. The

heart then pumps out the oxygenated blood from left

ventricle to its periphery to maintain the proper function

of every single cell. In this minireview, we will not dis-

cuss the physiological effects of hypoxia but focus on

pathological impacts of hypoxia in several key human

diseases including cancer, cardiovascular diseases,

chronic kidney diseases, metabolic diseases, preeclamp-

sia, and endometriosis. Understanding the disease patho-

logical process shall help us dissecting the molecular

mechanisms of causing the disorders and designing bet-

ter therapeutic regimens against them.

Molecular basis of hypoxia in regulating gene expression

Oxygen is essentially required by most eukaryotic organ-

isms as a scavenger to remove harmful electron and

hydrogen ions generated as by-products of mitochon-

drial oxidative phosphorylation. At the cellular level,

adaptation involves a switch of energy metabolism from

oxidative phosphorylation to anaerobic glycolysis, which

increases glucose uptake, and expression of stress pro-

teins related to cell survival or death [22]. All nucleated

cells can sense oxygen concentration and respond to re-

duced oxygen availability in one of two distinctive ways.

Alterations of preexisting proteins (such as phosphoryl-

ation or changing redox state) primarily occur in re-

sponse to acute hypoxia (within minutes) while

alterations in gene expression principally occur in re-

sponse to chronic hypoxia (lasting from minutes to

hours or longer). The expression of hypoxia responsive

genes is mainly regulated by hypoxia inducible factor

(HIF)- or nuclear factor-κB (NF-κB)- dependent man-

ners. There are three HIF-αs (HIF-1α, −2α, and -3α)

identified thus far [128]. All three HIFs dimerize with

constitutively expressed HIF-1β (also known as aryl

hydrocarbon nuclear translocator, ARNT) to form a het-

erodimeric functional unit. HIF-1α is expressed in most,

if not all, human tissues [165] while HIF-2α and HIF-3α

are expressed in more restricted tissues and developing

stages such as fetal lung or developing vascular endothe-

lium [39, 43, 146]. In reflecting to their specific tissue

expression patterns, HIF-1α appears to play a general

role in transcriptional regulation of all cells in response

to hypoxia whereas HIF-2α and HIF-3α play more

limited or specialized roles in oxygen homeostasis.

Under normoxia, HIF-αs protein are hydroxylated by

prolyl-hydroxylases (PHDs) and factor inhibiting HIF

(FIH). These two oxygen-dependent enzymes are acti-

vated under normoxia and suppress HIF-αs activity via

distinct mechanisms. PHDs catalyze the proline hydrox-

ylation of HIF-αs so the E3 ubiquitin ligase, von Hippel–

Lindau (VHL) can bind to HIF-αs protein and promote

the degradation via the ubiquitin proteasome degrad-

ation pathway (Fig. 1). FIH hydroxylates the asparagine

residue in the C-terminal transactivation domain of

HIF-αs prevents the recruitment of transcriptional coac-

tivator CREB-binding protein (CBP) and its homolog,

p300, and thus inhibits HIF-αs transcription activity. In

addition, PHDs and FIH can inactivate NF-κB by direct

hydroxylation of inhibitor of κB kinase (IKK) complex

[159]. Under hypoxia, insufficient oxygen inhibits the ac-

tivity of PHDs, thus prevents HIF-αs from VHL-

dependent protein degradation. In addition, mitogen-

activated protein kinases (MAPKs) phosphorylate HIF-

αs, which also increases the stability of α subunit. The

phosphorylated HIF-αs protein translocate to the nu-

cleus and associate with HIF-1β, which forms a HIF-1α/

β heteroduplex and binds to the hypoxia responsive

element (HRE) of target genes. Suppression of FIH activ-

ity under hypoxia results in increasing CBP/p300 re-

cruitment to enhance the transcription of HIF target

genes [60, 130]. Besides, lack of oxygen molecules pre-

vents hydroxylation of IKK. Nonhydroxylated IKK com-

plex promotes the phosphorylation, ubiquitination, and

degradation of inhibitor of NF-κB (IκB). Therefore, NF-

κB is released and translocates to the nucleus to regulate

the transcription of target genes [32].

Hypoxia and human diseases

Cancer

Impaired oxygen delivery and consumption are typical

features of hypoxia in tumor microenvironment. The

rise of hypoxia first comes from the restriction of oxygen

diffusion in avascular primary tumors along with the

higher oxygen consumption due to hyperproliferation of

cancer cells [19]. Cellular responses to hypoxia are es-

sential for tumor progression in many aspects, such as

cancer cell survival, proliferation, epithelial-to-

mesenchymal transition (EMT), invasion, angiogenesis,

drug resistance, and metastasis [127]. According to find-

ings involved in cancer biology from the initial tumor

formation to advanced cancer dissemination, it is clear

that tumor hypoxia is not only a hallmark of tumor

microenvironment but also plays crucial roles in mo-

lecular and cellular responses to drive cancer progres-

sion. At the molecular level, hypoxia stabilizes HIFs to

help cells adapting to hypoxic stress via transactivating

downstream genes [130]. HIF-1α and HIF-2α are
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clinically correlated with advanced stages and poor sur-

vival of cancer patients [127]. In addition, the HIF sig-

naling is essential for promoting the metastatic ability of

cancer cells [117], suggesting that HIF pathway plays a

vital role in cancer biology [127]. Furthermore, other

pathways such as the mammalian target of rapamycin

(mTOR) and the unfolded protein response (UPR) act

cooperatively with HIF to regulate cellular functions

[168]. Hypoxia suppresses mTORC1 activity through

multiple pathways. Prolonged hypoxia causes energy

stress that activates AMP-activated protein kinase

(AMPK), which induces the transcription of regulated in

development and DNA damage responses 1 (REDD1).

REDD1 suppresses mTOR activity through tuberous

sclerosis complex (TSC)1/TSC2-mediated mTOR inacti-

vation [20]. Hypoxia can also inhibit mTORC1 activity

through BCL-2 interacting protein 3 (BNIP3) and the

promyelocytic leukemia (PML) tumor suppressor [168].

The suppressed mTORC1 activity results in decreased

EIF4E-binding protein 1 (4E-BP1) dephosphorylation

and thus sequesters eukaryotic translation initiation fac-

tor 4E (EIF4E) from cap-dependent translation initiation.

The hypoxic inhibition of translation initiation is also re-

ported to act through enhanced association with EIF4E-

transporter (4E-T). Hypoxia induces endoplasmic

reticulum (ER) stress sensors PKR-like ER kinase

(PERK), inositol-requiring protein 1 (IRE1), and activat-

ing transcription factor 6 (ATF6) to induce the UPR

pathway. The PERK-mediated phosphorylation of EIF2α

results in globally suppressed translation initiation, while

the other two ER stress sensors induce transcription

through ATF6 and IRE1-activated X-box binding protein

1 (XBP1). These pathways have been long known to or-

chestrate a network with HIF to regulate gene expres-

sion at different molecular levels [168]. The widespread

regulation by hypoxia/HIF signaling explains the mo-

lecular basis of hypoxia biology in cancer, from the

stress (hypoxia), regulators (HIFs), targets (functional

proteins), to phenotypes. Herein, we summarize

hypoxia-regulated pathophysiological processes that play

critical roles in cancer development and progression

(Fig. 2).

Angiogenesis The physiological diffusion of oxygen in

microenvironment soon becomes a limiting factor dur-

ing tumor growth, which stimulates new blood vessel

formation (angiogenesis) to provide essential oxygen and

nutrients for further tumor outgrowth. Tumor angiogen-

esis is tightly regulated by multiple pro- and anti-

angiogenic factors. HIFs have been identified as master

enhancers for vascular endothelial cell migration and

proliferation. As a transcription factor, stabilized HIF-

1α/β binds to HRE of target genes and transactivates

their expression [48]. Among these genes, vascular endo-

thelial growth factor (VEGF), platelet-derived growth

factor B (PDGF-B), fibroblast growth factor (FGF), plas-

minogen activator inhibitor-1 (PAI-1), matrix metallo-

proteinases (MMP-2 and MMP-9), interleukin 8 (IL-8),

Fig. 1 Schematic diagram illustrates the regulation of HIF-1α and NF-κB under normoxic and hypoxic conditions
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and angiopoietins (ANG-1 and ANG − 2) are known as

pro-angiogenic factors playing crucial roles during

tumor angiogenesis [82, 94]. Moreover, VEGF and PAI-1

has also been found to enhance tumor angiogenesis

under the control of HIF-2α [119, 138]. Among these

secretory factors, VEGF, PDGF-B, FGF, ANG-1, and

ANG-2 bind to their specific receptors VEGFR2,

PDGFRβ, FGFR, TIE-1 and TIE-2, respectively, on vas-

cular endothelial cells to activate cell proliferation, mi-

gration, tube formation, and vascularization [57, 113,

114], while other factors (e.g., MMPs, PAI-1) participate

in remodeling extracellular matrix (ECM) and are also

involved in local invasion of cancer cells [111].

Survival advantages from adaptive cellular responses

Malignant tumors tend to exhibit enhanced anaerobic gly-

colysis as their energy source. This metabolic shift enables

cancer cells adapting to microenvironmental stresses in-

cluding hypoxia [98]. Under hypoxia, cancer cell adapt to

the reduced available oxygen and nutrient through upregu-

lation of glucose transporters (GLUT1 and GLUT3),

carbonic anhydrases (CA9 and CA12), pyruvate dehydro-

genase kinases (PDK1 and PDK3), lactate dehydrogenase A

(LDHA), phosphoglycerate kinase 1 (PGK-1), and hexoki-

nases (HK1 and HK2) to cooperatively modulate a meta-

bolic shift from oxidative phosphorylation to anaerobic

glycolysis [92, 129]. Epigenetically, histone lysine demethy-

lase 3A (KDM3A) removes demethylated histone 3 lysine 9

(H3K9me2) from PGK1 promoter to enhance HIF-1α-

dependent PGK1 transcription thus facilitate glycolysis

under hypoxia. Under hypoxia, the HIF-1α-dependent

histone demethylase KDM4B induction removes H3K9me3

from the promoters of hypoxia-inducible genes involved in

cell survival [124]. While the nonadaptive precancer/cancer

cells undergo cell death, the hypoxia-induced anti-

apoptosis pathways help other cancer cells survive. These

evolutionally survived cells tend to express reduced pro-

apoptotic factors such as Bcl-2-associated X protein (Bax),

Bcl-2 associated agonist of cell death (Bad), and BH3

interacting domain death agonist (Bid), and enhanced anti-

apoptotic factors such as B-cell lymphoma 2 (Bcl-2) and B-

cell lymphoma-extra large (Bcl-xL) [50, 131]. Consequently,

both of the poly (ADP-ribose) polymerase (PARP) cleavage

and caspase activity are suppressed under hypoxia [40, 65].

These adaptive responses, including the metabolic and pro-

survival shifts, not only cooperatively maintain the survival

of cancer cell, but may also continually facilitate tumorigen-

esis from initial tumor formation to secondary tumorigen-

esis after/under treatment.

Epithelial-mesenchymal transition Hypoxia/HIF sig-

naling also regulates cellular behaviors, including migra-

tion/invasion, intra−/extra-vasation, colonization and

tumorigenesis at distant organs, to drive cancer metasta-

sis. EMT is a common process which enables noninva-

sive (epithelial-like) cancer cells to invade and

metastasize (mesenchymal-like). It is now clear that hyp-

oxia enhances the metastatic ability through promoting

EMT of cancer cells. Hypoxia/HIF signaling directly fa-

cilitates the EMT gene profile to induce the invasiveness

of cancer cells [117] through recognition of HREs of

EMT transcription factors zinc finger E-box-binding

Fig. 2 Hypoxia-regulated cancer progression. Hypoxia is a typical feature of tumor microenvironment, which contributes to initial tumorigenesis,

induced angiogenesis, drug resistance, and cancer metastasis. The major upstream regulators (gray), functional downstream genes (blue), and

resulting cellular consequences (yellow) under the control of hypoxia signaling are indicated
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homeobox 1 (ZEB1), snail family transcriptional repres-

sor 1 (SNAI1), and twist family bHLH transcription fac-

tor 1 (TWIST1) genes [154]. Alternatively, HIF

modulates Notch [123], transforming growth factor beta

(TGF-β) [29], integrin-linked kinase (ILK) [26], tyrosine

kinase receptors (TKRs) [34], Hedgehog [75, 140], AXL

receptor tyrosine kinase [116], lysyl oxidase (LOX) [162],

and protein 3-phosphoinositide-dependent protein kin-

ase 1 [110] to indirectly facilitate EMT. In addition, his-

tone deacetylase 3 (HDAC3) interacts with WD repeat

domain 5 (WDR5) to enhance deacetylation of H3K4Ac

in the promoters of EMT regulators under hypoxia

[174]. These genetic regulations drive the phenotypic

shift from epithelial-like (noninvasive) to mesenchymal-

like (invasive), which help cancer cell motility during the

multistep metastasis process, such as migration/invasion

and intra−/extra-vasation.

Cancer stemness and drug resistance Cancer stem

cells (CSCs) expressing stem cell markers (e.g.,

CD133, CD44) and transcription factors (e.g.,

OCT3/4, SOX2, KLF4, c-MYC) have been identified

to exhibit undifferentiated (stem cell-like) and

tumorigenic properties [12]. Hypoxic microenviron-

ment also facilitates the maintenance of CSCs [53].

It is known that both HIF-1α and HIF-2α induction

activate OCT4, c-MYCc, SOX2 and enrich the ex-

pression of CD133- and CD44-positive cancer cells,

along with the enhanced self-renewal functions and

tumorigenic potential [4], while several studies pro-

posed that cancer stemness is predominately con-

trolled by HIF-2α [30, 62]. In addition to

maintaining the unlimited primary tumor growth,

CSCs have slow growing rate (quiescent) thus are

also relatively insensitive to chemotherapy targeting

proliferative cancer cells [25]. Thus, it is also sug-

gested that CSCs within tumors determine the

therapeutic efficacy and cancer prognosis, as the

reservoir CSCs result in resistant subpopulation

after chemotherapy and become the cellular sources

for continued cancer propagation and recurrence.

Irrespective of the involvement of CSCs in cancer

recurrence, hypoxia signaling also activates several

drug resistant pathways to protect cancer cells

[151]. The nature of hypoxic region with poor

vascularization may partly limit the diffusion of cir-

culating drugs. Furthermore, HIF-1α induces the ex-

pression of multidrug resistance (MDR) genes under

hypoxia. Expression of MDR gene products, the

drug efflux pump protein ABC transporters, enables

cancer cells to pump out intracellular chemothera-

peutic drugs, thus reduces the therapeutic effects

and enhances drug resistance [151].

Exosome secretion and priming Exosomes released to

microenvironment have been known to participate in

intercellular communication since these extracellular

microvesicles containing functional nucleic acids and

proteins [100] . Recent studies demonstrated the clinical

significance of hypoxic exosome in cancer. First, the

contents of exosome, including proteins and nucleic

acids, have significant changes under hypoxia [132] .

Many of the proteins and RNAs enriched in hypoxic

exosomes are canonical downstream gene products of

hypoxia, such as HIF-1α, MMPs, and LOX [2, 69]. It is

also known that the exosome secretion is enhanced in

hypoxic cells to regulate cancer metastasis through the

upregulation of small guanosine triphosphatase RAB22A

[161]. Exosomes secreted by hypoxic cancer cells con-

taining high levels of oncogenic proteins to enhance

EMT, stemness and invasiveness through degradation of

E-cadherin and activation of β-catenin pathway [115].

The currently identified extracellular secretion and func-

tions of hypoxic exosomes make them as a possible hyp-

oxic biomarker and therapeutic target.

Hypoxia regulates miRNA biogenesis Current know-

ledge based on the large-scale genomic sequencing

projects illustrated that the protein-coding transcrip-

tional output is less than 2% in human genome. For

recent 20 years, the roles of non-coding RNAs, such

as miRNAs, have been extensively studied and their

roles in cancer progression have been well-

documented [134]. Here, we will discuss the regula-

tion of hypoxia on miRNA biogenesis. The matur-

ation of miRNA is a multistep process involving

several protein factors. It is now established that both

the global level of miRNAs and the expression of

miRNA biogenesis factors (Dicer, Drosha, TARPB2,

and DCGR8) are downregulated under hypoxia [10] .

The cytoplasmic biogenesis factor Dicer is suppressed

by HIF-1α-mediated proteasomal degradation or

H3K27me3 demethylases KDM6A/B-dependent epi-

genetic modification [70, 156]. Several miRNAs in-

cluding miR-103/107, let-7, and miR-630 were also

reported to target and suppress Dicer expression [96,

122, 147]. Moreover, activation of EGFR pathway

under hypoxia phosphorylates AGO2 and abolishes its

interaction with Dicer, thus represses miRNA matur-

ation and activity [135]. These pathways consequently

result in either global or specific miRNA downregula-

tion to promote cancer progression. Notably, many of

the genes regulated by miRNAs are also canonical

hypoxia/HIF signaling downstream genes, such as

ZEB1, GLUT1, and VEGF, which further suggests that

the hypoxia-regulated miRNAs act post-

transcriptionally and synergistically with canonical

hypoxia pathway of transcriptional regulation.
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Cardiovascular diseases

Cardiovascular diseases are the leading cause of mortal-

ity worldwide, representing 1 of every 3 deaths in 2018.

Hypoxia is one of the common features in the patho-

physiology of a variety of cardiovascular disorders [1].

Heart failure with reduced left ventricular systolic func-

tion after myocardial infarction causes the insufficient

oxygen in the body. Moreover, heart failure with pre-

served ejection fraction in patients eventually leads to

systemic and pulmonary hypertension. Pulmonary

hypertension also associates with other hypoxic pulmon-

ary diseases, including chronic obstructive pulmonary

disease and obstructive sleep apnea syndrome, and pro-

motes inflammation and atherosclerosis [95]. Athero-

sclerosis is a chronic inflammatory disease that can

increase the risk of myocardial infarction and stroke.

The thickness of arterial wall causes hypoxia in the in-

tima, reduces the perfusion of the tissue, and further

stimulates proatherosclerotic processes, like inflamma-

tion, lipid synthesis, and angiogenesis [139].

Roles of NF-κB As mentioned above, hypoxia simultan-

eously activates HIF and NF-κB signaling pathways to

regulate numerous biological processes (Fig. 1). It should

be noted that the crosstalk of HIF-1α and NF-κB plays

an important role in ischemic cardiovascular disease.

The hypoxia-induced HIF-1 upregulates NF-κB, which

reciprocally activates the transcription of HIF-1α [38].

This forms a positive feedback loop to worsen the dis-

ease. In addition, NF-κB also induces many other target

genes such as inflammatory cytokines. The inflammatory

response leads to smooth muscle cell activation, result-

ing in neointima formation and occlusive plaque. Im-

portantly, elevated serum inflammatory marker, such as

IL-6 and tumor necrosis factor-α (TNF-α), in patients

are correlated with their prognosis in hypoxic cardiovas-

cular disease [76, 103].

Roles of Hif-1α The functional consequences of HIF-1α

in cardiomyopathy had been investigated using transaor-

tic constriction (TAC) murine models to mimic

pressure-overload heart failure human disease. A 3-week

TAC in the mice with cardiomyocyte-specific deletion of

Hif1-α fails to induce Vegf expression and neoangiogen-

esis. As a result, acute heart failure occurs due to the

lack of enough oxygen being delivered to the rapidly in-

creasing cardiac muscle cells [125]. Another study using

cardiomyocyte- and endothelial cell-specific Hif1-α

knockout mice showed 1-week TAC causes severe heart

failure phenotype. Moreover, the myocardial capillary

density is decreased in these mice, resulting from mark-

edly increased endothelial cell apoptosis [164]. These re-

sults implicate the proangiogenic and cardio-protective

effect of Hif-1α. Conversely, Krishnan and colleagues

demonstrated that, after TAC, the Hif1-α+/− mice have

better cardiac function than wild-type mice. They also

found Hif-1 promotes the expression of peroxisome

proliferator-activated receptor γ (PPARγ), and activates

lipid synthesis by engaging glycerolipid and fatty acid

uptake genes, and, in turn, induces cell apoptosis [68].

These conflicting results suggest that Hif-1 mediates the

complexity of adaptive responses. Hence, further re-

search differentiating the roles of HIF-1 in cardiomyo-

cyte is needed in order to acquire a clear picture.

Roles of miRNAs In addition to the transcriptional

regulation by HIF-1α and NF-κB, ischemic/hypoxia also

modulates cardiofunction via miRNAs at the posttran-

scriptional level. Numerous miRNAs had been reported

to be up- or down-regulated in patients with myocardial

ischemia/reperfusion injury (Table 1). Among them,

MiR-22, miR-134, miR-135a, miR-203, miR-144, miR-98,

miR-18a, miR-210, miR-340-5p, miR-374a-5p, and miR-

1192 exert protective effects in cardiovascular ischemic

injury through downregulating their target genes [37, 41,

56, 77, 79, 112, 160, 163, 175, 183, 184]. On the other

hand, a specific set of miRNAs has been linked to car-

diac dysfunctions in varied cardiac injury models. For

example, in intermittent hypoxia-induced myocardial

damage, miR-146a-5p promotes cell death by targeting

X-linked inhibitor of apoptosis protein [80] . MiR-327

reduces the expression of apoptosis repressor with cas-

pase recruitment domain expression, and subsequently

deteriorates myocardial ischemia/reperfusion injury [78].

MiR-429 accelerates ischemia/reperfusion injury by tar-

geting mouse protein 25 and decreasing the protective

effect of autophagy [189]. These data indicate that miR-

NAs do play important roles in regulating cardiovascular

function after heart injury and imply they might be po-

tential molecular targets for diagnosis or treatment of

cardiovascular diseases. Indeed, miRNA-based therapies

using modified oligonucleotides have been developed in

treating different cardiovascular diseases. The critical

role of miR-34a in cardiac ageing and function made it

to be selected as a target for treating myocardial infarc-

tion [17, 144]. Targeting miR-34a by locked nucleic

acid-modified anti-miR-34a attenuates adverse cardiac

remodeling in myocardial infarction- or TAC-induced

cardiac injury [15]. Similarly, anti-miR-92a and anti-

miR-132 therapies are also effectively resistant to

hypoxia-induced cardiac injury [13, 155]. Most recently,

circulating extracellular vesicles-containing miRNAs at-

tract great attention as promising biomarkers for early

detection of cardiovascular diseases [3]. In lights of these

recent advances, future studies focusing on elucidating

key miRNA diagnostic biomarkers that can be targeted

using mimetics or inhibitors to alleviate ischemic cardio-

vascular diseases are warranted.
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Metabolic diseases

Adipocytes and metabolic diseases Adipose tissue is

one of the least metabolically dynamic structure for

lipid turnover and can also communicate with other

tissues through secretion of adipocyte-derived hor-

mones, growth factors, inflammatory cytokines, leptin,

adiponectin, signaling lipids, fatty acids, and miRNAs

packaged in exosomes [145, 188]. These adipocyte-

secreted factors (adipokines) and fatty acids regulate

systemic metabolism and play important roles in the

development of metabolic diseases, such as metabolic

syndrome, ischemic heart disease, stroke, obesity, type

2 diabetes mellitus, and cancer [7, 148]. White adipo-

cytes in white adipose tissue, which is the most im-

portant lipid buffering organ, can either accumulate

fatty acids in lipid droplets or supply fatty acids for

other tissues determined by the balance between fatty

acid synthesis (lipogenesis) and lipid breakdown (lip-

olysis and fatty acid β-oxidation) [63]. Conversely,

brown adipocytes in brown adipose tissue and beige

adipocytes in beige/brite adipose tissue more fre-

quently produce heat through fatty acid β-oxidation

in mitochondria (thermogenesis) [31]. Owing to their

contributions to whole-body lipid homeostasis, both

white and brown adipose tissues are considered pri-

mary targets for the treatment of obesity and type 2

diabetes mellitus [23, 28]. In addition, both white and

brown adipose tissues are able to elaborate adipokines

to control nutritional intake, sensitivity to insulin, and

inflammatory processes in other tissues [28, 188].

Therefore, lipid metabolism and adipokines secretion

in adipose tissue exert an impact on whole-body me-

tabolism and are important for the progress of meta-

bolic diseases.

Effects of hypoxia on adipocytes Hypoxia is one of the

mechanisms responsible for the development of metabolic

changes and pro-inflammatory situations of white adipose

tissue [150]. In obesity, due to the enlargement of adipo-

cytes and increased distance from the vasculature, hypoxia

occurs within the expanding white adipose tissue in ob/ob

and dietary obese mice. Accordingly, white adipose tissues

from obese people are subjected to intra-adipose tissue

hypoxia and characterized by increased HIF-1α expression

[67]. In vitro experiments show that HIF-1α and HIF-2α

inhibit insulin signaling in both human and murine white

adipocytes [120]. Moreover, chronic hypoxia has been

suggested to be part of the pathogenic pathways leading to

adipose tissue dysfunction [166, 178]. Hypoxia triggers re-

active oxygen species (ROS) production, ER stress, inflam-

matory responses, angiogenesis, and adipocyte death [66,

150, 176, 185]. HIF also regulates the expression of various

adipokine genes, such as increasing leptin, visfatin, apelin,

TNF-α, IL-1, IL-6, VEGF, MMP2, MMP9, angiopoietin-

like protein-4, macrophage migration inhibitory factor,

and PAI-1 expression, while downregulating adiponectin

and PPARγ expression in adipocytes [52, 150, 176].

Hypoxia alters several key metabolic processes includ-

ing glucose uptake, glycolysis, oxidative metabolism,

Table 1 MicroRNAs involve in hypoxia-mediated human diseases

MicroRNA(s) Change in expression Regulatory gene(s) Disease(s)

miR-18a Up BDNF Myocardial infarction

miR-21 Up PDCD4
Spry1

Heart failure
Heart failure

miR-22
miR-34a

Up SIRT1 Hypertrophy

miR-98 Down DAPK1 Ischemia/reperfusion

miR-134 Up NOS3 Ischemia/reperfusion

miR-135a
miR-203

Down
Down

PTP1B Ischemia/reperfusion
Myocardial infarction

miR-144 Down FOXO1 Ischemia/reperfusion

miR-146a-5p Up XIAP Intermittent hypoxia

miR-210 Up EFNA3
PTP1B
HIF-3α

Vascular remodeling

miR-327 Up CRD Ischemia/reperfusion

miR-340-5p Down Act1 Ischemia/reperfusion

miR-374a-5p Down MAPK6 Ischemia/reperfusion

miR-429 Down MO25 Ischemia/reperfusion

miR-1192 Down CASP3 Myocardial infarction
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lipolysis, and lipogenesis in adipocytes. Hypoxia stimu-

lates glucose uptake in adipocytes through HIF-1α-

upregulated GLUT expression, and increases anaerobic

glycolysis and lactate production by induction of glyco-

lytic enzymes [121, 167]. Hypoxia also induces rear-

rangements of lipid metabolism in adipocytes. In

response to hypoxia, extracellular fatty acid uptake is re-

duced by inhibition of fatty acid transporters (FATP1

and CD36) and transcription factors (PPARγ and C/

EBPα) while lipolysis is increased in 3 T3-L1 adipocytes

[179]. Another study shows that hypoxia inhibits lipo-

genesis by reducing PPARγ and fatty acid synthase

(FAS), and induces basal lipolysis in visceral and sub-

cutaneous human adipocytes [109]. In addition, hypoxia

inhibits adipogenesis and differentiation in 3 T3-L1 adi-

pocytes via HIF-1α-dependent upregulation of differenti-

ated embryo-chondrocyte expressed gene 1 (DEC1/

Stra13) and subsequent repression of PPARγ2 expres-

sion [182]. HIF-1α also suppresses expression of genes

involved in fatty acid β-oxidation by repression of sirtuin

2-mediated deacetylation of PPARγ coactivator 1-α

(PGC-1α) in white adipocytes [67]. Besides, studies indi-

cate that obesity induces hypoxia in brown adipose tis-

sue and causes the loss of its thermogenic capacity

[149]. Other studies show that hypoxia is a trigger for

brown adipose tissue whitening with diminished β-

adrenergic signaling, enlarged lipid droplets, and loss of

mitochondria in the cells [137]. Increased HIF-1α and

suppressed uncoupling protein 1 (UCP1) expression

with lower fatty acid β-oxidation are observed in hypoxic

brown adipose tissue [136]. Therefore, hypoxia alters

lipid metabolism in adipocytes mainly by inhibiting lipo-

genesis and decreasing fatty acid β-oxidation.

Effects of hypoxia on other cell types The effects of

hypoxia on lipid metabolism are also studied in other

cell types related to metabolic diseases. As fatty acid β-

oxidation takes place inside mitochondria and requires

oxygen, fatty acid metabolism has to be modified other

than energy production under hypoxia. Furthermore, the

major source of cytoplasmic acetyl-CoA from glucose

converted citrate is prohibited under hypoxia due to the

inhibition of the TCA cycle, so alternative sources of

fatty acid precursors have to be exploited. Uptake of

extracellular fatty acids for triacylglycerol synthesis is

promoted by HIF-1α-induced PPARγ in cardiomyocytes

under hypoxia [68]. Extracellular fatty acid influx and

lipid droplet accumulation are enhanced via HIF-1α-

mediated induction of fatty acid binding protein 3 and 7

(FABP3 and FABP7), while de novo lipogenesis is re-

pressed in glioblastoma and breast cancer cells under

hypoxia [14]. To maintain certain level of lipogenesis

under hypoxia, production of fatty acid precursors, cit-

rate and acetyl-CoA, are supported through reductive

glutamine metabolism in several cancer cells [46, 105]

and brown adipocytes [180]. HIF-induced isocitrate de-

hydrogenase 1 and 2 (IDH1 and IDH2) contribute to the

preservation of citrate levels via conversion of α-

ketoglutarate to isocitrate and its subsequent reductive

carboxylation to produce citrate from glutamine under

hypoxia [101]. Adequate fatty acid synthesis is further

supported by HIF-1-dependent activation of sterol regu-

latory element-binding protein 1 (SREBP1), which in

turn upregulates the expression of FAS in breast cancer

cells [45]. Hypoxia also induces lipid droplet accumula-

tion by upregulating two enzymes of the triacylglycerol

biosynthesis pathway, acylglycerol-3-phosphate acyl-

transferase 2 (AGPAT2) and lipin-1 in different types of

cancer cells [106, 152]. Furthermore, hypoxia-induced

lipid droplet accumulation is accompanied by the inhib-

ition of fatty acid β-oxidation though HIF-1 and HIF-2-

dependent downregulation of PGC-1α and carnitine pal-

mitoyltransferase 1A (CPT1A) in both hepatoma and

renal cell carcinoma cells [35, 90]. Therefore, hypoxia

may result in different adaptation of lipid metabolism

depending on the cell types.

Effects of hypoxia on animal models of obesity Since

hypoxia is shown to inhibit fatty acid β-oxidation as a

promoter of obesity and inhibit lipogenesis as a suppres-

sor of obesity, several animal studies based on the over-

expression or inhibition of HIFs in adipocytes suggest

that HIF activation either promotes or inhibits metabolic

diseases. As a promoter of obesity, mice overexpressing

Hif-1α in adipocytes have elevated obesity and insulin

resistance associated with increased inflammation and fi-

brosis [49, 59]. Adipocyte specific Hif-1α or Hif-1β

knockout, or inhibition of Hif-1α by inhibitors decrease

obesity and insulin resistance in mice fed with high-fat

diet [58, 74, 142]. In agreement, adipocyte-specific Phd2

ablation enhances adiposity in mice under normal chow

diet (low-fat) with lower expression of adipose triglycer-

ide lipase (ATGL) and suppresses lipolysis in white adi-

pocytes [102]. These obesity-promoting effects can be

correlated with the capacity of Hif-1 to downregulate

fatty acid β-oxidation in white and brown adipose tissue

[67, 136]. On the other hand, a number of studies have

shown that Hif activation decreases obesity and Hif in-

hibition increases obesity indicating hypoxia as a sup-

pressor of obesity. Accordingly, transgenic mice

overexpressing an adipose tissue-specific dominant

negative Hif-1α mutant developed severe obesity, insulin

resistance, and accumulated enlarged lipid droplets in

brown adipose tissue with decreased mitochondrial bio-

genesis after high-fat diet [187]. Another group shows

that transgenic mice with adipose tissue-specific knock-

out of Phd2 (for constitutive expression of Hif) are re-

sistant to high-fat diet-induced obesity with fewer lipid
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droplets in white adipose tissue and increased Ucp1 ex-

pression in brown adipose tissue [97], while adipocyte-

specific knockout of Phd2 induces adiposity in mice

under chow diet (low-fat) [102]. Similarly, phenotypes

are also observed in mice globally lacking Fih, which are

resistant to high-fat diet-induced weight gain and hep-

atic steatosis [186]. Taken together, these studies suggest

that Hif-1α may stimulate the thermogenic functions of

brown adipose tissue to conquer high-fat diet-induced

obesity, which is contradictory with other findings that

Hif-1 suppressed expression of genes involved in fatty

acid β-oxidation in white and brown adipose tissue lead-

ing to obesity [67, 136].

In summary, studies investigating the functions of

HIFs in adipocytes and other metabolic diseases revealed

the conflicting results due to different experimental con-

ditions (Fig. 3). The roles of HIFs in these studies were

discovered primarily through the analysis of conditional

Hif-knockout mice or through some pharmacological

HIF inhibitors. These inconsistent consequences might

be also due to the complexity of metabolic regulation

with the complicated roles of HIFs that extend further

than lipid metabolism. Therefore, the actual functions of

HIFs in adipocytes and related metabolic diseases must

be carefully interpreted relative to different physiological

conditions.

Kidney diseases

Acute kidney injury (AKI) is notorious for its correlation

with the development of chronic kidney disease (CKD).

AKI is a rapid failure of kidney function, usually caused

by decreased blood flow, toxic exposure, and ureteral

obstruction. As the injuries are removed, renal cells

undergo repair process. However, some of the AKI pa-

tients fail to fully recover. Instead, CKD starts to de-

velop, which is characterized by the progressive loss of

the kidney function [27]. Events include tubular atrophy,

vascular rarefaction, and hypoxia, which lead to renal fi-

brosis and functional loss of kidney. Ultimately, CKD

will develop into the end-stage renal disease (ESRD).

Today, the only treatments for ESRD are dialysis and

kidney transplantation [91]. Kidney fibrosis, including

glomerulosclerosis and tubulointerstitial fibrosis, a

phenomenon of excessive ECM deposit and accumula-

tion, has been recognized as the hallmark of CKD and

the major pathway leading to ESRD [107]. Fibrosis is the

terminal pathway involved in the continuous progression

of CKD and it is a consequence of failed recovery after

Fig. 3 Hypoxia-regulated lipid metabolism related to obesity. Hypoxia is shown as a promoter or a suppressor of obesity by regulating lipid

metabolism. The major changes (increases shown in red; decreases shown in green) involved in fatty acid β-oxidation, extracellular fatty acid

influx, lipolysis, lipogenesis and lipid droplet accumulation under hypoxia for its promoting obesity or anti-obesity effects are summarized
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kidney damage. When injuries happen, cells in kidney

including fibroblasts, tubular epithelial cells, endothelial

cells, pericytes, lymphocytes, and macrophages, undergo

wound healing programming in an attempt to repair tis-

sues. Sometimes, the damage is too severe for cells to

overcome. Subsequently, they become victims and even

act to fuel the fibrogenesis progressively [18]. As the di-

verse origin of cells involved in kidney fibrosis, it is com-

plicated to figure out a comprehensive therapy for

treating CKD patients. Today, there is still no effective

ways to prevent CKD from getting worse. Several publi-

cations have pointed out that hinder renal fibrosis from

getting worse is a potential way to prevent AKI-CKD

transition and delay ESRD development [11, 16].

Hypoxia in kidney fibrosis Tubular injury may lead to

renal microvascular loss, which restricts downstream

blood flow from glomerular capillaries and contributes

to the development of renal hypoxia. Loss of microvas-

culature, reduced oxygen dispersion, and metabolic ab-

normality of cells in the kidney are the main causes of

the hypoxic state. The initiation of hypoxia is one of the

main causes of AKI, which can increase levels of HIF-1α,

followed by the induction of TGF-β signaling. During

the process of kidney fibrosis, hypoxia and TGF-β1 sig-

naling are excessively upregulated. AKI can be gradually

developed into CKD if TGF-β signaling remains hyper-

activated for a period of time. Thus, hyperactivation of

TGF-β signaling is responsible for the renal fibrosis and

can also be identified as the hallmark of CKD. Hypoxia

is common at the beginning of kidney fibrosis, which

promotes HIF-1α expression that contributes to both a

result and a cause of renal fibrosis. Hyperactivation of

myofibroblasts is responsible for kidney fibrosis as they

continuously produce collagens, fibronectin, and vimen-

tin, which contribute to tubulointerstitial fibrosis and

local tissue hypoxia [72, 143]. Prolonged hypoxia further

promotes renal fibrosis by increasing the synthesis of

type I and type IV collagen and inhibiting the expression

of MMP-1 in human renal fibroblasts [108]. By using

kidney-specific Vhl−/− mice, which have a stable expres-

sion of Hif-1α in kidney, researchers found that these

transgenic mice exhibit more severe interstitial fibrosis

after conduct 5/6 nephrectomy [64]. In contrast, intra-

peritoneal injection of HIF-1α inhibitor YC-1 protects

unilateral ureter obstruction mice from kidney fibrosis

development [126]. These data indicate that HIF-1α has

a pivotal role in mediating kidney fibrosis (Fig. 4). How-

ever, the underlying mechanisms by which HIF-1 accel-

erates kidney fibrosis remain unclear.

Preeclampsia

Preeclampsia is a severe gestational complication fea-

tured by new onset of high blood pressure after 20 weeks

of gestation along with signs of proteinuria, abnormally

high serum creatinine, or damaged liver function [36].

Its complications remain a major cause for morbidity

and mortality in pregnant women and fetuses. Defective

trophoblast invasion into the decidualized endometrium

leads to poor transformation of uterine spiral arteries

from high to low resistant vessels [42]. This deficient

vessel remodeling causes a sustained hypoxic environ-

ment implicating the development of preeclampsia.

Thus, placental ischemia and hypoxia is a major cause of

preeclampsia.

Primary cilium and preeclampsia Defective tropho-

blast invasion leads to placental hypoxia. The tropho-

blast invasion is regulated by endocrine gland-derived

vascular endothelial growth factor (EG-VEGF, also

known as prokineticin 1) [51]. EG-VEGF induces the ex-

pression of MMPs by triggering ERK signaling cascade

for proper trophoblast invasion [157]. The receptor of

EG-VEGF localizes to the primary cilium, a cellular pro-

trusion atop from the centrosome (Fig. 5). When EG-

VEGF binds to its receptor, ERK signaling is initiated

from the base of the primary cilium, and then trans-

duced throughout the cytoplasm. Inhibition of EG-

VEGF signaling or disruption of primary cilia alleviates

trophoblast invasion in vitro [158]. More importantly,

these phenotypes are also observed in pregnant women

who suffered from preeclampsia. These data suggest the

important roles of EG-VEGF and primary cilia in pre-

venting placental hypoxia.

Primary cilium functions as a sensory hub for transdu-

cing environmental chemo- and/or mechano-signaling

into the cells for proper development and differentiation.

Growing body of evidence supports the important role

of primary cilium in maintaining embryo development.

Interestingly, hypoxia suppresses primary cilium forma-

tion [71], and elevated levels of HIF-1α in the human

trophoblasts have been linked to the development of

preeclampsia [5], suggesting placental hypoxia-activated

HIF-1α plays a key role in the pathogenesis of pre-

eclampsia. It has been shown that HIF-1α translocates to

the base of primary cilium for the resorption of primary

cilia in the nutrient deprivation model, suggesting its

non-genomic function in regulating primary cilium for-

mation (Fig. 5).

HIF-1α in ciliogenesis Despite the role of hypoxia in

preeclampsia has been demonstrated for long, the

underlying molecular mechanism remains unclear.

Trophoblast invasion is triggered by the binding of EG-

VEGF to its congenital receptor on the primary cilium,

thus inducing downstream ERK signaling for MMPs ex-

pression. Disruption of primary cilium inhibits tropho-

blast invasion even in the presence of EG-VEGF,
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supporting the importance of cilia-mediated EG-VEGF

signaling [8]. Besides, fewer primary cilia are observed in

the placenta tissues of pregnant women who suffered

from preeclampsia, suggesting loss of primary cilia plays

an important role in developing preeclampsia. Pre-

eclamptic placenta is a hypoxic microenvironment, and

HIF-1α is highly expressed in syncytiotrophoblasts of

preeclamptic placenta [118]. Thus, HIF-1α might facili-

tate the resorption of primary cilia and disrupting the

EG-VEGF signaling. Interestingly, this hypothesis is fur-

ther confirmed by the effect of aspirin on preeclampsia.

Aspirin has been used for treating preeclampsia for de-

cades in clinic. Recent studies show that aspirin induces

primary cilia and suppresses the expression of soluble

fms-like tyrosine kinase 1 (sFLT1), a known marker of

preeclampsia, thus promoting trophoblast invasion [81,

141]. A recent study analyzing a cohort of 23, 604

women who had information on placental pathology and

aspirin intake during pregnancy revealed that aspirin use

reduced risks of having hypoxia-related placental path-

ology such as thrombus, infarct, fibrin deposition, hyda-

tid, cyst, and calcification [177]. These data provide the

potential molecular mechanism by which aspirin pre-

vents preeclampsia maybe via maintaining primary cilia.

However, the precise role of HIF-1α in regulating pla-

cental hypoxic ciliopathy still needs to be further

investigated.

Endometriosis

Endometriosis is one of the most common gynecological

diseases that reduces life quality and fertility of patients

worldwide. It is characterized by the presence of endo-

metrial tissue outside the uterine cavity and the inci-

dence rate of endometriosis is around 8 to 15% in

women of the reproductive age [47]. The etiology of

endometriosis remains unknown, but a recent report

suggests that hypoxia is the driving force of endometri-

osis [170]. The notion is based on a series of investiga-

tions that provided crucial evidence to support the role

of hypoxia during the development of endometriosis.

Some key findings are summarized below (Fig. 6).

Hypoxia and cell adhesion Endometriosis is initiated by

retrograde menstruation. The retrograded endometrial

Fig. 4 Schematic diagram of the hypoxic process linked to kidney diseases. During the development of CKD, vascular endothelial cells died and

causing atrophy of microvessels. This will cause local hypoxia between tissues and cause inflammatory reactions. Hypoxia induces the expression

of TGF-β, which leads to fibroblast transformation into myofibroblast, increases ECM production, and causes fibrosis. Renal tubular epithelial cells

may encounter cell cycle arrest, apoptosis, autophagy, and finally shrink during renal fibrosis
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tissues need to land on the surface of organs in the peri-

toneal cavity and implant in order to survive ectopically.

Two challenges that the retrograded cells have to face are

hypoxic stress and adhesive ability. Recently, two studies

reported that hypoxia enhances cell adhesive ability of the

endometrial stromal cells by inducing the expression of

cell adhesion molecules such as integrin α5, αV, β3, and

β5 via TGF-β1/Smad signaling and anthrax toxin receptor

2 (ANTXR2) via HIF-1α-dependent manner [84, 87]. Fur-

thermore, hypoxia-induced ANTXR2 expression is medi-

ated by downregulation of EZH2 causing epigenetic

change in ANTXR2 locus [84]. Treatment with inhibitors

of TGF β1 receptor and ANTXR2 significantly attenuates

hypoxia-induced cell adhesion in normal endometrial

stromal cells [84, 87]. Furthermore, ANTXR2 inhibitor

can prevent and reduce endometriotic lesion formation in

the mouse model of endometriosis [84], revealing its

therapeutic potential for endometriosis. Taken together, it

is indicated that hypoxia can promote the development of

endometriosis via increasing cell adhesive ability.

Hypoxia and hormone production Previous studies

have revealed that both estrogen (E2) and prostaglandin

E2 (PGE2) are crucial factors for the development of

endometriosis [21, 172] and the enzymes control the

rate limiting steps of E2 (aromatase and steroidogenic

acute regulatory protein, StAR) and PGE2 (cyclooxygen-

ase-2, COX-2) biogenesis are aberrantly expressed in

endometriotic stromal cells [9, 55, 153, 173]. It was later

revealed that hypoxia upregulates both StAR and COX-2

expression. Hypoxia represses dual-specificity

phosphatase-2 (DUSP2) expression and contributes to

increase COX-2 expression via activation of ERK and

p38 signaling pathways [171]. Furthermore, hypoxia also

inhibits chicken ovalbumin upstream promoter-

transcription factor II (COUP-TFII) to de-repress COX-

2 expression in endometriotic stromal cells [85]. Finally,

recent study has identified that hypoxia promotes YAP1

activation, which leads to StAR and COX-2 overexpres-

sion [83]. The same study also reported that inhibition

of YAP1 by its inhibitor, verteporfin, not only decreases

E2 and PGE2 production but also causes the regression

of endometriotic lesion in the mouse model of endomet-

riosis [83]. These data indicate that retrograded endo-

metrial tissues can produce E2 and PGE2 via the

assistance of hypoxia to support their growth and

development.

Hypoxia and angiogenesis To sustain the growth of

endometriotic lesion in the hostile peritoneal cavity,

Fig. 5 Potential role of hypoxia in developing preeclampsia. Binding of EG-VEGF to its receptor on the primary cilium activates ERK signaling at

the basal body for proper placentation. Under hypoxic condition, however, HIF-1α translocates to the base of cilia and induces cilia deacetylation,

thus leading to ciliary resorption. The hypoxia-induced ciliary defects contribute to the development of preeclampsia
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new blood vessels must be established to provide oxy-

gen and nutrient. Heterograft animal model of endo-

metriosis by implanting human eutopic endometrium

into severe combined immunodeficiency mice has

identified that hypoxia pretreatment for eutopic endo-

metrium significantly increases the level of VEGF to

promote cell proliferation and angiogenesis in vivo

[93]. Critically, numerous studies have demonstrated

the effects of hypoxia on angiogenesis via different

mechanisms in endometriosis. Among them, leptin

and VEGF-A are two well-known angiogenic factors

upregulated by hypoxic treatment in normal endomet-

rial stromal cells [133, 169]. In addition, hypoxia-

induced miR-20a causes prolonged activation of ERK

singling results in increasing several angiogenic factor

including CYR61 and osteopontin [86]. Furthermore,

hypoxia can increase angiogenin and IL-8 expression

by downregulation of COUP-TFII and DUSP2 expres-

sion, respectively [44, 54]. More importantly, IL-8 re-

ceptor inhibitor, reparixin, and YAP1 inhibitor,

veterporfin, inhibit angiogenesis and the growth of

endometriotic lesion in the animal model of endomet-

riosis [54, 83]. Taken together, these findings reveal

the critical role of hypoxia-induced angiogenesis dur-

ing the development of endometriosis.

Hypoxia and autophagy Peritoneal cavity is an unfavor-

able microenvironment for the retrograded endometrial

tissues due to lack of blood vessel to supply oxygen and

nutrients. The study has reported that the higher level of

oxidative stress-induced DNA damage is observed in

endometriotic specimen compared to the normal endo-

metrial tissues [33]. Furthermore, primary endometriotic

stromal cells produce more ROS than normal endomet-

rial stromal cells [24]. Therefore, how endometriotic

cells survive under this stressful condition is an intri-

guing question. Previously, autophagy, a cellular mech-

anism to remove or recycle unnecessary or dysfunctional

components to produce energy, has been thought to play

crucial roles in protecting cells from oxidative stress-

induced cell apoptosis [99, 104]. Indeed, autophagy is re-

ported to be upregulated in the ovarian endometriosis

[6, 89] and blocking hypoxia-induced autophagy en-

hances apoptosis of endometrial stromal cells [88]. Re-

cently, it is further demonstrated that hypoxia-induced

long non-coding RNA MALAT1 (lncRNA-MALAT1) is

involved in autophagy to protect cells from apoptosis

[88]. However, the underlying mechanism that how

lncRNA-MALAT1 regulates hypoxia-induced autophagy

is still unclear. Besides autophagy, the change of meta-

bolic phenotype in endometriotic lesions may also favor

Fig. 6 Impacts of hypoxia on endometriosis pathogenesis. Shed-off endometrial tissues will immediately suffer hypoxic stress when it retrogrades

into the peritoneal cavity during menstruation. Hypoxia regulates numerous downstream target genes involved in different cellular processes

including cell survival, metabolism, angiogenesis, E2 and PGE2 production, and cell adhesion to help the development of endometriosis
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the development of endometriosis. For example, higher

levels of glycolysis-related genes such as pyruvate de-

hydrogenase kinase 1 and lactate dehydrogenase A have

been reported in endometriotic specimens and stromal

cells, respectively [73, 181]. Furthermore, hypoxia-

upregulated pyruvate dehydrogenase kinase 1 has

prevented cell death induced by H2O2 or low nutrient

treatment [73]. In summary, hypoxia-induced autophagy

and change of cell metabolism may help retrograded

endometrial tissues to adapt to the hostile microenviron-

ment and favor the development of endometriosis.

Conclusion and perspective

The mechanisms of cellular response to hypoxia contrib-

ute to stress-induced pathophysiological outcomes. Pre-

vious studies established the fundamental concept of

hypoxia biology, while recent advances in molecular and

cellular biology such as non-coding RNA and microvesi-

cle accelerate us to demonstrate a more complete and

complex view of the regulatory network under hypoxia.

Notably, most of these new findings were found to be

closely integrated in the canonical hypoxia pathway, sug-

gesting a fine-tuned cellular machinery with multiple

pathways cooperatively, synergistically, or mutual exclu-

sively work together to modulate the transduction of

hypoxia signaling. Identification of these new sensors,

messengers, and functional modulators not only ad-

vances our knowledge of hypoxia biology but also pro-

vides insights into the development of potential

diagnostic and therapeutic approaches.
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